1
|
Jötten AM, Schepp A, Machon A, Moll K, Wahlgren M, Krüger T, Westerhausen C. Survival of P. falciparum infected red blood cell aggregates in elongational shear flow. LAB ON A CHIP 2024; 24:787-797. [PMID: 38204325 DOI: 10.1039/d3lc00552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Rosetting, the formation of red blood cell aggregates, is a life-threatening condition in malaria tropica and not yet fully understood. We study rosette stability using a set of microfluidic stenotic channels, with varied narrowing angle and erythrocytes of blood groups O and A. We find reduced ability of a rosette to pass a stenosis without disruption, the longer the tapered part of the constriction and the narrower the stenosis is. In general, this ability increases with rosette size and is 5-15% higher in blood group A. The experimental results are substantiated by equivalent experiments using lectin-induced red blood cell aggregates and a simulation of the underlying protein binding kinetics.
Collapse
Affiliation(s)
- Anna M Jötten
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Anabelle Schepp
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Adam Machon
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Christoph Westerhausen
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
- Center for Advanced Analytics and Predicitve Sciences, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
2
|
Bandoh B, Kyei-Baafour E, Aculley B, van der Puije W, Tornyigah B, Akyea-Mensah K, Hviid L, Ngala RA, Frempong MT, Ofori MF. Influence of α2-Macroglobulin, Anti-Parasite IgM and ABO Blood Group on Rosetting in Plasmodium falciparum Clinical Isolates and Their Associations with Disease Severity in a Ghanaian Population. J Blood Med 2022; 13:151-164. [PMID: 35330697 PMCID: PMC8939864 DOI: 10.2147/jbm.s329177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The severity of Plasmodium falciparum infections is associated with the ability of the infected red blood cells to cytoadhere to host vascular endothelial surfaces and to uninfected RBCs. Host blood group antigens and two serum proteins α2-macroglobulin (α2M) and IgM have been implicated in rosette formation in laboratory-adapted P. falciparum. However, there is only limited information about these phenotypes in clinical isolates. Methods This was a hospital-based study involving children under 12 years-of-age reporting to the Hohoe Municipal Hospital with different clinical presentations of malaria. Parasite isolates were grown and rosette capabilities and characteristics were investigated by fluorescence microscopy. α2M and IgM were detected by ELISA. Results Rosette formation was observed in 46.8% (75/160) of the parasite isolates from all the blood groups tested. Rosettes were more prevalent (55%) among isolates from patients with severe malaria compared to isolates from patients with uncomplicated malaria (45%). Rosette prevalence was highest (30%) among patients with blood group O (30%) and B (29%), while the mean rosette frequency was higher in isolates from patients with blood group A (28.7). Rosette formation correlated negatively with age (r = −0.09, P= 0.008). Participants with severe malaria had a lower IgM concentration (3.683±3.553) than those with uncomplicated malaria (5.256±4.294) and the difference was significant (P= 0.0228). The mean concentrations of anti-parasite IgM measured among the clinical isolates which formed rosettes was lower (4.2 ±3.930 mg/mL), than that in the non rosetting clinical isolates (4.604 ±4.159 mg/mL) but the difference was not significant (P=0.2733). There was no significant difference in plasma α2M concentration between rosetting and non rosetting isolates (P=0.442). Conclusion P. falciparum parasite rosette formation was affected by blood group type and plasma concentration of IgM. A lower IgM concentration was associated with severe malaria whilst a higher α2M concentration was associated with uncomplicated malaria.
Collapse
Affiliation(s)
- Betty Bandoh
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Belinda Aculley
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bernard Tornyigah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Robert A Ngala
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Margaret T Frempong
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Correspondence: Michael F Ofori, Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Post Office Box LG581, Legon, Accra, Ghana, Tel +233 244 715975, Fax +233 302 502182, Email
| |
Collapse
|
3
|
Jötten AM, Moll K, Wahlgren M, Wixforth A, Westerhausen C. Blood group and size dependent stability of P. falciparum infected red blood cell aggregates in capillaries. BIOMICROFLUIDICS 2020; 14:024104. [PMID: 32206159 PMCID: PMC7083652 DOI: 10.1063/1.5125038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
For Plasmodium falciparum related malaria (B50), one of the outstanding host factors for the development of severe disease is the ABO blood group of malaria patients, where blood group O reduces the probability of severe disease as compared to individuals of groups A, B, or AB. In this report, we investigate the stability of rosette aggregates in malaria caused by Plasmodium falciparum in microflows. These flows are created in microfluidic channels with stenosis-like constrictions of different widths down to ones narrower as the rosette's diameter. High speed videos were recorded and analyzed by a MATLAB© based tracking software (SURF: SUrvival of Rosettes in Flow). We find a correlation of rosette size, channel diameter, and blood group regarding the mobility of the rosettes. Following the concept of a thermodynamic model, we find a critical width of the stenosis for rosette rupture during their passage. Our data reveal that under physiologically relevant conditions, rosettes in blood group A have a higher rosette frequency and stability as compared to blood group O (BG O), which constitutes a crucial factor promoting the observed protection in BG O individuals against severe malaria in non-O individuals.
