1
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
2
|
Natallia L, Dama A, Gorica E, Darya K, Peña-Corona SI, Cortés H, Santini A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J. Genipin's potential as an anti-cancer agent: from phytochemical origins to clinical prospects. Med Oncol 2024; 41:186. [PMID: 38918260 DOI: 10.1007/s12032-024-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.
Collapse
Affiliation(s)
- Lapava Natallia
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus.
| | - Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, 8952, Schlieren, Zürich, Switzerland
| | - Karaliova Darya
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Zhang Y, Qin Z, Xu Y, Peng Y, Ruan L, Li J, He Y, Liu B, Long Y. Synergistic dual cell therapy for atherosclerosis regression: ROS-responsive Bio-liposomes co-loaded with Geniposide and Emodin. J Nanobiotechnology 2024; 22:129. [PMID: 38528554 DOI: 10.1186/s12951-024-02389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Lihua Ruan
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jintao Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yao He
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
4
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
5
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
6
|
Li J, Ge H, Xu Y, Xie J, Yan F, Chen W. Geniposide Alleviates Oxidative Damage in Hepatocytes through Regulating miR-27b-3p/Nrf2 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11544-11553. [PMID: 36084288 DOI: 10.1021/acs.jafc.2c03856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Geniposide (GEN), a main compound extracted from Gardenia jasminoides fruit, has various biological activities including anti-inflammation, cellular damage alleviation, neuroprotection, and others. However, the effect of GEN on oxidative stress in hepatic cells is yet to be investigated. Our study uncovered that GEN eliminated excess intracellular free radicals by activating the Nrf2/ARE signaling pathway in H2O2-treated hepatocytes, while the protective effect was blocked by ML385 (an inhibitor of Nrf2). Moreover, H2O2 led to upregulation of miR-27b-3p in L02 cells, which was restrained by GEN. Overexpression of miR-27b-3p greatly weakened the antioxidant capacity of GEN in hepatocytes via directly targeting the Nrf2 gene. Our findings indicated that GEN treatment recovered H2O2-induced oxidative stress via targeting miR-27b-3p and thereby enhanced the antioxidant capacity by stimulating nuclear translocation and accumulation of Nrf2. These findings suggest that inhibition of miR-27b-3p to activate the Nrf2/ARE pathway by GEN is a potential alternative for hepatic oxidative damage alleviation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hengju Ge
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
7
|
Kim AR, Lim YJ, Jang WG. Zingerone stimulates osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression in MC3T3-E1 cells and primary mouse calvarial cells. Clin Exp Pharmacol Physiol 2022; 49:1050-1058. [PMID: 35639082 DOI: 10.1111/1440-1681.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/06/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Zingerone (Zin) is a non-volatile compound found mainly in dried ginger. Zingerone increases the expression of osteogenic markers and has antioxidant effects. A previous study showed that zingerone accelerated osteoblast differentiation by suppressing the expression of Smad7, a member of the inhibitory Smad (I-Smad) family. However, it is not known if zingerone can induce osteoblast differentiation by regulating Smad1/5/9, a member of the receptor-regulated Smad (R-Smad) famlily. In addition, osteoblast differentiation induced by Smad1/5/9 mediated increases in the expression of heme oxygenase 1 (HO-1) has not been reported. This study investigated the effects of zingerone on osteoblast differentiation and confirmed the relationship between Smad1/5/9 and HO-1. Zingerone increased the expression of osteogenic genes including Runx2, Dlx5 and OC, and also promoted Smad1/5/9 phosphorylation. Interestingly, HO-1 expression was also elevated by zingerone, and an inhibitor of HO-1 (Sn(IV) protoporphyrin IX dichloride, SnPP) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes such as Dlx5, Runx2, and OC. Protein phosphatase 2A Cα (PP2A Cα, an inhibitor of Smad1/5/9) suppressed the zingerone-induced increase in HO-1 expression and expression of osteogenic marker genes. The zingerone-induced increase in HO-1 lucifeerase activity was suppressed by PP2A Cα. Taken together, our data demonstrate that zingerone promotes osteoblast differentiation by increasing Smad1/5/9 mediated HO-1 expression.
