1
|
Galaz A, Pérez-Donoso AG, Gambardella M. Leaf Aquaporin Expression in Grafted Plants and the Influence of Genotypes and Scion/Rootstock Combinations on Stomatal Behavior in Grapevines Under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2024; 13:3427. [PMID: 39683220 DOI: 10.3390/plants13233427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
This study investigates the impact of water stress on grapevines, specifically examining the role of rootstocks and aquaporins. Two experiments on potted plants were conducted in central Chile during the summer, under conditions of high water demand, involving various rootstock genotypes and combinations of Cabernet Sauvignon (CS) grafted onto rootstocks. Significant differences were observed among plants in terms of stem water potential, stomatal conductance, and growth rate. Notably, the CS/CS combination consistently displayed the slowest growth rate, regardless of the irrigation treatment. The study also analyzed the expression levels of plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) aquaporins in the leaves of grafted plants. Specifically, VvPIP2;2 aquaporins showed reduced expression after 14 days without irrigation, whereas VvTIP1;1 and VvTIP2;1 expression levels correlated positively with gs responses in grafted plants, suggesting their role in modulating water content in leaves under water stress. TIP aquaporins likely play a significant role in the differential responses of CS plants towards near-isohydric or anisohydric behavior. The CS/CS combination exhibited near-isohydric behavior, correlating with lower TIP aquaporin expression, while the combination of CS onto 1103P and 101-14 showed higher expression, indicating anisohydric behavior. The findings suggest that grafted plants are more resilient to water stress, supporting the idea that rootstocks can mitigate the effects of water stress on the scion.
Collapse
Affiliation(s)
- Andrea Galaz
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alonso G Pérez-Donoso
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Marina Gambardella
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
2
|
Papadopoulou A, Ainalidou A, Mellidou I, Karamanoli K. Metabolome and transcriptome reprogramming underlying tomato drought resistance triggered by a Pseudomonas strain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108080. [PMID: 37812990 DOI: 10.1016/j.plaphy.2023.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggeliki Ainalidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER, Thermi, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Kim GE, Sung J. ABA-dependent suberization and aquaporin activity in rice ( Oryza sativa L.) root under different water potentials. FRONTIERS IN PLANT SCIENCE 2023; 14:1219610. [PMID: 37746006 PMCID: PMC10512726 DOI: 10.3389/fpls.2023.1219610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
Drought is one of the most stressful environments limiting crop growth and yield throughout the world. Therefore, most efforts have been made to document drought-derived genetic and physiological responses and to find better ways to improve drought tolerance. The interaction among them is unclear and/or less investigated. Therefore, the current study is to find a clue of metabolic connectivity among them in rice root experiencing different levels of drought condition. We selected 19 genes directly involved in abscisic acid (ABA) metabolism (6), suberization (6), and aquaporins (AQPs) activity (7) and analyzed the relatively quantitative gene expression using qRT-PCR from rice roots. In addition, we also analyzed proline, chlorophyll, and fatty acids and observed cross-sectional root structure (aerenchyma) and suberin lamella deposition in the endodermis. All drought conditions resulted in an obvious development of aerenchyma and two- to fourfold greater accumulation of proline. The limited water supply (-1.0 and -1.5 MPa) significantly increased gene expression (ABA metabolism, suberization, and AQPs) and developed greater layer of suberin lamella in root endodermis. In addition, the ratio of the unsaturated to the saturated fatty acids was increased, which could be considered as an adjusted cell permeability. Interestingly, these metabolic adaptations were an exception with a severe drought condition (hygroscopic coefficient, -3.1 MPa). Accordingly, we concluded that the drought-tolerant mechanism in rice roots is sophisticatedly regulated until permanent wilting point (-1.5 MPa), and ABA metabolism, suberization, and AQPs activity might be independent and/or concurrent process as a survival strategy against drought.