Collapse
Affiliation(s)
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
4
|
Paing MM, Salinas ND, Adams Y, Oksman A, Jensen ATR, Goldberg DE, Tolia NH. Shed EBA-175 mediates red blood cell clustering that enhances malaria parasite growth and enables immune evasion. eLife 2018; 7:e43224. [PMID: 30556808 PMCID: PMC6305201 DOI: 10.7554/elife.43224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023] Open
Abstract
Erythrocyte Binding Antigen of 175 kDa (EBA-175) has a well-defined role in binding to glycophorin A (GpA) during Plasmodium falciparum invasion of erythrocytes. However, EBA-175 is shed post invasion and a role for this shed protein has not been defined. We show that EBA-175 shed from parasites promotes clustering of RBCs, and EBA-175-dependent clusters occur in parasite culture. Region II of EBA-175 is sufficient for clustering RBCs in a GpA-dependent manner. These clusters are capable of forming under physiological flow conditions and across a range of concentrations. EBA-175-dependent RBC clustering provides daughter merozoites ready access to uninfected RBCs enhancing parasite growth. Clustering provides a general method to protect the invasion machinery from immune recognition and disruption as exemplified by protection from neutralizing antibodies that target AMA-1 and RH5. These findings provide a mechanistic framework for the role of shed proteins in RBC clustering, immune evasion, and malaria.
Collapse
Affiliation(s)
- May M Paing
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
| | - Nichole D Salinas
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anna Oksman
- Department of MedicineWashington University School of MedicineSt. LouisUnited States
| | - Anja TR Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daniel E Goldberg
- Department of MedicineWashington University School of MedicineSt. LouisUnited States
| | - Niraj H Tolia
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Saiwaew S, Sritabal J, Piaraksa N, Keayarsa S, Ruengweerayut R, Utaisin C, Sila P, Niramis R, Udomsangpetch R, Charunwatthana P, Pongponratn E, Pukrittayakamee S, Leitgeb AM, Wahlgren M, Lee SJ, Day NPJ, White NJ, Dondorp AM, Chotivanich K. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes. PLoS One 2017; 12:e0172718. [PMID: 28249043 PMCID: PMC5332063 DOI: 10.1371/journal.pone.0172718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/08/2017] [Indexed: 12/04/2022] Open
Abstract
In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria.
Collapse
Affiliation(s)
- Somporn Saiwaew
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Juntima Sritabal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattaporn Piaraksa
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Srisuda Keayarsa
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Patima Sila
- Mae Ramat Hospital, Mae Ramat, Tak, Thailand
| | - Rangsan Niramis
- Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Emsri Pongponratn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
6
|
Gallego-Delgado J, Basu-Roy U, Ty M, Alique M, Fernandez-Arias C, Movila A, Gomes P, Weinstock A, Xu W, Edagha I, Wassmer SC, Walther T, Ruiz-Ortega M, Rodriguez A. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria. J Clin Invest 2016; 126:4016-4029. [PMID: 27643439 DOI: 10.1172/jci87306] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum-infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter-endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin-induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC-induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antimalarials/pharmacology
- Biphenyl Compounds/pharmacology
- Brain/blood supply
- Brain/parasitology
- Capillary Permeability
- Cell Adhesion
- Cells, Cultured
- Endothelial Cells/parasitology
- Endothelial Cells/physiology
- Endothelium, Vascular/parasitology
- Endothelium, Vascular/pathology
- Humans
- Intercellular Junctions/metabolism
- Irbesartan
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Microvessels/pathology
- Plasmodium falciparum
- Receptor, Angiotensin, Type 2/metabolism
- Tetrazoles/pharmacology
- beta Catenin/physiology
Collapse
|
7
|
Kömpf D, Held J, Müller SF, Drechsel HR, Tschan SC, Northoff H, Mordmüller B, Gehring FK. Real-time measurement of Plasmodium falciparum-infected erythrocyte cytoadhesion with a quartz crystal microbalance. Malar J 2016; 15:317. [PMID: 27296675 PMCID: PMC4906606 DOI: 10.1186/s12936-016-1374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background An important virulence mechanism of the malaria parasite Plasmodium falciparum is cytoadhesion, the binding of infected erythrocytes to endothelial cells in the second half of asexual blood stage development. Conventional methods to investigate adhesion of infected erythrocytes are mostly performed under static conditions, many are based on manual or semi-automated read-outs and are, therefore, difficult to standardize. Quartz crystal microbalances (QCM) are sensitive to nanogram-scale changes in mass and biomechanical properties and are increasingly used in biomedical research. Here, the ability of QCM is explored to measure binding of P. falciparum-infected erythrocytes to two receptors: CD36 and chondroitin sulfate A (CSA) under flow conditions. Methods Binding of late stage P. falciparum parasites is measured in comparison to uninfected erythrocytes to CD36- and CSA-coated quartzes by QCM observing frequency shifts. CD36-expressing cell membrane fragments and CSA polysaccharide were coated via poly-l-lysine to the quartz. The method was validated by microscopic counting of attached parasites and of erythrocytes to the coated quartzes. Results Frequency shifts indicating binding of infected erythrocytes could be observed for both receptors CD36 and CSA. The frequency shifts seen for infected and uninfected erythrocytes were strongly correlated to the microscopically counted numbers of attached cells. Conclusions In this proof-of-concept experiment it is shown that QCM is a promising tool to measure binding kinetics and specificity of ligand-receptor interactions using viable, parasite-infected erythrocytes. The method can improve the understanding of the virulence of P. falciparum and might be used to cross-validate other methods. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1374-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Kömpf
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,State Health Office Baden-Württemberg, Stuttgart, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany. .,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany.