Collapse
Affiliation(s)
- A-Rang Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Young-Ju Lim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk, Republic of Korea.,Research Institute of Anti-Aging, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Inhibition of Vascular Smooth Muscle and Cancer Cell Proliferation by New VEGFR Inhibitors and Their Immunomodulator Effect: Design, Synthesis, and Biological Evaluation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8321400. [PMID: 34745424 PMCID: PMC8568530 DOI: 10.1155/2021/8321400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation has an important role in the pathogenesis of both atherosclerosis restenosis and hypertension. Vascular endothelial growth factor (VEGF) has been shown to stimulate VSMC proliferation. In addition, angiogenesis is one of the hallmarks of cancerous growth. VEGF is the key modulator for the initial stages of angiogenesis that acts through the endothelial-specific receptor tyrosine kinases (VEGFRs). VEGFR-2 blockage is a good approach for suppression of angiogenesis. In order to discover novel VEGFR-2 TK inhibitors, we have designed and synthesized three new series of pyridine-containing compounds. The new compounds were all screened against a panel of three cell lines (HepG-2, HCT-116, and MCF-7). Promising results encouraged us to additionally evaluate the most active members for their in vitro VEGFR-2 inhibitory effect. Compound 7a, which is the most potent candidate, revealed a significant increase in caspase-3 level by 7.80-fold when compared to the control. In addition, Bax and Bcl-2 concentration levels showed an increase in the proapoptotic protein Bax (261.4 Pg/ml) and a decrease of the antiapoptotic protein Bcl-2 (1.25 Pg/ml) compared to the untreated cells. Furthermore, compound 7a arrested the cell cycle in the G2/M phase with induction of apoptosis. The immunomodulatory effect of compound 7a, the most active member, showed a reduction in TNF-α by 87%. Also, compound 7a caused a potent inhibitory effect on smooth muscle proliferation. Docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.
Collapse
|
9
|
Li Y, Zhao Q, Cao Y, Si J, Li J, Cao K, Pang X. Probucol decreases homocysteine-stimulated CRP production in rat aortic smooth muscle cells via regulating HO-1/NADPH oxidase/ROS/p38 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:212-219. [PMID: 33382068 DOI: 10.1093/abbs/gmaa163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 01/30/2023] Open
Abstract
The elevated homocysteine level is an independent risk factor for atherosclerosis, which is characterized as a chronic inflammatory disease associated with oxidative stress. We have confirmed that homocysteine can stimulate the production of C-reactive protein (CRP) in rat aortic smooth muscle cells (RASMCs). In the present study, we investigated the role of probucol in homocysteine-induced CRP expression in cultured RASMCs and high-methionine-diet-induced hyperhomocysteinemic rats. The results showed that probucol decreased homocysteine-induced CRP mRNA and protein expression in RASMCs in a concentration-dependent manner. In addition, the animal experiment showed that probucol not only inhibited CRP expression in the vessel wall but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further investigations revealed that probucol markedly increased heme oxygenase-1 activity, suppressed nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, diminished superoxide anion generation, and decreased p38 phosphorylation in RASMCs and hyperhomocysteinemic rat aorta. These data demonstrate that probucol can inhibit homocysteine-induced CRP generation by interfering with the NADPH oxidase/p38 signal pathway in RASMCs, which will provide new evidence for the anti-inflammatory and anti-atherosclerotic effects of probucol.
Collapse
Affiliation(s)
- Yuxia Li
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qun Zhao
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| | - Yuan Cao
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| | - Jigang Si
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| | - Jing Li
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| | - Kai Cao
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| | - Xiaoming Pang
- Department of Clinical Pharmacy, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Translational Medical Center, Zibo Central Hospital, Binzhou Medical University, Zibo 255000, China
| |
Collapse
|
10
|
Wei M, Wu Y, Liu H, Xie C. Genipin Induces Autophagy and Suppresses Cell Growth of Oral Squamous Cell Carcinoma via PI3K/AKT/MTOR Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:395-405. [PMID: 32099325 PMCID: PMC6996293 DOI: 10.2147/dddt.s222694] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the head and neck, and it accounts for more than 90% of oral cancer. Due to high mortality, limitations of traditional treatment and many complications, new treatment methods are urgently needed. This study aimed to look into the effect of new potential anti-tumor drug, genipin, on OSCC treatment. Methods In vitro, CCK-8, colony formation, and flow cytometry were used to detect the effect of genipin on SCC-9 and SCC-15 cell lines. Immunofluorescence, real-time PCR, and Western blotting were used to investigate its mechanism. Xenograft tumor model was used to explore the role of genipin in vivo. Results We found that genipin suppressed cell growth and induced apoptosis in vitro. In addition, the expression of p62 was down-regulated while Beclin1 and LC3II were up-regulated in SCC-25 and SCC-9 cells. 3-methyladenine (3-MA) significantly decreased LC3 (LC3II)+ puncta, but genipin rescuect 3d this reduction. Furthermore, genipin also reduced the expression of p-PI3K, p-AKT, and p-mTOR. In vivo experiment showed that genipin significantly curbed the tumor size and weight. The positive expression of Ki67 protein and number of apoptotic cells were increased. Conclusion Conclusively, this study implicated that genipin suppresses cell proliferation and stimulated apoptosis, and is the first exploration showing that genipin induces OSCC cell autophagy via PI3K/AKT/mTOR pathway inhibition.