Collapse
Affiliation(s)
| | - Jwakyung Sung
- Deptment of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| |
Collapse
|
4
|
Guo XN, Hao Y, Wu XL, Chen X, Liu CY. Exogenous Easily Extractable Glomalin-Related Soil Protein Stimulates Plant Growth by Regulating Tonoplast Intrinsic Protein Expression in Lemon. PLANTS (BASEL, SWITZERLAND) 2023; 12:2955. [PMID: 37631166 PMCID: PMC10458124 DOI: 10.3390/plants12162955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have the function of promoting water absorption for the host plant, whereas the role of easily extractable glomalin-related soil protein (GRSP), an N-linked glycoprotein secreted by AMF hyphae and spores, is unexplored for citrus plants. In this study, the effects on plant growth performance, root system characteristics, and leaf water status, along with the changes of mineral element content and relative expressions of tonoplast intrinsic protein (TIP) genes in lemon (Citrus limon L.) seedlings, were investigated under varying strengths of exogenous EE-GRSP application under potted conditions. The results showed that 1/2, 3/4, and full-strength exogenous EE-GRSP significantly promoted plant growth performance, as well as increased the biomass and root system architecture traits including root surface area, volume, taproot length, and lateral root numbers of lemon seedlings. The four different strengths of exogenous GRSP displayed differential effects on mineral element content: notably increased the content of phosphorus (P) and iron (Fe) in both leaves and roots, as well as magnesium (Mg) and zinc (Zn) content in the roots, but dramatically decreased the content of calcium (Ca) and manganese (Mn) in the roots, as well as Zn and Mn in the leaves. Exogenous EE-GRSP improved leaf water status, manifesting as decreases in leaf water potential, which was associated with the upregulated expressions of tonoplast intrinsic proteins (TIPs), including ClTIP1;1, ClTIP1;2, ClTIP1;3, ClTIP2;1, ClTIP2;2, ClTIP4;1, and ClTIP5;1 both in leaves and roots, and TIPs expressions exhibited diverse responses to EE-GRSP application. It was concluded that exogenous EE-GRSP exhibited differential responses on plant growth performance, which was related to its strength, and the effects were associated with nutrient concentration and root morphology, especially in the improvement in water status related to TIPs expressions. Therefore, EE-GRSP can be used as a biological promoter in plant cultivation, especially in citrus.
Collapse
Affiliation(s)
- Xiao-Niu Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-N.G.); (X.-L.W.); (X.C.)
| | - Yong Hao
- College of Urban Construction, Yangtze University, Jingzhou 434023, China;
| | - Xiao-Long Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-N.G.); (X.-L.W.); (X.C.)
| | - Xin Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-N.G.); (X.-L.W.); (X.C.)
| | - Chun-Yan Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (X.-N.G.); (X.-L.W.); (X.C.)
| |
Collapse
|
5
|
Jahan MS, Zhao CJ, Shi LB, Liang XR, Jabborova D, Nasar J, Zhou XB. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1193666. [PMID: 37575931 PMCID: PMC10413876 DOI: 10.3389/fpls.2023.1193666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought. The prime aimed of the study is to investigate the effect of melatonin on drought tolerance in soybean and its potential mechanisms. Soybean seedlings were treated with 20% polyethylene glycol 6000 (PEG 6000) and subjected to osmotic stress (14 days) with or without 100 μM melatonin treatment. Our results revealed that melatonin supplementation significantly mitigated PEG-induced growth retardation and increased water absorption ability. Foliar application of melatonin also increased gas exchange and the chlorophyll fluorescence attributes by the mitigation of the osmotic-induced reduction of the reaction activity of photosystems I and II, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), electron transport activity, and photosynthetic efficiency. In addition, PEG-induced elevated production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly reversed by melatonin treatment. Equally important, melatonin boosted the antioxidant activities of soybean plants. Moreover, osmotic stress substantially increased abscisic acid (ABA) accumulation in roots and leaves, while melatonin-received plant leaves accumulated less ABA but roots content higher ABA. Similarly, melatonin significantly suppressed ABA biosynthesis and signaling gene expression in soybean exposed to drought stress. Furthermore, osmotic stress significantly suppressed plasmalemma (GmPIPs) and tonoplast aquaporin (GmTIPs) genes expression, and their transcript abundance was up-regulated by melatonin co-addition. Taken together, our results indicated that melatonin potentially improves drought tolerance of soybean through the regulation of ABA and aquaporin gene expression, increasing photosynthetic efficiency as well as enhancing water uptake efficiency.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Chang Jiang Zhao
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Li Bo Shi
- MAP Division (Shandong) of Sinochem Agriculture Holdings, Jinan, China
| | - Xiu Ren Liang
- Guangxi Ecoengineering Vocational and Technical College, Liuzhou, China
| | - Dilfuza Jabborova
- Laboratory of Medicinal Plants Genetics and Biotechnology, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Jamal Nasar
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Guangxi, Nanning, China
| |
Collapse
|
6
|
Francisca RC, Alejandra MLM, Bárbara A, Herrera R. PIPs from Fragaria vesca: A structural analysis of native and mutated protein. J Mol Graph Model 2022; 117:108310. [PMID: 36063744 DOI: 10.1016/j.jmgm.2022.108310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023]
Abstract
Aquaporins are an ancient family of membrane channel proteins present in all eukaryotes and most prokaryotes, and apart from water, allow the transport of neutral solutes and organic compounds through the pore. These proteins are essential role differentially expressed during ripening in Fragaria vesca fruits. Fv PIP2-1a is intensively expressed in fruits, inclusive several other proteins member are differentially expressed in fruit but also in other plant tissues. Phylogenetic analysis shows that Fv PIP2-1a grouped with other Fragaria proteins and far apart from other F. vesca PIP proteins. A structural model for Fv PIP2-1a protein was built by comparative modelling methodology, which was validated and refined by molecular dynamics simulation. Fv PIP2-1a structure consists of 6 transmembrane regions and two NPA domains. The mobilization of water was analyzed by molecular docking simulations in wildtype and two mutants. Interestingly, the mutant FvPIP2-1a_H214G allowed the prediction of an increment in the flux of water molecules. On contrary, structural analysis predicted that H214E mutation blocked passage of water associated to constriction of the pore.
