1
|
Zhang X, Li X, Hua R, Fang Y, Yue T, Li J, Lu Y, Yue W, Gao Z, Liu S, Sun D. Identification of stable reference genes for qRT-PCR in Stropharia rugosoannulata using mRNA-sequencing data. PLoS One 2025; 20:e0323272. [PMID: 40334243 PMCID: PMC12058128 DOI: 10.1371/journal.pone.0323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/06/2025] [Indexed: 05/09/2025] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is a well-established and reliable technology utilized for the rapid and accurate quantification of gene expression changes. The selection of stable reference genes is necessary to analyse qRT-PCR data and ensure gene expression studies reliability. Stropharia rugosoannulata, commonly known as the wine-cap Stropharia mushroom, ranks among the top ten internationally traded mushrooms. In the present study, six novel candidate reference genes were selected from S. rugosoannulata transcriptome, alongside four traditional reference genes that displayed stable expression levels in S. rugosoannulata. Three widely used software (geNorm, NormFinder, and BestKeeper) were employed to analyse ten candidate reference genes, and the final ranking of reference genes was determined through RefFinder. The results indicated that UBP exhibited the highest stability across various developmental stages of red and yellow S. rugosoannulata, while RPB2 and GAPDH showed the least stability. These novel reference genes demonstrated significantly superior stability to other four traditional genes across nearly all developmental stages. In conclusion, Our findings provide robust guidelines for selecting suitable reference genes, thereby enhancing the reliability of qRT-PCR normalization in Stropharia rugosoannulata.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Xuesong Li
- Yunnan Academy of Edible Fungi Industry Development, Kunming, China
| | - Rong Hua
- Yunnan Academy of Edible Fungi Industry Development, Kunming, China
| | - Yuan Fang
- Yunnan Academy of Edible Fungi Industry Development, Kunming, China
| | - Tingsong Yue
- Yunnan Academy of Edible Fungi Industry Development, Kunming, China
| | - Jianying Li
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Yuxun Lu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Wansong Yue
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Zhanghui Gao
- Yunnan Academy of Edible Fungi Industry Development, Kunming, China
| | - Shaoxiong Liu
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Dafeng Sun
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, China
| |
Collapse
|
2
|
Maisto M, Zuzolo D, Tartaglia M, Prigioniero A, Ranauda MA, Germinario C, Falzarano A, Castelvetro V, Sciarrillo R, Guarino C. Advances in plastic mycoremediation: Focus on the isoenzymes of the lignin degradation complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174554. [PMID: 39004366 DOI: 10.1016/j.scitotenv.2024.174554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy.
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Chiara Germinario
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Alessandra Falzarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13-56124 Pisa, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
3
|
Xu Y, Yao T, Yan H, Xin L. Exopolysaccharides from Pseudomonas tolaasii inhibit the growth of Pleurotus ostreatus mycelia. Open Life Sci 2023; 18:20220601. [PMID: 37250846 PMCID: PMC10224631 DOI: 10.1515/biol-2022-0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 05/31/2023] Open
Abstract
In the present study, the effect of exopolysaccharides (EPSs) extracted from Pseudomonas tolaasii on the growth of Pleurotus ostreatus mycelia was determined. P. ostreatus mycelia was cultivated with different concentrations of P. tolaasii EPSs, and their mycelial growth rate, protein content, and enzyme activity were measured and compared. The results showed that EPSs inhibited the growth of P. ostreatus. The proline and vitamin C contents of P. ostreatus increased at an EPS concentration of 40%. The cellulase, α-amylase, protein, and glucose utilisation rates of P. ostreatus gradually decreased with the increase in EPS concentration. Altogether, P. tolaasii EPSs had a significant inhibitory effect on mycelial growth. Therefore, we concluded that in addition to tolaasin, EPSs may also be the virulence factors responsible for the pathogenesis of P. tolaasii.