Collapse
Affiliation(s)
- MingBo Wei
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - YanLi Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Hui Liu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Chun Xie
- Stomatology Center, Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| |
Collapse
|
11
|
Chen D, Zhu T, Fu W, Zhang H. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-hydroxysuccinimide and genipin facilitate endothelial cell regeneration and may be a promising candidate for vascular scaffolds. Int J Nanomedicine 2019; 14:2127-2144. [PMID: 30988613 PMCID: PMC6440451 DOI: 10.2147/ijn.s192699] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose A promising vascular scaffold must possess satisfying mechanical properties, great hemocompatibility, and favorable tissue regeneration. Combining natural with synthetic materials is a popular method of creating/enhancing such scaffolds. However, the effect of additional modification on the materials requires further exploration. Materials and methods We selected polycaprolactone (PCL), which has excellent mechanical properties and biocompatibility and can be combined with collagen. Electrospun fibers created using a PCL/collagen solution were used to fashion mixed nanofibers, while separate syringes of PCL and collagen were used to create separated nanofibers, resulting in different pore sizes. Mixed and separated nanofibers were cross-linked with glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and genipin; hence, we named them as mixed GA, mixed EDC (ME), mixed genipin (MG), separated GA, separated EDC (SE), and separated genipin (SG). Results Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction showed that cross-linking did not affect the main functional groups of fibers in all groups. ME, MG, SE, and SG met the requisite mechanical properties, and they also resisted collagenase degradation. In hemocompatibility assays, only ME and MG demonstrated ideal safety. Furthermore, ME and MG presented the greatest cytocompatibility. For vascular scaffolds, rapid endothelialization helps to prevent thrombosis. According to human umbilical vein endothelial cell migration on different nanofibers, ME and MG are also successful in promoting cell migration. Conclusion ME and MG may be promising candidates for vascular tissue engineering. The study suggests that collagen cross-linked by EDC/N-hydroxysuccinimide or genipin facilitates endothelial cell regeneration, which could be of great benefit in tissue engineering of vascular scaffolds.
Collapse
Affiliation(s)
- Dian Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Sports Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
12
|
Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis 2018; 9:1153-1164. [PMID: 30574425 PMCID: PMC6284761 DOI: 10.14336/ad.2018.0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro
Collapse
Affiliation(s)
- Shichao Lv
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ding
- 3Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haiping Zhao
- 4Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shihao Liu
- 5Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Junping Zhang
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Wang
- 1Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Plant-Derived Products for Treatment of Vascular Intima Hyperplasia Selectively Inhibit Vascular Smooth Muscle Cell Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3549312. [PMID: 30405738 PMCID: PMC6201497 DOI: 10.1155/2018/3549312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells initiate and progress IH, namely, vascular smooth muscle, adventitial and endothelial cells, and circulation or bone marrow-derived cells. Vascular smooth muscle cells (VSMCs) play a critical role in initiation and development of intimal thickening and formation of neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-κB signal pathways. Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis, restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation, and atherosclerotic diseases.
Collapse
|
14
|
García-Miguel M, Riquelme JA, Norambuena-Soto I, Morales PE, Sanhueza-Olivares F, Nuñez-Soto C, Mondaca-Ruff D, Cancino-Arenas N, San Martín A, Chiong M. Autophagy mediates tumor necrosis factor-α-induced phenotype switching in vascular smooth muscle A7r5 cell line. PLoS One 2018; 13:e0197210. [PMID: 29750813 PMCID: PMC5947899 DOI: 10.1371/journal.pone.0197210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) dedifferentiation from a contractile to a synthetic phenotype contributes to atherosclerosis. Atherosclerotic tissue has a chronic inflammatory component with high levels of tumor necrosis factor-α (TNF-α). VSMC of atheromatous plaques have increased autophagy, a mechanism responsible for protein and intracellular organelle degradation. The aim of this study was to evaluate whether TNF-α induces phenotype switching of VSMCs and whether this effect depends on autophagy. Rat aortic Vascular smooth A7r5 cell line was used as a model to examine the phenotype switching and autophagy. These cells were stimulated with TNF-α 100 ng/mL. Autophagy was determined by measuring LC3-II and p62 protein levels. Autophagy was inhibited using chloroquine and siRNA Beclin1. Cell dedifferentiation was evaluated by measuring the expression of contractile proteins α-SMA