1
|
Matsoukas MT, Panagiotopoulos V, Karageorgos V, Chrousos GP, Venihaki M, Liapakis G. Structural and Functional Insights into CRF Peptides and Their Receptors. BIOLOGY 2024; 13:120. [PMID: 38392338 PMCID: PMC10886364 DOI: 10.3390/biology13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a plethora of physiological functions and are involved in many pathophysiological processes. CRF and urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin, and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown considerable therapeutic potential in the treatment of various diseases. The CRF peptide family act by interacting with two types of plasma membrane proteins, type 1 (CRF1R) and type 2 (CRF2R), which belong to subfamily B1 of the family B G-protein-coupled receptors (GPCRs). This work describes the structure of CRF peptides and their receptors and the activation mechanism of the latter, which is compared with that of other GPCRs. It also discusses recent structural information that rationalizes the selective binding of various ligands to the two CRF receptor types and the activation of receptors by different agonists.
Collapse
Affiliation(s)
- Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vasilis Panagiotopoulos
- Department of Biomedical Engineering, School of Engineering, University of West Attica, 12243 Athens, Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO, National and Kapodistrian University of Athens, Livadias 8, 11527 Athens, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Liapakis
- Department of Pharmacology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Pagán-Busigó JE, López-Carrasquillo J, Appleyard CB, Torres-Reverón A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS One 2022; 17:e0264909. [PMID: 35275963 PMCID: PMC8916623 DOI: 10.1371/journal.pone.0264909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Evidence for beneficial effects of corticotropin releasing hormone (CRH) antagonists in abdominal and pelvic organs is emerging in preclinical studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement a compilation of preclinical studies using CRH receptor antagonists as a treatment for abdominal and pelvic disease was carried out. The Animal Research: Reporting of In Vivo Experiments (ARRIVE) essential 10 guidelines were used to determine quality of the included studies. A total of 40 studies from the last 15 years studying irritable bowel syndrome, inflammatory bowel disease, endometriosis, enteritis, stress impact on gastrointestinal processes and exogenous CRH administration effects were included. Blockage of the CRH receptor 1 was mainly associated with beneficial effects while that of CRH receptor 2 worsened studied effects. However, time of administration, route of administration and the animal model used, all had an impact on the beneficial outcomes. Frequency of drugs administered indicated that astressin-2B, astressin and antalarmin were among the most utilized antagonists. Of concern, studies included were predominantly carried out in male models only, representing a gender discrepancy in preclinical studies compared to the clinical scenario. The ARRIVE score average was 13 with ~60% of the studies failing to randomize or blind the experimental units. Despite the failure to date of the CRH antagonists in moving across the clinical trials pipeline, there is evidence for their beneficial effects beyond mood disorders. Future pre-clinical studies should be tailored towards effectively predicting the clinical scenario, including reduction of bias and randomization.
Collapse
Affiliation(s)
- Joshua E. Pagán-Busigó
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Jonathan López-Carrasquillo
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
| | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
- * E-mail: ,
| |
Collapse
|
3
|
Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides 2022; 147:170705. [PMID: 34822913 DOI: 10.1016/j.peptides.2021.170705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that coordinates the endocrine system, autonomic nervous system, immune system, and physiological behavior. CRF is a signaling regulator in the neuro-endocrine-immune (NEI) network that mediates visceral hypersensitivity. Rodent models to simulate changes in intestinal motility similar to those reported in the irritable bowel syndrome (IBS), demonstrate that the CRF receptor 1 (CRF-R1) mediates intestinal hypersensitivity under many conditions. However, the translation of preclinical studies into clinical trials has not been successful possibly due to the lack of sufficient understanding of the multiple variants of CRF-R1 and CRF-R1 antagonists. Investigating the sites of action of central and peripheral CRF is critical for accelerating the translation from preclinical to clinical studies.
Collapse
Affiliation(s)
- Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Jing Wen
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Yingying Fang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Haoyuan Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, China.