Collapse
Affiliation(s)
- Yanyan Xu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou075000, China
| | - Taimei Yao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou075000, China
| | - Haiyan Yan
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou075000, China
| | - Longzuo Xin
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou075000, China
| |
Collapse
|
4
|
Meunier C, Darolti I, Reimegård J, Mank JE, Johannesson H. Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete Neurospora tetrasperma. Proc Biol Sci 2022; 289:20220971. [PMID: 35946150 PMCID: PMC9363985 DOI: 10.1098/rspb.2022.0971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heterokaryosis is a system in which genetically distinct nuclei coexist within the same cytoplasm. While heterokaryosis dominates the life cycle of many fungal species, the transcriptomic changes associated with the transition from homokaryosis to heterokaryosis is not well understood. Here, we analyse gene expression profiles of homokaryons and heterokaryons from three phylogenetically and reproductively isolated lineages of the filamentous ascomycete Neurospora tetrasperma. We show that heterokaryons are transcriptionally distinct from homokaryons in the sexual stage of development, but not in the vegetative stage, suggesting that the phenotypic switch to fertility in heterokaryons is associated with major changes in gene expression. Heterokaryon expression is predominantly defined by additive effects of its two nuclear components. Furthermore, allele-specific expression analysis of heterokaryons with varying nuclear ratios show patterns of expression ratios strongly dependent on nuclear ratios in the vegetative stage. By contrast, in the sexual stage, strong deviations of expression ratios indicate a co-regulation of nuclear gene expression in all three lineages. Taken together, our results show two levels of expression control: additive effects suggest a nuclear level of expression, whereas co-regulation of gene expression indicate a heterokaryon level of control.
Collapse
Affiliation(s)
- Cécile Meunier
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada,Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden,The Royal Swedish Academy of Sciences and Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Optimization of White-Rot Fungi Mycelial Culture Components for Bioremediation of Pharmaceutical-Derived Pollutants. WATER 2022. [DOI: 10.3390/w14091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
White-rot fungi can degrade a wide spectrum of environmental pollutants, including pharmaceuticals, which are not efficiently removed from wastewater by conventional methods, e.g., the activated sludge method. However, the treatment of wastewater with the use of fungal cultures (mycoremediation) also has significant limitations: among others, the need to use appropriate, often-expensive culture media. We aimed to screen 18 media ingredients, including seven agrifood byproducts for Armillaria mellea, Phanerochaete chrysosporium and Pleurotus ostreatus in submerged cultures to select the low-cost medium optimal for biomass production and laccase activity. We screened nine mathematic models to describe the relation of fungal growth and the amount of the selected byproduct in media. Finally, we tested the ability of the strain with the highest mycelial growth and enzyme-producing ability in the selected medium to degrade eight drug contaminants. Three media variants composed of byproducts provided both efficient growth and laccase production: corn steep liquor + poplar, dried distillers grains with solubles + poplar and corn steep liquor 50%. Among the investigated growth models, the Han–Levenspiel equation described well the specific growth rate in function of the nominal substrate concentration in one-component media. Pleurotus ostreatus, the fungus with the highest ligninolytic enzyme activity, cultured in medium composed of corn steep liquor, removed six of eight drug contaminants with a removal degree of 20–90% in 48 h. The obtained data on the optimal culture media consisting of insoluble components provide initial data for upscaling the process and designing an appropriate type of bioreactor for the process of removing drug contaminants from water.
Collapse
|
6
|
Durán-Sequeda D, Suspes D, Maestre E, Alfaro M, Perez G, Ramírez L, Pisabarro AG, Sierra R. Effect of Nutritional Factors and Copper on the Regulation of Laccase Enzyme Production in Pleurotus ostreatus. J Fungi (Basel) 2021; 8:jof8010007. [PMID: 35049947 PMCID: PMC8780821 DOI: 10.3390/jof8010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.
Collapse
Affiliation(s)
- Dinary Durán-Sequeda
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Daniela Suspes
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Estibenson Maestre
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Gumer Perez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
| | - Antonio G. Pisabarro
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, 31006 Pamplona, Spain; (M.A.); (G.P.); (L.R.)
- Correspondence: (D.D.-S.); (A.G.P.)
| | - Rocío Sierra
- Product and Process Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, 111711 Bogotá, Colombia; (D.S.); (E.M.); (R.S.)
| |
Collapse
|
7
|
Monokaryotic Pleurotus sapidus Strains with Intraspecific Variability of an Alkene Cleaving DyP-Type Peroxidase Activity as a Result of Gene Mutation and Differential Gene Expression. Int J Mol Sci 2021; 22:ijms22031363. [PMID: 33573012 PMCID: PMC7866418 DOI: 10.3390/ijms22031363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons.