and SM22, extracellular matrix protein osteopontin and type I collagen levels. Cell proliferation was measured by [3H]-thymidine incorporation and MTT assay, and migration was evaluated by wound healing and transwell assays. Expression of IL-1β, IL-6 and IL-10 was assessed by ELISA. TNF-α induced autophagy as determined by increased LC3-II (1.91±0.21, p<0.001) and decreased p62 (0.86±0.02, p<0.05) when compared to control. Additionally, TNF-α decreased α-SMA (0.74±0.12, p<0.05) and SM22 (0.54±0.01, p<0.01) protein levels. Consequently, TNF-α induced migration (1.25±0.05, p<0.05), proliferation (2.33±0.24, p<0.05), and the secretion of IL-6 (258±53, p<0.01), type I collagen (3.09±0.85, p<0.01) and osteopontin (2.32±0.46, p<0.01). Inhibition of autophagy prevented all the TNF-α-induced phenotypic changes. TNF-α induces phenotype switching in A7r5 cell line by a mechanism that required autophagy. Therefore, autophagy may be a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marina García-Miguel
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pablo E. Morales
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Constanza Nuñez-Soto
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martín
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Center for studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
15
|
Liu D, Mo X, Zhang H, Wu L, Tan J, Xiao J, Qin Z. Heme oxygenase-1 (HO-1) alleviates vascular restenosis after balloon injury in a rabbit carotid artery model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2479-2487. [PMID: 31938360 PMCID: PMC6958238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 06/10/2023]
Abstract
Percutaneous coronary intervention (PCI) is used commonly for coronary artery disease (CAD); however, restenosis is a proliferative response and frequent sequela to this treatment. Although the introduction of drug-eluting stents has convincingly reduced the incidence of vascular restenosis, restenosis remains a problem. The present study was designed to investigate the effects of the heme oxygenase-1 (HO-1) on restenosis formation after balloon injury in a rabbit carotid artery model. We found that involvement of the HO-1 in defensive restenosis formation was independent of the levels of blood lipid. Activation of HO-1 induced by chlorhematin treatment alleviated vascular restenosis after balloon injury in a rabbit carotid artery model, whereas inhibition of HO-1 by zinc protoporphyrin treatment exacerbated restenosis formation. Furthermore, overexpression of HO-1 inhibited nuclear factor kappa B subunit 1 (NF-кB) activity and decreased tumor necrosis factor-alpha (TNF-α) and endothelin 1 (ET-1) expression. In conclusion, our study provides preliminary data suggesting that HO-1 alleviates vascular restenosis after balloon injury in a rabbit carotid artery model by inhibiting NF-кB, TNF-α and ET-1 expression, indicating induction of HO-1 activation may be a feasible therapeutic target for treating vessels resistant to restenosis.
Collapse
Affiliation(s)
- Danan Liu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
- Institute of Medical Sciences, Guizhou Medical UniversityGuiyang, P. R. China
| | - Xiangang Mo
- Department of Comprehensive Care Ward, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Hongming Zhang
- Department of Cardiology, General Hospital of Jinan Military RegionJinan, P. R. China
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Juan Tan
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Jincui Xiao
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| | - Zheng Qin
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical UniversityGuiyang, P. R. China
| |
Collapse
|
16
|
Plant-Derived Anticancer Agents: Lessons from the Pharmacology of Geniposide and Its Aglycone, Genipin. Biomedicines 2018; 6:biomedicines6020039. [PMID: 29587429 PMCID: PMC6027249 DOI: 10.3390/biomedicines6020039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
For centuries, plants have been exploited by mankind as sources of numerous cancer chemotherapeutic agents. Good examples of anticancer compounds of clinical significance today include the taxanes (e.g., taxol), vincristine, vinblastine, and the podophyllotoxin analogues that all trace their origin to higher plants. While all these drugs, along with the various other available therapeutic options, brought some relief in cancer management, a real breakthrough or cure has not yet been achieved. This critical review is a reflection on the lessons learnt from decades of research on the iridoid glycoside geniposide and its aglycone, genipin, which are currently used as gold standard reference compounds in cancer studies. Their effects on tumour development (carcinogenesis), cancer cell survival, and death, with particular emphasis on their mechanisms of actions, are discussed. Particular attention is also given to mechanisms related to the dual pro-oxidant and antioxidant effects of these compounds, the mitochondrial mechanism of cancer cell killing through reactive oxygen species (ROS), including that generated through the uncoupling protein-2 (UCP-2), the inflammatory mechanism, and cell cycle regulation. The implications of various studies for the evaluation of glycosidic and aglycone forms of natural products in vitro and in vivo through pharmacokinetic scrutiny are also addressed.