| | - Jianwu Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| |
Collapse
|
4
|
Yuan PQ, Wu SV, Stengel A, Sato K, Taché Y. Activation of CRF 1 receptors expressed in brainstem autonomic nuclei stimulates colonic enteric neurons and secreto-motor function in male rats. Neurogastroenterol Motil 2021; 33:e14189. [PMID: 34215021 DOI: 10.1111/nmo.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypothalamic corticotropin-releasing factor (CRF) receptor 1 (CRF1 ) plays a role in acute stress-related stimulation of colonic motor function. Less is known on CRF1 signaling in the brainstem. METHODS We investigate CRF1 expression in the brainstem and the colonic response to 4th ventricle (4V) injection of CRF and urocortin (Ucn) 2 (3 µg/rat) in chronically cannulated male rats. KEY RESULTS Transcripts of CRF1 wild-type 1a and splice variants 1c, 1e, 1f, 1o along with three novel variants 1a-2 (desK-110 in exon 5), 1p (-exon 7), and 1q (exon 5 extension) were identified in the pons and medulla. The area postrema, nucleus tractus solitarius, dorsal motor nucleus of the vagus, locus coeruleus, and Barrington's nucleus isolated by laser capture microdissection expressed 1a, 1a-2, and 1p but not 1q. Compared to 4V vehicle, 4V CRF induced fecal pellet output (FPO) and diarrhea that were blocked by the CRF antagonist, astressin-B. CRF2 agonist, Ucn2 had no effect on basal or CRF-induced FPO. CRF actions were correlated with the induction of c-Fos immunoreactivity in myenteric neurons of the proximal and distal colon (pC, dC) and submucosal neurons of dC. c-Fos immunoreactivity occurred in 39% and 37% of myenteric cholinergic and 7% and 58% of nitrergic neurons in the pC and dC, respectively. CONCLUSIONS & INFERENCES CRF1a and its splice variants are expressed in brainstem nuclei, and activation of CRF1 signaling at the level of the brainstem stimulates colonic secretory-motor function through activation of colonic enteric neurons.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - S Vincent Wu
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Andreas Stengel
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ken Sato
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- Sato Clinic 13-14 Choei Moriyamaku, Nagoya City, Japan
| | - Yvette Taché
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
5
|
Tsushima H, Zhang Y, Muratsubaki T, Kanazawa M, Fukudo S. Oxytocin antagonist induced visceral pain and corticotropin-releasing hormone neuronal activation in the central nucleus of the amygdala during colorectal distention in mice. Neurosci Res 2021; 168:41-53. [PMID: 33932549 DOI: 10.1016/j.neures.2021.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Activation of neurons containing oxytocin and corticotropin-releasing hormone (CRH) in the paraventricular nucleus (PVN) of the hypothalamus, the anterior cingulate cortex (ACC), and the central nucleus of the amygdala (CeA) during colorectal distention (CRD) is likely to play a crucial role in animal models of irritable bowel syndrome (IBS). Earlier studies in rodents showed that the microbiome is involved in social behavior via oxytocin expression in the brain. However, the detailed mechanism of visceral sensation and oxytocin is largely unknown. We tested the following hypotheses: (1) that oxytocin neurons in the PVN are activated by CRD, and (2) that the activation of oxytocin neurons by CRD is related to anxiety-like behavior, visceral perception, and an activation of CRH CeA neurons or ACC neurons. Oxytocin antagonist caused visceral hypersensitivity and anxiety-like behavior. In the PVN, oxytocin neurons were activated by CRD. Noxious CRD activated the CeA, basolateral nucleus of the amygdala (BLA), and ACC. High-dose oxytocin antagonist suppressed ACC activity and activated CRH CeA neurons. These results support our hypotheses. Oxytocin likely regulates CRH CeA neurons in an inhibitory manner and the ACC in an excitatory manner. Further research into the interaction of oxytocin and CRH in visceral pain and anxiety is warranted.
Collapse
Affiliation(s)
- Hiromichi Tsushima
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yanli Zhang
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Tomohiko Muratsubaki
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoyori Kanazawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
6
|
Okumura T, Ishioh M, Nozu T. Central regulatory mechanisms of visceral sensation in response to colonic distension with special reference to brain orexin. Neuropeptides 2021; 86:102129. [PMID: 33636498 DOI: 10.1016/j.npep.2021.102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Visceral hypersensitivity is a major pathophysiology in irritable bowel syndrome (IBS). Although brain-gut interaction is considered to be involved in the regulation of visceral sensation, little had been known how brain controls visceral sensation. To improve therapeutic strategy in IBS, we should develop a novel approach to control visceral hypersensitivity. Here, we summarized recent data on central control of visceral sensation by neuropeptides in rats. Orexin, ghrelin or oxytocin in the brain is capable of inducing visceral antinociception. Dopamine, cannabinoid, adenosine, serotonin or opioid in the central nervous system (CNS) plays a role in the visceral hyposensitivity. Central ghrelin, levodopa or morphine could induce visceral antinociception via the orexinergic signaling. Orexin induces visceral antinociception through dopamine, cannabinoid, adenosine or oxytocin. Orexin nerve fibers are identified widely throughout the CNS and orexins are implicated in a number of functions. With regard to gastrointestinal functions, in addition to its visceral antinociception, orexin acts centrally to stimulate gastrointestinal motility and improve intestinal barrier function. Brain orexin is also involved in regulation of sleep/awake cycle and anti-depressive action. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with IBS who are frequently accompanied with sleep disturbance, depressive state and disturbed gut functions such as gut motility disturbance, leaky gut and visceral hypersensitivity.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan.