| | - Stefani F Müller
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Hartmut R Drechsel
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,3T GmbH & Co KG, Tuttlingen, Germany
| | - Serena C Tschan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany
| | - Hinnak Northoff
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany
| | - Frank K Gehring
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany. .,3T GmbH & Co KG, Tuttlingen, Germany.
| |
Collapse
|
8
|
Kudella PW, Moll K, Wahlgren M, Wixforth A, Westerhausen C. ARAM: an automated image analysis software to determine rosetting parameters and parasitaemia in Plasmodium samples. Malar J 2016; 15:223. [PMID: 27090910 PMCID: PMC4835829 DOI: 10.1186/s12936-016-1243-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/30/2016] [Indexed: 11/14/2022] Open
Abstract
Background Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient graphical user interface is presented. Methods Automated rosetting analyzer for micrographs is an executable with two operation modes for automated identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object location and size distribution from a single contrast method. The obtained results are compared with standardized manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for rosetting rate and parasitaemia. Results Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identical results compared to manual analysis. For the first time rosette size distribution is determined in a precise and quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides confidence intervals for the determined observables. No other existing software solution offers this range of function. The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects. Conclusions Automated rosetting analyzer for micrographs has the capability to push malaria research to a more quantitative and statistically significant level with increased reliability due to operator independence. As an installation file for Windows © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the malaria community to elucidate rosetting. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1243-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, 171 77, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, 171 77, Stockholm, Sweden
| | - Achim Wixforth
- Experimental Physics I, University of Augsburg, Universitätsstraße 1, Augsburg, Germany.,Nanosystems Initiative Munich, Schellingstraße 4, Munich, Germany
| | - Christoph Westerhausen
- Experimental Physics I, University of Augsburg, Universitätsstraße 1, Augsburg, Germany. .,Nanosystems Initiative Munich, Schellingstraße 4, Munich, Germany.
| |
Collapse
|
9
|
Agrawal MR, Ozarkar AD, Gupta S, Deobagkar DN, Deobagkar DD. Comparative study of Plasmodium falciparum erythrocyte membrane protein 1-DBLα domain variants with respect to antigenic variations and docking interaction analysis with glycosaminoglycans. MOLECULAR BIOSYSTEMS 2015; 10:2466-79. [PMID: 24995459 DOI: 10.1039/c4mb00274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The variant surface antigen PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) encoded by the polymorphic multi-copy var gene family plays an important role in parasite biology and the host-parasite interactions. Sequestration and antigenic variation is an essential component in the survival and pathogenesis of Plasmodium falciparum and contributes to chronic infection. The DBLα domain of PfEMP1 is a potential target for immuno-epidemiological studies and has been visualized as a vaccine candidate against severe malaria. Specific host receptors like heparin, heparan sulphate, blood group A and complement receptor 1 have been reported to bind the DBLα domain. Although heparin has been experimentally shown to disrupt the parasite-host interaction and effectively disrupt rosetting, the binding sites for the DBLα domain and the mechanism behind heparin-mediated rosette inhibition have not been elucidated. In this study, 3D structures and epitopes of the DBLα domain in 3D7 and in two Indian isolates have been predicted and compared. We have carried out docking studies on DBLα domains with human GAG receptors (heparin and heparan sulphate) to predict the strength of association between the protein-ligand interactions. The DBLα domain structures showed extensive diversity and polymorphism in their binding sites. The docking results indicate that heparin binds more effectively with high affinity as compared to heparan sulphate with some common interacting residues. These common residues can play an important role in rosetting and will aid in the designing of inhibitors specific to the interactions between DBLα and heparin or heparan sulphate would be important in malaria treatment. Thus it may lead to the development of novel interference strategies to block red blood cell invasion and provide protection against malaria.
Collapse
Affiliation(s)
- Megha R Agrawal
- Bioinformatics Centre & Department of Zoology, Center of Advanced Studies, University of Pune, Pune 411007, India.
| | | | | | | | | |
Collapse
|
10
|
Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infect Immun 2013; 82:949-59. [PMID: 24343658 PMCID: PMC3958005 DOI: 10.1128/iai.01233-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
Collapse
|