Collapse
|
17
|
Zhou JM, Wang HM, Lv YZ, Wang ZZ, Xiao W. Anti-atherosclerotic effect of Longxuetongluo Capsule in high cholesterol diet induced atherosclerosis model rats. Biomed Pharmacother 2017; 97:793-801. [PMID: 29112932 DOI: 10.1016/j.biopha.2017.08.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the famous traditional medicines, has been used to promote blood circulation, disperse blood stasis, stop bleeding, relieve pain and muscle regeneration for thousands of years. The aims of this study were to evaluate the anti-atherosclerotic effect of Longxuetongluo Capsule (LTC), which made by total phenolic compounds of Chinese dragon's blood, in high cholesterol diet (HCD)-induced atherosclerosis model rats and explore the possible mechanism. Atherosclerosis rats were induced by administration of HCD for 4 weeks and treated with atorvastatin (2.08mg/kg/d) or various concentrations of LTC (81, 162 and 324mg/kg/d) for additional 4 weeks. Body weight (BW), lipid profiles, serum VCAM-1, ICAM-1, MCP-1, AST and ALT were then tested. Histopathological evaluation of aorta and liver were determined by hematoxylin and eosin staining. NF-κB expression in aorta was detected by Immunohistochemical staining. Meanwhile, the inhibition effects of LTC on the migration and proliferation and Intracellular Ca2+ levels induced by PDGF-BB were also evaluated in rat aortic smooth muscle cells (A7r5). The results demonstrated that LTC produced a significant anti-atherosclerotic activity in terms of reduction in serum lipids and lipoprotein profile, VCAM-1, ICAM-1, MCP-1, AST, ALT levels, and increase in HDL-c level compared to atherosclerotic group. Rats treated with LTC not only attenuated the pathological region and atheroma formation, but also reduced hepatic steatosis and inflammatory cell infiltration. Immunohistochemical analysis showed LTC reduced NF-κB expression in aorta. Furthermore, PDGF-BB induced proliferation and migration of A7r5 and intracellular calcium rise were also abrogated by LTC. The results indicate that LTC prevents atherosclerosis and fatty liver by controlling lipid metabolism, the underlying mechanism may attributed to its anti-inflammation activity, regulation of the vascular smooth muscle function and intracellular calcium signaling.
Collapse
Affiliation(s)
- J M Zhou
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - H M Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Y Z Lv
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Z Z Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - W Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China.
| |
Collapse
|
18
|
Genipin suppresses colorectal cancer cells by inhibiting the Sonic Hedgehog pathway. Oncotarget 2017; 8:101952-101964. [PMID: 29254217 PMCID: PMC5731927 DOI: 10.18632/oncotarget.21882] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 01/12/2023] Open
Abstract
Genipin, a major component of Gardenia jasminoides Ellis fruit, has been shown to inhibit the growth of gastric, prostate, and breast cancers. However, the anti-proliferative activity of genipin in colorectal cancer (CRC) has not been characterized. Herein, we demonstrated that genipin inhibits the proliferation of CRC cells and that genipin suppressed the Hedgehog pathway. Further investigation showed that p53 and NOXA protein levels were increased during inhibition of Hedgehog pathway-mediated apoptosis in CRC cells. We also showed that p53 modulated the expression of NOXA during genipin-induced apoptosis, and suppression via SMO also played a role in this process. Subsequently, GLI1 was ubiquitinated by the E3 ligase PCAF. In a xenograft tumor model, genipin suppressed tumor growth, which was also associated with Hedgehog inactivation. Taken together, these results suggest that genipin induces apoptosis through the Hedgehog signaling pathway by suppressing p53. These findings reveal a novel regulatory mechanism involving Hedgehog/p53/NOXA signaling in the modulation of CRC cell apoptosis and tumor-forming defects.