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| |
Collapse
|
7
|
Itomi Y, Tanaka T, Matsushita K, Kawamura T, Kojima T, Aso K, Matsumoto-Okano S, Tsukimi Y. Pharmacological evaluation of a novel corticotropin-releasing factor 1 receptor antagonist T-3047928 in stress-induced animal models in a comparison with alosetron. Neurogastroenterol Motil 2020; 32:e13795. [PMID: 31970891 DOI: 10.1111/nmo.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The major symptoms of irritable bowel syndrome (IBS) are changes in bowel habits and abdominal pain. Psychological stress is the major pathophysiological components of IBS. Corticotropin-releasing factor (CRF) is a well-known integrator in response to psychological stress. In this study, a novel CRF1 receptor antagonist T-3047928 was evaluated in stress-induced IBS models of rats to explore its potency for IBS. METHODS Plasma adrenocorticotropic hormone (ACTH) levels after intravenous oCRH challenge were measured as a pharmacodynamic marker. Efficacies of oral T-3047928 were compared with oral alosetron, a 5-HT3 antagonist, on conditioning fear stress (CFS)-induced defecation, restraint stress (RS)-induced acute visceral pain, specific alteration of rhythm in temperature (SART) stress-induced chronic visceral pain, and normal defecation. RESULTS T-3047928 (1-10 mg/kg, p.o.) demonstrated a dose-dependent inhibition on oCRH-induced ACTH secretion. In disease models, T-3047928 suppressed fecal pellet output induced by CFS and improved both acute and chronic visceral hypersensitivity induced by RS and SART stress, respectively. Alosetron was also efficacious in stress-induced defecation and visceral pain models at 1 and 10 mg/kg, respectively. Alosetron, however, also suppressed normal defecation at lower those. On the other hand, T-3047928 did not change normal defecation even at higher dose than those in disease models. CONCLUSION T-3047928 is an orally active CRF1 antagonist that demonstrated potent inhibitory effects in stress-associated IBS models with no effect on normal defecation. Therefore, it is suggested that T-3047928 may have a potency as a novel option for IBS-D therapy with minimal constipation risk.
Collapse
Affiliation(s)
- Yasuo Itomi
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takahiro Tanaka
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kozo Matsushita
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Toru Kawamura
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Takuto Kojima
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kazuyoshi Aso
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shiho Matsumoto-Okano
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yasuhiro Tsukimi
- Inflammation DDU, Pharmacological Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
8
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
9
|
Bülbül M, Sinen O, Bayramoğlu O, Akkoyunlu G. Enteric apelin enhances the stress-induced stimulation of colonic motor functions. Stress 2020; 23:201-212. [PMID: 31441348 DOI: 10.1080/10253890.2019.1658739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In response to stress, apelin and corticotropin-releasing factor (CRF) are upregulated in the gastrointestinal (GI) tract. This study was designed to investigate the effect of stress on endogenous apelin in colon and its regulatory role on colonic motor functions. Colon transit (CT) was measured in rats exposed to acute restraint stress (ARS). APJ and CRF receptor antagonists F13A and astressin were administered intraperitoneally 30 min before ARS loading. Colonic muscle contractions were evaluated by in-vivo motility recording and in-vitro organ bath studies. Detection of apelin or CRF was performed using immunohistochemistry in proximal and distal colon of non-stressed (NS) and ARS-loaded rats. Immunoreactivity of CRF1 with apelin or APJ receptor was detected with double-labeled immunofluorescence in colonic myenteric neurons. Compared with NS rats, ARS accelerated the CT which was attenuated significantly by F13A or astressin. Following ARS, the expression of CRF was increased remarkably in distal colon, while the stress-induced change was not prominent in proximal colon. Apelin-positive cells were detected in myenteric ganglia of distal colon, while no apelin immunoreactivity observed in myenteric neurons of proximal colon. Both apelin and APJ receptor are colocalized with CRF1 in myenteric neurons of distal colon. In the in-vivo colonic motility experiments, apelin-13 exhibited a rapid stimulatory effect. CRF administration increased the motility which was abolished by F13A. Apelin-induced contractions in muscle strips were no longer observed with preadministration of F13A. These results suggest that enteric apelin contributes to the action of CRF on colonic motor functions under stressed conditions.LAY SUMMARYIt has been suggested in rodents that acute stress increases the expression of apelin in gastrointestinal tissues. We have found that under stressed conditions, enteric apelin contributes to the CRF-induced alterations in colonic motor functions through APJ receptor.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Gökhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