Collapse
Affiliation(s)
- Rodríguez-Cabello Francisca
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Moya-León M Alejandra
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Arévalo Bárbara
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Raúl Herrera
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
| |
Collapse
|
7
|
Ganther M, Lippold E, Bienert MD, Bouffaud ML, Bauer M, Baumann L, Bienert GP, Vetterlein D, Heintz-Buschart A, Tarkka MT. Plant Age and Soil Texture Rather Than the Presence of Root Hairs Cause Differences in Maize Resource Allocation and Root Gene Expression in the Field. PLANTS (BASEL, SWITZERLAND) 2022; 11:2883. [PMID: 36365336 PMCID: PMC9657941 DOI: 10.3390/plants11212883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Understanding the biological roles of root hairs is key to projecting their contributions to plant growth and to assess their relevance for plant breeding. The objective of this study was to assess the importance of root hairs for maize nutrition, carbon allocation and root gene expression in a field experiment. Applying wild type and root hairless rth3 maize grown on loam and sand, we examined the period of growth including 4-leaf, 9-leaf and tassel emergence stages, accompanied with a low precipitation rate. rth3 maize had lower shoot growth and lower total amounts of mineral nutrients than wild type, but the concentrations of mineral elements, root gene expression, or carbon allocation were largely unchanged. For these parameters, growth stage accounted for the main differences, followed by substrate. Substrate-related changes were pronounced during tassel emergence, where the concentrations of several elements in leaves as well as cell wall formation-related root gene expression and C allocation decreased. In conclusion, the presence of root hairs stimulated maize shoot growth and total nutrient uptake, but other parameters were more impacted by growth stage and soil texture. Further research should relate root hair functioning to the observed losses in maize productivity and growth efficiency.
Collapse
Affiliation(s)
- Minh Ganther
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Eva Lippold
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Manuela Désirée Bienert
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 12, 85354 Freising, Germany
| | - Marie-Lara Bouffaud
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Mario Bauer
- Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Louis Baumann
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Gerd Patrick Bienert
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 12, 85354 Freising, Germany
| | - Doris Vetterlein
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle/Saale, Germany
| | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mika Tapio Tarkka
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Davik J, Wilson RC, Njah RG, Grini PE, Randall SK, Alsheik MK, Sargent DJ. Genetic mapping and identification of a QTL determining tolerance to freezing stress in Fragaria vesca L. PLoS One 2021; 16:e0248089. [PMID: 34019543 PMCID: PMC8139484 DOI: 10.1371/journal.pone.0248089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Extreme cold and frost cause significant stress to plants which can potentially be lethal. Low temperature freezing stress can cause significant and irreversible damage to plant cells and can induce physiological and metabolic changes that impact on growth and development. Low temperatures cause physiological responses including winter dormancy and autumn cold hardening in strawberry (Fragaria) species, and some diploid F. vesca accessions have been shown to have adapted to low-temperature stresses. To study the genetics of freezing tolerance, a F. vesca mapping population of 143 seedlings segregating for differential responses to freezing stress was raised. The progeny was mapped using ‘Genotyping-by-Sequencing’ and a linkage map of 2,918 markers at 851 loci was resolved. The mapping population was phenotyped for freezing tolerance response under controlled and replicated laboratory conditions and subsequent quantitative trait loci analysis using interval mapping revealed a single significant quantitative trait locus on Fvb2 in the physical interval 10.6 Mb and 15.73 Mb on the F. vesca v4.0 genome sequence. This physical interval contained 896 predicted genes, several of which had putative roles associated with tolerance to abiotic stresses including freezing. Differential expression analysis of the 896 QTL-associated gene predictions in the leaves and crowns from ‘Alta’ and ‘NCGR1363’ parental genotypes revealed genotype-specific changes in transcript accumulation in response to low temperature treatment as well as expression differences between genotypes prior to treatment for many of the genes. The putative roles, and significant interparental differential expression levels of several of the genes reported here identified them as good candidates for the control of the effects of freezing tolerance at the QTL identified in this investigation and the possible role of these candidate genes in response to freezing stress is discussed.