Collapse
|
19
|
Geniposide and geniposidic acid, modified forms of genipin, attenuate genipin-induced mitochondrial apoptosis without altering the anti-inflammatory ability in KGN cell line. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1765-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Tan HY, Wang N, Tsao SW, Che CM, Yuen MF, Feng Y. IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma. Oncotarget 2016; 7:43792-43804. [PMID: 27270308 PMCID: PMC5190060 DOI: 10.18632/oncotarget.9696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidences postulated the influential roles of macrophages in mediating hepatocellular carcinoma (HCC) initiation and progression. In this study, we demonstrate that a small molecule, genipin reduced HCC growth through suppressing IRE1α-mediated infiltration and priming of tumour associated macrophages (TAMs). Oral administration of genipin (30mg/kg/2days) suppressed orthotopic HCC tumour growth without challenging the viability and proliferation of HCC cells. Genipin reduced infiltration of inflammatory monocytes into liver and tumour thereby suppressed TAMs presence in HCC microenvironment. Suppression of HCC growth was diminished in HCC-implanted mice with depletion of TAMs by liposome clodronate. Genipin inhibited the TAMs migration, and reduced expression of TAMs-derived inflammatory cytokines that favors HCC proliferation. This is revealed by the in vivo deletion of IRE1α on TAMs in genipin-treated HCC-implanted mice. Diminishing IRE1α neutralised the inhibitory effect of genipin on TAMs. Silencing the expression of IRE1α greatly reduced TAMs migration and expression of inflammatory cytokines that prime HCC proliferation. Suppression of IRE1α led to reduced XBP-1 splicing and NF-κB activation. The reduced association of IRE1α with TRAF2 and IKK complex may be responsible for the genipin-mediated inactivation of NF-κB. The findings show the important role of TAMs in inhibitory effect of genipin on HCC, and TAMs-expressing IRE1α as a promising target for disrupting the tumour environment that favor of HCC development.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Centre, and Department of Chemistry, The University of Hong Kong, Hong Kong S.A.R, P. R. China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R. of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| |
Collapse
|
21
|
Freise C, Sommer K, Querfeld U. Protective effects of the polyphenols (+)-episesamin and sesamin against PDGF-BB-induced activation of vascular smooth muscle cells are mediated by induction of haem oxygenase-1 and inhibition of mitogenic signalling. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Xue Y, Shui X, Su W, He Y, Lu X, Zhang Y, Yan G, Huang S, Lei W, Chen C. Baicalin inhibits inflammation and attenuates myocardial ischaemic injury by aryl hydrocarbon receptor. ACTA ACUST UNITED AC 2015; 67:1756-64. [PMID: 26407904 DOI: 10.1111/jphp.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Recent evidence indicates that suppressing inflammation by specific drug target and treatment measures contributes to attenuate ischaemic injury and the related heart diseases. This study aimed to investigate the potential effect of baicalin on myocardial ischaemic injury through inhibition of inflammation by inactivating the aryl hydrocarbon receptor (AhR). METHODS The mouse model with myocardial ischaemic injury was prepared by the left anterior descending coronary artery-amputation and then treated using baicalin. After observing the expression of AhR by immunohistochemical staining, the AhR and inflammatory mediators in circulation and myocardial tissues, including high-sensitive C-reactive protein (hsCRP), interleukin (IL)-1β and IL-6, were detected based on enzyme-linked immunosorbent assay, real-time polymerase chain reaction and Western blot methods. KEY FINDINGS The results showed that (1) substantial expression of AhR was observed in myocardial tissues; (2) ischaemic injury caused myocardial necrosis and remodelling, and stimulated hsCRP, IL-1β and IL-6 by activation of AhR; and (3) baicalin alleviated the myocardial injury and inflammatory response by inhibiting the expression of AhR. CONCLUSION Our findings extend the list of AhR ligands beyond exogenous toxins and endogenous molecules to cardiac immunological factors, and moreover it could be considered potential drug targets due to its pathological modulatory properties, while baicalin demonstrated promise as a novel vehicle for ischaemic heart disease.
Collapse
Affiliation(s)
- Yiqiang Xue
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical College, Zhanjiang, China
| | - Weiqing Su
- Department of Cardiovascular Medicine, The People's Hospital of Lianjiang, Zhanjiang, China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Xinlin Lu
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yu Zhang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Guosen Yan
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| | - Can Chen
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China.,Laboratory of Cardiovascular Diseases, Guangdong Medical College, Zhanjiang, China
| |
Collapse
|
23
|
Wang R, Peng L, Zhao J, Zhang L, Guo C, Zheng W, Chen H. Gardenamide A Protects RGC-5 Cells from H₂O₂-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway. Int J Mol Sci 2015; 16:22350-67. [PMID: 26389892 PMCID: PMC4613312 DOI: 10.3390/ijms160922350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/04/2023] Open
Abstract
Gardenamide A (GA) protects the rat retinal ganglion (RGC-5) cells against cell apoptosis induced by H₂O₂. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the specific protein kinase B (Akt) inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2) inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by H₂O₂. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS), respectively, and effectively reversed the H₂O₂-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H₂O₂, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H₂O₂ insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.
Collapse
Affiliation(s)
- Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Lizhi Peng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jiaqiang Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Laitao Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Cuiping Guo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macao, Macao, China.