11
|
White MR, Graziano MJ, Sanderson TP. Toxicity of Pexacerfont, a Corticotropin-Releasing Factor Type 1 Receptor Antagonist, in Rats and Dogs. Int J Toxicol 2019; 38:110-120. [DOI: 10.1177/1091581819827501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pexacerfont is a corticotropin-releasing factor subtype 1 receptor antagonist that was developed for the treatment of anxiety- and stress-related disorders. This report describes the results of repeat-dose oral toxicity studies in rats (3 and 6 months) and dogs (3 months and 1 year). Pexacerfont was well tolerated in all of these studies at exposures equal to or greater than areas under the curve in humans (clinical dose of 100 mg). Microscopic changes in the liver (hepatocellular hypertrophy), thyroid glands (hypertrophy/hyperplasia and adenomas of follicular cells), and pituitary (hypertrophy/hyperplasia and vacuolation of thyrotrophs) were only observed in rats and were considered adaptive changes in response to hepatic enzyme induction and subsequent alterations in serum thyroid hormone levels. Evidence for hepatic enzyme induction in dogs was limited to increased liver weights and reduced thyroxine (T4) levels. Mammary gland hyperplasia and altered female estrous cycling were only observed in rats, whereas adverse testicular effects (consistent with minimal to moderate degeneration of the germinal epithelium) were only noted following chronic dosing in dogs. The testicular effects were reversible changes with exposure margins of 8× at the no observed adverse effect level. It is not clear whether the changes in mammary gland, estrous cycling, and testes represent secondary hormonal changes due to perturbation of the hypothalamic–pituitary–adrenal axis or are off-target effects. In conclusion, the results of chronic toxicity studies in rats and dogs show that pexacerfont has an acceptable safety profile to support further clinical testing.
Collapse
|
12
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
13
|
Torres-Reverón A, Rivera-Lopez LL, Flores I, Appleyard CB. Antagonizing the corticotropin releasing hormone receptor 1 with antalarmin reduces the progression of endometriosis. PLoS One 2018; 13:e0197698. [PMID: 30427841 PMCID: PMC6235236 DOI: 10.1371/journal.pone.0197698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a disorder in which endometrial tissue is found outside the uterus causing pain, infertility and stress. Finding effective, non-hormonal and long-term treatments for endometriosis still remains one of the most significant challenges in the field. Corticotropin releasing hormone (CRH) is one of the main signaling peptides within the hypothalamic pituitary adrenal (HPA) axis released in response to stress. CRH can affect nervous and visceral tissues such as the uterus and gut via activation of two types of CRH receptors: CRHR1 and CRHR2. Our aim was to determine if blocking CRHR1 with antalarmin will reduce endometriosis progression. In experiment 1 we induced endometriosis in female rats by suturing uterine horn tissue next to the intestinal mesentery and allowed to progress for 7 days. We determined that after 7 days, there was a significant increase in CRHR1 within endometriotic vesicles as compared to normal uterus. In Experiment 2, we induced endometriosis and administered either antalarmin (20 mg/kg, i.p.) or vehicle during the first 7 days after surgery. A separate group of sham surgery rats served as non-endometriosis controls. Endometriosis was allowed to progress until 60 days after surgery, at which time rats were tested for anxiety behaviors. At the time of sacrifice, endometriotic vesicles, uterus and blood were collected. Treatment with antalarmin significantly reduced the size (67% decrease) and number (30% decrease) of endometriotic vesicles. Antalarmin also prevented the increase in CRH and CRHR1 mRNA within endometriotic vesicles but not of glucocorticoid receptor. Endometriosis did not change anxiety behaviors in the open field and zero-maze tests and prior antalarmin administration did not modify this. Our data provides the first in-vivo demonstration for use of CRHR1 antagonist for the treatment of endometriosis opening the possibility for further exploring CRH signaling as a treatment target for this debilitating disease.