Collapse
|
8
|
Barh A, Sharma VP, Annepu SK, Kamal S, Sharma S, Bhatt P. Genetic improvement in Pleurotus (oyster mushroom): a review. 3 Biotech 2019; 9:322. [PMID: 31406644 DOI: 10.1007/s13205-019-1854-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Pleurotus is an important genus comprising several edible species of great commercial significance. These species are grown all across the world. The production areas of Pleurotus mainly belong to the Asian part and are gaining wide popularity across the globe owing to their promising nutritional gains. The demand for improved strains with high productivity has also been rising. The genetic improvement in Pleurotus started with a simple selection technique, which later utilized hybridization (intraspecific, interspecific and intergeneric) and mutation breeding. The traits such as productivity, sporelessness and quality improvement are important objectives on which most of the works have been done so far. However, new generation approaches such as molecular breeding, genetic transformation and genome editing techniques also added pace to the present improvement process. Hitherto, seven species of Pleurotus have been sequenced and a sizable data has been generated that can be used in further breeding programs. This paper discusses and summarizes various research findings on genetic improvement of Pleurotus and gives an outlook for future breeding programs.
Collapse
|
9
|
Linke D, Omarini AB, Takenberg M, Kelle S, Berger RG. Long-Term Monokaryotic Cultures of Pleurotus ostreatus var. florida Produce High and Stable Laccase Activity Capable to Degrade ß-Carotene. Appl Biochem Biotechnol 2018; 187:894-912. [PMID: 30099681 DOI: 10.1007/s12010-018-2860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
An extracellular laccase (Lacc10) was discovered in submerged cultures of Pleurotus ostreatus var. florida bleaching ß-carotene effectively without the addition of a mediator (650 mU/L, pH 4). Heterologous expression in P. pastoris confirmed the activity and structural analyses revealed a carotenoid-binding domain, which formed the substrate-binding pocket and is reported here for the first time. In order to increase activity, 106 basidiospore-derived monokaryons and crosses of compatible progenies were generated. These showed high intraspecific variability in growth rate and enzyme formation. Seventy-two homokaryons exhibited a higher activity-to-growth-rate-relation than the parental dikaryon, and one isolate produced a very high activity (1800 mU/L), while most of the dikaryotic hybrids showed lower activity. The analysis of the laccase gene of the monokaryons revealed two sequences differing in three amino acids, but the primary sequences gave no clue for the diversity of activity. The enzyme production in submerged cultures of monokaryons was stable over seven sub-cultivation cycles.
Collapse
Affiliation(s)
- Diana Linke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Alejandra B Omarini
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.,INCITAP (CONICET-UNLPam) Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Pampa, Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - Meike Takenberg
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Sebastian Kelle
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| |
Collapse
|
10
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
11
|
Liu T, Li H, Ding Y, Qi Y, Gao Y, Song A, Shen J, Qiu L. Genome-wide gene expression patterns in dikaryon of the basidiomycete fungus Pleurotus ostreatus. Braz J Microbiol 2017; 48:380-390. [PMID: 28089161 PMCID: PMC5470450 DOI: 10.1016/j.bjm.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
Dikarya is a subkingdom of fungi that includes Ascomycota and Basidiomycota. The gene expression patterns of dikaryon are poorly understood. In this study, we bred a dikaryon DK13×3 by mating monokaryons MK13 and MK3, which were from the basidiospores of Pleurotus ostreatus TD300. Using RNA-Seq, we obtained the transcriptomes of the three strains. We found that the total transcript numbers in the transcriptomes of the three strains were all more than ten thousand, and the expression profile in DK13×3 was more similar to MK13 than MK3. However, the genes involved in macromolecule utilization, cellular material synthesis, stress-resistance and signal transduction were much more up-regulated in the dikaryon than its constituent monokaryons. All possible modes of differential gene expression, when compared to constituent monokaryons, including the presence/absence variation, and additivity/nonadditivity gene expression in the dikaryon may contribute to heterosis. By sequencing the urease gene poure sequences and mRNA sequences, we identified the monoallelic expression of the poure gene in the dikaryon, and its transcript was from the parental monokaryon MK13. Furthermore, we discovered RNA editing in the poure gene mRNA of the three strains. These results suggest that the gene expression patterns in dikaryons should be similar to that of diploids during vegetative growth.