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, China.
| |
Collapse
|
24
|
Cho JH, Kwon JE, Cho Y, Kim I, Kang SC. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression. Nutrients 2015; 7:4862-74. [PMID: 26083119 PMCID: PMC4488820 DOI: 10.3390/nu7064862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022] Open
Abstract
Angelica gigas (AG) is effective against various medical conditions such as bacterial infection, inflammation, and cancer. It contains a number of coumarin compounds and the group of interest is the pyranocoumarin, which comprises decursin and decursinol angelate. This group has an effect on controlling inflammation, which is caused by excessive nitric oxide (NO) production. Heme oxygenases (HOs), particularly HO-1, play a role in regulating the production of NO. Thus, this study aimed to investigate the anti-inflammatory effects of AG by measuring HO-1 expression. Treatments with CH2Cl2 layer and Angelica gigas extract (AGE) showed the highest NO inhibition effects. Decursin, decursinol angelate, and nodakenin were isolated from the CH2Cl2 layer of AGE. Decursin also demonstrated the highest anti-oxidative effect among the coumarins. Although decursin had the best NO inhibition and anti-oxidative effects, the effects of AGE treatment far surpassed that of decursin. This is owing to the combination effect of the coumarins present within AGE, which is a solvent extract of AG. The expression of HO-1 is an effective indicator of the anti-inflammatory effects of AG. Based on the results of the coumarin compounds, HO-1 expression was found to be dose dependent and specific to decursin.
Collapse
Affiliation(s)
- Joon Hyeong Cho
- Department of Biological and Environmental Science, Dongguk University, Goyang 410-820, Korea.
| | - Jung Eun Kwon
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Youngmi Cho
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Inhye Kim
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| | - Se Chan Kang
- Department of Biological Science, Gachon University, Seongnam 461-701, Korea.
| |
Collapse
|
25
|
Qi L, Zhi J, Zhang T, Cao X, Sun L, Xu Y, Li X. Inhibition of microRNA-25 by tumor necrosis factor α is critical in the modulation of vascular smooth muscle cell proliferation. Mol Med Rep 2015; 11:4353-8. [PMID: 25672882 DOI: 10.3892/mmr.2015.3329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis and coronary heart disease are characterized by a hyperplastic neointima and inflammation involving cytokines, such as tumor necrosis factor‑α (TNF‑α). TNF‑α is pleiotropic and mediates inflammation and proliferation in various cell types, such as vascular smooth muscle cells (VSMCs). The molecular mechanism for the pleiotropic effects of TNF‑α has not previously been fully elucidated. The current study identified that the expression of microRNA‑25 (miR‑25), a small noncoding RNA, was reduced in response to TNF‑α signaling in VSMCs. Restored miR‑25 expression inhibited cell proliferation and Ki‑67 expression. The present study indicated that cyclin‑dependent kinase 6 (CDK6) was the direct target gene of miR‑25 using mRNA and protein expression analysis, and luciferase assays. It was also observed that restored CDK6 expression in the miR‑25 mimic‑treated VSMCs partly reduced miR‑25‑mediated VSMC proliferation. In conclusion, miR‑25 is suggested to be important in TNF‑α‑induced abnormal proliferation of VSMCs.
Collapse
Affiliation(s)
- Lichun Qi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jixin Zhi
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tong Zhang
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Cao
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lixiu Sun
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuanyuan Xu
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueqi Li
- Cardiovascular Department, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
26
|
Shindo S, Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Genipin inhibits MMP-1 and MMP-3 release from TNF-α-stimulated human periodontal ligament cells. Biochimie 2014; 107 Pt B:391-5. [DOI: 10.1016/j.biochi.2014.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
|
27
|
Chen Z, Cai Y, Zhang W, Liu X, Liu S. Astragaloside IV inhibits platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells via the inhibition of p38 MAPK signaling. Exp Ther Med 2014; 8:1253-1258. [PMID: 25187834 PMCID: PMC4151649 DOI: 10.3892/etm.2014.1905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Astragaloside IV (AS-IV), the major active component extracted from Astragalus membranaceus, has been demonstrated to exhibit protective effects on the cardiovascular, immune, digestive and nervous systems; thus, has been widely used in traditional Chinese medicine. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is closely associated with the initiation and progression of cardiovascular diseases, including atherosclerosis and restenosis. However, the effects of AS-IV on VSMCs remain unknown. For the first time, the present study demonstrated that AS-IV markedly suppressed platelet-derived growth factor (PDGF)-BB-stimulated cellular proliferation and migration of HDMEC-a human dermal VSMCs (HDVSMCs). Further investigation into the underlying molecular mechanisms demonstrated that the administration of AS-IV attenuated the PDGF-BB-stimulated switch of HDVSMCs into a proliferative phenotype. Furthermore, AS-IV inhibited the PDGF-BB-induced expression of cell cycle-associated proteins, as well as the upregulation of matrix metalloproteinase (MMP)2, but not MMP9. In addition, AS-IV was shown to downregulate the activation of p38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB in HDVSMCs. Therefore, the observations of the present study indicate that AS-IV inhibits PDGF-BB-stimulated VSMC proliferation and migration, possibly by inhibiting the activation of the p38 MAPK signaling pathway. Thus, AS-IV may be useful for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhuo Chen
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Cai
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenliang Zhang
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinzhou Liu
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Suixin Liu
- Cardiac Rehabilitation Center, Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1β via heme oxygenase-1. Mediators Inflamm 2014; 2014:523684. [PMID: 25386047 PMCID: PMC4214103 DOI: 10.1155/2014/523684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−)-epigallocatechin-3-gallate (EGCG), in human aortic smooth muscle cells (HASMCs), focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1). We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-)1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2) transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.