Collapse
Affiliation(s)
- Annelyn Torres-Reverón
- Dept. Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, Texas, United States of America
- Dept. of Human Genetics, University of Texas at Rio Grande Valley School of Medicine, Edinburg, Texas, United States of America
- * E-mail:
| | - Leslie L. Rivera-Lopez
- Dept. of Psychiatry and Neurology, University of Texas at Rio Grande Valley School of Medicine, Harlingen, Texas, United States of America
| | - Idhaliz Flores
- Division of Basic Sciences, Ponce Health Sciences University—Ponce Research Institute, Ponce, Puerto Rico
- Dept. of Obstetrics and Gynecology, Ponce Health Sciences University, School of Medicine, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Division of Basic Sciences, Ponce Health Sciences University—Ponce Research Institute, Ponce, Puerto Rico
- Dept. of Internal Medicine, Ponce Health Sciences University, School of Medicine, Ponce Puerto Rico
| |
Collapse
|
14
|
Prater CM, Harris BN, Carr JA. Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis. Horm Behav 2018; 105:86-94. [PMID: 30077740 DOI: 10.1016/j.yhbeh.2018.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The optic tectum and superior colliculus rapidly inhibit food intake when a visual threat is present. Previous work indicates that CRF, acting on CRFR1 receptors, may play a role in tectal inhibition of feeding behavior and food intake. Here we test the hypothesis that tectal CRFR1 receptors modulate food intake and feeding behavior in juvenile Xenopus laevis. We performed five experiments to test the following questions: 1) Does tectal CRF injection decrease food intake/feeding behavior? 2) Does a selective CRFR1 antagonist block CRF effects on feeding/feeding behavior? 3) Does a reactive stressor decrease food intake/feeding behavior? 4) Does a selective CRFR1 antagonist block reactive stress-induced decrease in feeding/feeding behavior? 5) Does food deprivation increase food intake/feeding behavior? Tectal CRF injections reduced food intake and influenced exploratory behavior, hindlimb kicks, and time in contact with food. These effects were blocked by the selective R1 antagonist NBI-27914. Exposure to a reactive stressor decreased food intake and this effect was blocked by NBI-27914. Neither food intake or feeding behavior changed following 1 wk of food deprivation. Overall, we conclude that activation of tectal CRFR1 inhibits food intake in juvenile X. laevis. Furthermore, tectal CRFR1 receptors appear to be involved in the reduction of food intake that occurs in response to a reactive stressor.
Collapse
Affiliation(s)
- Christine M Prater
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America.
| |
Collapse
|
15
|
Creekmore AL, Hong S, Zhu S, Xue J, Wiley JW. Chronic stress-associated visceral hyperalgesia correlates with severity of intestinal barrier dysfunction. Pain 2018; 159:1777-1789. [PMID: 29912860 PMCID: PMC6097612 DOI: 10.1097/j.pain.0000000000001271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In humans, chronic psychological stress is associated with increased intestinal paracellular permeability and visceral hyperalgesia, which is recapitulated in the chronic intermittent water avoidance stress (WAS) rat model. However, it is unknown whether enhanced visceral pain and permeability are intrinsically linked and correlate. Treatment of rats with lubiprostone during WAS significantly reduced WAS-induced changes in intestinal epithelial paracellular permeability and visceral hyperalgesia in a subpopulation of rats. Lubiprostone also prevented WAS-induced decreases in the epithelial tight junction protein, occludin (Ocln). To address the question of whether the magnitude of visceral pain correlates with the extent of altered intestinal permeability, we measured both end points in the same animal because of well-described individual differences in pain response. Our studies demonstrate that visceral pain and increased colon permeability positively correlate (0.6008, P = 0.0084). Finally, exposure of the distal colon in control animals to Ocln siRNA in vivo revealed that knockdown of Ocln protein inversely correlated with increased paracellular permeability and enhanced visceral pain similar to the levels observed in WAS-responsive rats. These data support that Ocln plays a potentially significant role in the development of stress-induced increased colon permeability. We believe this is the first demonstration that the level of chronic stress-associated visceral hyperalgesia directly correlates with the magnitude of altered colon epithelial paracellular permeability.
Collapse
Affiliation(s)
| | | | | | | | - John W. Wiley
- Corresponding Author: John W Wiley, MD, University of Michigan Medical School, 1150 W Medical Center Drive, 9301A MSRB III, Ann Arbor MI 48109-5648, 734-615-6621,
| |
Collapse
|
16
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
17
|