Collapse
Affiliation(s)
- Tianxiang Liu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Huiru Li
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yatong Ding
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuancheng Qi
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Yuqian Gao
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Andong Song
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Jinwen Shen
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China
| | - Liyou Qiu
- Henan Agricultural University, College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Zhengzhou, China.
| |
Collapse
|
12
|
Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, Pisabarro AG. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungusPleurotus ostreatus. Environ Microbiol 2016; 18:4710-4726. [DOI: 10.1111/1462-2920.13360] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Alfaro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Raúl Castanera
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - José L. Lavín
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Bizkaia Technology Park; Derio 48160 Spain
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - José A. Oguiza
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Lucía Ramírez
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Antonio G. Pisabarro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| |
Collapse
|
13
|
Yang J, Wang G, Ng TB, Lin J, Ye X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front Microbiol 2016; 6:1558. [PMID: 26793186 PMCID: PMC4710055 DOI: 10.3389/fmicb.2015.01558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| |
Collapse
|
14
|
Validation of Reference Genes for Transcriptional Analyses in Pleurotus ostreatus by Using Reverse Transcription-Quantitative PCR. Appl Environ Microbiol 2015; 81:4120-9. [PMID: 25862220 DOI: 10.1128/aem.00402-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Recently, the lignin-degrading basidiomycete Pleurotus ostreatus has become a widely used model organism for fungal genomic and transcriptomic analyses. The increasing interest in this species has led to an increasing number of studies analyzing the transcriptional regulation of multigene families that encode extracellular enzymes. Reverse transcription (RT) followed by real-time PCR is the most suitable technique for analyzing the expression of gene sets under multiple culture conditions. In this work, we tested the suitability of 13 candidate genes for their use as reference genes in P. ostreatus time course cultures for enzyme production. We applied three different statistical algorithms and obtained a combination of stable reference genes for optimal normalization of RT-quantitative PCR assays. This reference index can be used for future transcriptomic analyses and validation of transcriptome sequencing or microarray data. Moreover, we analyzed the expression patterns of a laccase and a manganese peroxidase (lacc10 and mnp3, respectively) in lignocellulose and glucose-based media using submerged, semisolid, and solid-state fermentation. By testing different normalization strategies, we demonstrate that the use of nonvalidated reference genes as internal controls leads to biased results and misinterpretations of the biological responses underlying expression changes.
Collapse
|
15
|
Omarini AB, Plagemann I, Schimanski S, Krings U, Berger RG. Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone. BIORESOURCE TECHNOLOGY 2014; 171:113-119. [PMID: 25189516 DOI: 10.1016/j.biortech.2014.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
Several hundred monokaryotic and new dikaryotic strains derived thereof were established from (+)-valencene tolerant Pleurotus species. When grouped according to their growth rate on agar plates and compared to the parental of Pleurotus sapidus 69, the slowly growing monokaryons converted (+)-valencene more efficiently to the grapefruit flavour compound (+)-nootkatone. The fast growing monokaryons and the slow×slow and the fast×fast dikaryotic crosses showed similar or inferior yields. Some slow×fast dikaryons, however, exceeded the biotransformation capability of the parental dikaryon significantly. The activity of the responsible enzyme, lipoxygenase, showed a weak correlation with the yields of (+)-nootkatone indicating that the determination of enzyme activity using the primary substrate linoleic acid may be misleading in predicting the biotransformation efficiency. This exploratory study indicated that a classical genetics approach resulted in altered and partly improved terpene transformation capability (plus 60%) and lipoxygenase activity of the strains.
Collapse
Affiliation(s)
- Alejandra B Omarini
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Ina Plagemann
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Silke Schimanski
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Ulrich Krings
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, 30167 Hannover, Germany
| |
Collapse
|
16
|
Fernández-Fueyo E, Castanera R, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 2014; 72:150-161. [PMID: 24560615 DOI: 10.1016/j.fgb.2014.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and mnp5 were the only peroxidase genes upregulated under alkaline pH conditions. The differences in the transcription levels of the peroxidase genes when the culture temperature and pH parameters were changed suggest an adaptive expression according to environmental conditions. Finally, the intracellular proteome was analyzed, under the same conditions used in the secretomic analysis, and the protein product of the highly-transcribed gene mnp3 was detected. Therefore, it was concluded that the absence of MnP3 from the secretome of the P. ostreatus lignocellulose cultures was related to impaired secretion.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain
| | - Raul Castanera
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | | | - María F López-Lucendo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain
| | - Lucía Ramírez
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | - Antonio G Pisabarro
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain.
| |
Collapse
|