Collapse
|
29
|
Song Y, Long L, Zhang N, Liu Y. Inhibitory effects of hydroxysafflor yellow A on PDGF‑BB‑induced proliferation and migration of vascular smooth muscle cells via mediating Akt signaling. Mol Med Rep 2014; 10:1555-60. [PMID: 24939805 DOI: 10.3892/mmr.2014.2336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are key pathological factors in the initiation and progression of vascular disorders, including arteriosclerosis and restenosis following percutaneous coronary intervention (PCI). Hydroxysafflor yellow A (HSYA), the main component of the safflower yellow pigments, has widely been used for the treatment of cardiovascular diseases in traditional Chinese medicine. However, to the best of our knowledge, there are no studies investigating the pharmaceutical effect of HSYA on VSMCs or the underlying molecular mechanism. The present study aimed to investigate the effect of HSYA on platelet‑derived growth factor (PDGF)‑BB‑stimulated VSMC proliferation and migration. HSYA significantly inhibited PDGF‑BB‑stimulated VSMC proliferation and, in response to PDGF‑BB‑stimulation, VSMCs dedifferentiated into a proliferative phenotype. However, HSYA effectively reversed this phenotype switching. In addition, the production of nitrous oxide and cyclic guanosine monophosphate induced by PDGF‑BB was also suppressed by HSYA, and HSYA markedly inhibited PDGF‑BB‑stimulated VSMC migration. Investigation of the molecular mechanism revealed that HSYA inhibited PDGF‑BB‑induced activation of Akt signaling. In addition, HSYA also suppressed PDGF‑BB‑stimulated upregulation of cell cycle related proteins and heme oxygenase‑1. In conclusion, HSYA was able to inhibit PDGF‑BB‑stimulated VSMC proliferation and migration, partially via suppressing PDGF‑BB‑induced Akt signaling activation. Therefore, HSYA may be useful for the prevention and treatment of cardiovascular diseases, including atherosclerosis and restenosis following PCI.
Collapse
Affiliation(s)
- Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ning Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Huang S, Chen P, Shui X, He Y, Wang H, Zheng J, Zhang L, Li J, Xue Y, Chen C, Lei W. Baicalin attenuates transforming growth factor-β1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-1α and aryl hydrocarbon receptor expression. J Pharm Pharmacol 2014; 66:1469-77. [PMID: 24835111 DOI: 10.1111/jphp.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
Baicalin, a natural flavone, has antithrombotic, antihyperlipidemic and antiinflammortory activity. It can also inhibit cancer cell proliferation and reduce brain cell apoptosis. This study aimed to elucidate the effect of baicalin on the excessive proliferation of human pulmonary arterial smooth muscle cells (HPASMCs) induced by transforming growth factor-β1 (TGF-β1) and to investigate the roles of hypoxia inducible factor-1α (HIF-1α) and aryl hydrocarbon receptor (AhR) in mediating this TGF-β1-induced excessive proliferation of HPASMCs.
Methods
TGF-β1-induced proliferation of HPASMCs was assayed using the CCK8 method. The cellular phenotype was identified by immunocytochemical staining. Expression of HIF-1α and AhR mRNA was determined by real-time quantitative PCR.
Key findings
TGF-β1 promoted significantly HPASMC proliferation (P < 0.05) and induced a phenotypic switch from the contractile to synthetic type. Baicalin inhibited this TGF-β1-induced phenotypic switch and consequently the excessive growth of HPASMCs in a time-dependent and dose-dependent manner (P < 0.05). Furthermore, baicalin attenuated the abnormal proliferation of HPASMCs through suppression of the HIF-1α and AhR pathways.
Conclusions
Our study shows that baicalin has the potential to be used as a novel drug in the treatment of pulmonary arterial hypertension pathology by antagonizing HIF-1α and AhR expression and subsequently decreasing HPASMC proliferation and the phenotypic switch.
Collapse
Affiliation(s)
- Shian Huang
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Puwen Chen
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Xiaorong Shui
- Vascular Surgery Laboratory, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Yuan He
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Heyong Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Liangqing Zhang
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Jianwen Li
- Vascular Surgery Laboratory, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Yiqiang Xue
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Can Chen
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Wei Lei
- Laboratory of Cardiovascular Remodeling and Pharmaceutical Biotechnology, Department of Cardiovascular, The Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| |
Collapse
|