Murakami T, Kamada K, Mizushima K, Higashimura Y, Katada K, Uchiyama K, Handa O, Takagi T, Naito Y, Itoh Y. Changes in Intestinal Motility and Gut Microbiota Composition in a Rat Stress Model. Digestion 2017; 95:55-60. [PMID: 28052282 DOI: 10.1159/000452364] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) causes chronic abdominal pain and abnormal bowel movements. The etiology involves complicated interactions among visceral hypersensitivity, disorders related to bowel movements, and stress. Changes in the microbiota affect the IBS pathophysiology. We investigated changes in colorectal motility, structure, and microbiota in response to stress due to maternal separation (MS) and corticotropin-releasing hormone (CRH) administration in rats. SUMMARY Neonatal rats were separated from their mothers for 3 h daily from postnatal day (PND) 2 to PND14. The control group included rats of the same age that were not separated. After MS, the rats were undisturbed for 5 weeks. At 8 weeks of age, 10 µg of CRH or saline was intravenously administered to MS and control groups. Two hours later, the number of fecal pellets was counted. Three hours after CRH or saline administration, the rats were sacrificed and colorectal tissue samples and cecal contents were collected to analyze the fecal microbiota. The number of fecal pellets was significantly greater in MS with the CRH group. Both stressors altered the microbiota composition. Key Messages: Among rats that received CRH, MS increased the colorectal motility. Stress due to MS altered the gut microbiota composition.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Taguchi R, Shikata K, Furuya Y, Hirakawa T, Ino M, Shin K, Shibata H. Selective corticotropin-releasing factor 1 receptor antagonist E2508 reduces restraint stress-induced defecation and visceral pain in rat models. Psychoneuroendocrinology 2017; 75:110-115. [PMID: 27810704 DOI: 10.1016/j.psyneuen.2016.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
N-Cyclopropylmethyl-7-(2,6-dimethoxy-4-methoxymethylphenyl)-2-ethyl-N-(tetrahydro-2H-pyran-4-ylmethyl)pyrazolo[1,5-a]pyridin-3-amine tosylate (E2508) is a newly discovered selective corticotropin-releasing factor 1 receptor antagonist. Here, we investigated the effects of E2508 on wrap restraint stress-induced defecation and visceral pain in rats. Oral pretreatment with E2508 dose-dependently decreased stool weights after 20min wrap restraint stress and significant effects were observed at doses of 30 and 100mg/kg. However, E2508 did not affect basal defecation at doses up to 100mg/kg. In contrast, alosetron, a 5-HT3 receptor antagonist, decreased both wrap restraint stress-induced and basal stool output at a dose of 0.1mg/kg. In a rat visceral pain model, subcutaneous injections of both E2508 (0.01 and 0.1mg/kg) and alosetron (0.001 and 0.01mg/kg) significantly decreased the number of abdominal muscle contractions induced by colonic distention, suggesting these drugs reduced visceral pain. Together, these results demonstrate E2508 has the potential to be an effective therapy for the treatment of irritable bowel syndrome with a lower risk of adverse events such as constipation compared with the current clinically used 5-HT3 receptor antagonist.
Collapse
Affiliation(s)
- Ryota Taguchi
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Concept Creation, KAN Product Creation Unit, Eisai Product Creation Systems, KAN Research Institute, Inc., 6-8-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan.
| | - Kodo Shikata
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yoshiaki Furuya
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Tetsuya Hirakawa
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Mitsuhiro Ino
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kogyoku Shin
- Medicinal Chemistry, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hisashi Shibata
- Biopharmacology, Neuroscience and General Medicine Product Creation Unit, Eisai Product Creation Systems, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Pharmacological Evaluation Unit, Tsukuba Division, Sunplanet Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
19
|
O'Malley D. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2016; 311:G934-G941. [PMID: 27742703 PMCID: PMC5130550 DOI: 10.1152/ajpgi.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Jee C, Goncalves JF, LeBoeuf B, Garcia LR. CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun 2016; 7:11957. [PMID: 27321013 PMCID: PMC4915151 DOI: 10.1038/ncomms11957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/13/2016] [Indexed: 02/08/2023] Open
Abstract
Environmental conditions can modulate innate behaviours. Although male Caenorhabditis elegans copulation can be perturbed in the presence of stress, the mechanisms underlying its decision to sustain copulation are unclear. Here we describe a mating interference assay, which quantifies the persistence of male C. elegans copulation in noxious blue light. We show that between copulations, the male escapes from blue light illumination at intensities over 370 μW mm−2. This response is attenuated in mutants with constitutive activation of the corticotropin-releasing factor receptor family homologue SEB-3. We show that activation of this receptor causes sex-common glutamatergic lumbar ganglion interneurons (LUA) to potentiate downstream male-specific reproduction circuits, allowing copulatory behaviours to partially override the light-induced escape responses in the male. SEB-3 activation in LUA also potentiates copulation during mild starvation. We suggest that SEB-3 activation allows C. elegans to acclimate to the environment and thus continue to execute innate behaviours even under non-optimal conditions. Innate animal behaviours can be negatively regulated by environmental stressors. Jee et al. show that suppression of male C. elegans copulation behaviour by noxious light can be overcome by activation of SEB-3, a homologue of the stress-associated mammalian corticotropin-releasing factor receptor family.
Collapse
Affiliation(s)
- Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Jimmy F Goncalves
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Brigitte LeBoeuf
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| |
Collapse
|
21
|
Erchegyi J, Wang L, Gulyas J, Samant M, Perrin MH, Lewis K, Miller C, Vaughan J, Donaldson C, Fischer W, Low W, Yakabi S, Karasawa H, Taché Y, Rivier C, Rivier J. Characterization of Multisubstituted Corticotropin Releasing Factor (CRF) Peptide Antagonists (Astressins). J Med Chem 2016; 59:854-66. [PMID: 26789203 DOI: 10.1021/acs.jmedchem.5b00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CRF mediates numerous stress-related endocrine, autonomic, metabolic, and behavioral responses. We present the synthesis and chemical and biological properties of astressin B analogues {cyclo(30-33)[D-Phe(12),Nle(21,38),C(α)MeLeu(27,40),Glu(30),Lys(33)]-acetyl-h/r-CRF(9-41)}. Out of 37 novel peptides, 17 (2, 4, 6-8, 10, 11, 16, 17, 27, 29, 30, 32-36) and 16 (3, 5, 9, 12-15, 18, 19, 22-26, 28, 31) had k(i) to CRF receptors in the high picomolar and low nanomole ranges, respectively. Peptides 1, 2, and 11 inhibited h/rCRF and urocortin 1-induced cAMP release from AtT20 and A7r5 cells. When Astressin C 2 was administered to adrenalectomized rats at 1.0 mg subcutaneously, it inhibited ACTH release for >7 d. Additional rat data based on the inhibitory effect of (2) on h/rCRF-induced stimulation of colonic secretory motor activity and urocortin 2-induced delayed gastric emptying also indicate a safe and long-lasting antagonistic effect. The overall properties of selected analogues may fulfill the criteria expected from clinical candidates.
Collapse
Affiliation(s)
- Judit Erchegyi
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Lixin Wang
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Jozsef Gulyas
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Manoj Samant
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Marilyn H Perrin
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Kathy Lewis
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Charleen Miller
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Joan Vaughan
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Cynthia Donaldson
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Wolfgang Fischer
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - William Low
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Seiichi Yakabi
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Hiroshi Karasawa
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Yvette Taché
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, United States
| | - Catherine Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jean Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies , 10010 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Abstract
There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.
Collapse
Affiliation(s)
- Ricard Farré
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - María Vicario
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
23
|
Nozu T, Kumei S, Miyagishi S, Takakusaki K, Okumura T. Colorectal distention induces acute and delayed visceral hypersensitivity: role of peripheral corticotropin-releasing factor and interleukin-1 in rats. J Gastroenterol 2015; 50:1153-61. [PMID: 25808230 DOI: 10.1007/s00535-015-1070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Most studies evaluating visceral sensation measure visceromotor response (VMR) to colorectal distention (CRD). However, CRD itself induces visceral sensitization, and little is known about the detailed characteristics of this response. The present study tried to clarify this question. METHODS VMR was determined by measuring abdominal muscle contractions as a response to CRD in rats. The CRD set consisted of two isobaric distentions (60 mmHg for 10 min twice, with a 30-min rest), and the CRD set was performed on two separate days, i.e., days 1 and 3, 8. RESULTS On day 1, VMR to the second CRD was increased as compared with that to the first CRD, which is the acute sensitization. VMR to the first CRD on day 3 returned to the same level as that to the first CRD on day 1, and total VMR, i.e., the whole response to the CRD set, was not different between day 1 and day 3. However, total VMR was significantly increased on day 8 as compared with that on day 1, suggesting CRD induced the delayed sensitization. Intraperitoneally administered astressin (200 µg/kg), a corticotropin-releasing factor receptor antagonist, at the end of the first CRD blocked the acute sensitization, but anakinra (20 mg/kg, intraperitoneally), an interleukin-1 receptor antagonist, did not modify it. Astressin (200 µg/kg, twice before CRD on day 8) did not alter the delayed sensitization, but anakinra (20 mg/kg, twice) abolished it. CONCLUSIONS CRD induced both acute sensitization and delayed sensitization, which were mediated through peripheral corticotropin-releasing factor and interleukin-1 pathways, respectively.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
24
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
25
|
TACHÉ Y. Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil 2015; 27:1-6. [PMID: 25557223 PMCID: PMC4389773 DOI: 10.1111/nmo.12495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF)-CRF1 receptor in the brain plays a key role in stress-related alterations of behavior including anxiety/depression, and autonomic and visceral functions. In particular, CRF1 signaling mediates hypersensitivity to colorectal distension (CRD) in various models (early life adverse events, repeated psychological stress, chronic high anxiety, postcolonic inflammation, or repeated nociceptive CRD). So far, knowledge of brain sites involved is limited. A recent article demonstrates in rats that CRF microinjected into the central amygdala (CeA) induces a hyperalgesic response to CRD and enhances the noradrenaline and dopamine levels at this site. The visceral and noradrenaline, unlike dopamine, responses were blocked by a CRF1 antagonist injected into the CeA. Here, we review the emerging role that CRF-CRF1 signaling plays in the CeA to induce visceral hypersensitivity. In the somatic pain field, CRF in the CeA was shown to induce pain sensitization. This is mediated by the activation of postsynaptic CRF1 receptors and protein kinase A signaling that increases N-methyl-d-aspartate receptor neurotransmission. In addition, the activation of tetraethylamonium-sensitive ion channels such as Kv3 accelerates repolarization and firing rate. Whether facilitation of pain transmission underlies CRF action in the CeA-induced visceral hypersensitivity will need to be delineated. CRF1 signaling in the CeA is also an important component of the neuronal circuitry inducing anxiety-like behavior and positioned at the interphase of the reciprocal relationship between pain and affective state. The hyperactivity of this system may represent the neuroanatomical and biochemical substrate contributing to the coexpression of hypersensitivity to CRD and mood disorders in subsets of irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Y. TACHÉ
- Center for Neurobiology of Stress & Women’s Health and CURE: Digestive Diseases Research Center, Digestive Diseases Division, UCLA David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
26
|
Nozu T, Takakusaki K, Okumura T. A balance theory of peripheral corticotropin-releasing factor receptor type 1 and type 2 signaling to induce colonic contractions and visceral hyperalgesia in rats. Endocrinology 2014; 155:4655-64. [PMID: 25279793 DOI: 10.1210/en.2014-1421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several recent studies suggest that peripheral corticotropin-releasing factor (CRF) receptor type 1 (CRF1) and CRF2 have a counter regulatory action on gastrointestinal functions. We hypothesized that the activity balance of each CRF subtype signaling may determine the changes in colonic motility and visceral sensation. Colonic contractions were assessed by the perfused manometry, and contractions of colonic muscle strips were measured in vitro in rats. Visceromotor response was determined by measuring contractions of abdominal muscle in response to colorectal distensions (CRDs) (60 mm Hg for 10 min twice with a 30-min rest). All drugs were administered through ip route in in vivo studies. CRF increased colonic contractions. Pretreatment with astressin, a nonselective CRF antagonist, blocked the CRF-induced response, but astressin2-B, a selective CRF2 antagonist, enhanced the response by CRF. Cortagine, a selective CRF1 agonist, increased colonic contractions. In in vitro study, CRF increased contractions of muscle strips. Urocortin 2, a selective CRF2 agonist, itself did not alter the contractions but blocked this increased response by CRF. Visceromotor response to the second CRD was significantly higher than that of the first. Astressin blocked this CRD-induced sensitization, but astressin2-B or CRF did not affect it. Meanwhile, astressin2-B together with CRF significantly enhanced the sensitization. Urocortin 2 blocked, but cortagine significantly enhanced, the sensitization. These results indicated that peripheral CRF1 signaling enhanced colonic contractility and induced visceral sensitization, and these responses were modulated by peripheral CRF2 signaling. The activity balance of each subtype signaling may determine the colonic functions in response to stress.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Departments of Regional Medicine and Education (T.N.) and General Medicine (T.O.) and Research Center for Brain Function and Medical Engineering (K.T.), Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
27
|
O'Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O'Toole PW, Dinan TG, Cryan JF. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 2014; 277:885-901. [PMID: 25088912 DOI: 10.1016/j.neuroscience.2014.07.054] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 02/08/2023]
Abstract
Disruption of bacterial colonization during the early postnatal period is increasingly being linked to adverse health outcomes. Indeed, there is a growing appreciation that the gut microbiota plays a role in neurodevelopment. However, there is a paucity of information on the consequences of early-life manipulations of the gut microbiota on behavior. To this end we administered an antibiotic (vancomycin) from postnatal days 4-13 to male rat pups and assessed behavioral and physiological measures across all aspects of the brain-gut axis. In addition, we sought to confirm and expand the effects of early-life antibiotic treatment using a different antibiotic strategy (a cocktail of pimaricin, bacitracin, neomycin; orally) during the same time period in both female and male rat pups. Vancomycin significantly altered the microbiota, which was restored to control levels by 8 weeks of age. Notably, vancomycin-treated animals displayed visceral hypersensitivity in adulthood without any significant effect on anxiety responses as assessed in the elevated plus maze or open field tests. Moreover, cognitive performance in the Morris water maze was not affected by early-life dysbiosis. Immune and stress-related physiological responses were equally unaffected. The early-life antibiotic-induced visceral hypersensitivity was also observed in male rats given the antibiotic cocktail. Both treatments did not alter visceral pain perception in female rats. Changes in visceral pain perception in males were paralleled by distinct decreases in the transient receptor potential cation channel subfamily V member 1, the α-2A adrenergic receptor and cholecystokinin B receptor. In conclusion, a temporary disruption of the gut microbiota in early-life results in very specific and long-lasting changes in visceral sensitivity in male rats, a hallmark of stress-related functional disorders of the brain-gut axis such as irritable bowel disorder.
Collapse
Affiliation(s)
- S M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - V D Felice
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - K Nally
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Biochemistry, University College Cork, Cork, Ireland
| | - H M Savignac
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - M J Claesson
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - P Scully
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - J Woznicki
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - N P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - F Shanahan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland
| | - E M Quigley
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - J R Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - P W O'Toole
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | - T G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|