Collapse
Affiliation(s)
- Jahn Davik
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- * E-mail:
| | - Robert C. Wilson
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences & Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Relindis G. Njah
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences & Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Paul E. Grini
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Stephen K. Randall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Muath K. Alsheik
- Graminor Breeding Ltd., Ridabu, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, United Kingdom
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
9
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
11
|
Cao X, Shen Q, Ma S, Liu L, Cheng J. Physiological and PIP Transcriptional Responses to Progressive Soil Water Deficit in Three Mulberry Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:1310. [PMID: 32983200 PMCID: PMC7488926 DOI: 10.3389/fpls.2020.01310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Although mulberry cultivars Wubu, Yu711, and 7307 display distinct anatomical, morphological, and agronomic characteristics under natural conditions, it remains unclear if they differ in drought tolerance. To address this question and elucidate the underlying regulatory mechanisms at the whole-plant level, 2-month old saplings of the three mulberry cultivars were exposed to progressive soil water deficit for 5 days. The physiological responses and transcriptional changes of PIPs in different plant tissues were analyzed. Drought stress led to reduced leaf relative water content (RWC) and tissue water contents, differentially expressed PIPs, decreased chlorophyll and starch, increased soluble sugars and free proline, and enhanced activities of antioxidant enzymes in all plant parts of the three cultivars. Concentrations of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malonaldehyde (MDA) were significantly declined in roots, stimulated in leaves but unaltered in wood and bark. In contrast, except the roots of 7307, soluble proteins were repressed in roots and leaves but induced in wood and bark of the three cultivars in response to progressive water deficit. These results revealed tissue-specific drought stress responses in mulberry. Comparing to cultivar Yu711 and 7307, Wubu showed generally slighter changes in leaf RWC and tissue water contents at day 2, corresponding well to the steady PIP transcript levels, foliar concentrations of chlorophyll, O2 •-, MDA, and free proline. At day 5, Wubu sustained higher tissue water contents in green tissues, displayed stronger responsiveness of PIP transcription, lower concentrations of soluble sugars and starch, lower foliar MDA, higher proline and soluble proteins, higher ROS accumulation and enhanced activities of several antioxidant enzymes. Our results indicate that whole-plant level responses of PIP transcription, osmoregulation through proline and soluble proteins and antioxidative protection are important mechanisms for mulberry to cope with drought stress. These traits play significant roles in conferring the relatively higher drought tolerance of cultivar Wubu and could be potentially useful for future mulberry improvement programmes.
Collapse
Affiliation(s)
- Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qiudi Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Sang Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jialing Cheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Merlaen B, De Keyser E, Ding L, Leroux O, Chaumont F, Van Labeke MC. Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs prodigal Fragaria x ananassa cultivar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:95-106. [PMID: 31675527 DOI: 10.1016/j.plaphy.2019.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
In order to improve the understanding of plant water relations under drought stress, the water use behavior of two Fragaria x ananassa Duch. cultivars, contrasting in their drought stress phenotype, is identified. Under drought, stomatal closure is gradual in Figaro. Based on this, we associate Figaro with conservative water use behavior. Contrarily, drought stress causes a sudden and steep decrease in stomatal conductance in Flair, leading to the identification of Flair as a prodigal water use behavior cultivar. Responses to progressive drought on the one hand and an osmotic shock on the other hand are compared between these two cultivars. Tonoplast intrinsic protein mRNA levels are shown to be upregulated under progressive drought in the roots of Figaro only. Otherwise, aquaporin expression upon drought or osmotic stress is similar between both cultivars, i.e. plasma membrane intrinsic proteins are downregulated under progressive drought in leaves and under short term osmotic shock in roots. In response to osmotic shock, root hydraulic conductivity did not change significantly and stomatal closure is equal in both cultivars. De novo abscisic acid biosynthesis is upregulated in the roots of both cultivars under progressive drought.
Collapse
Affiliation(s)
- Britt Merlaen
- Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090, Melle, Belgium.
| | - Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 5, 1348, Louvain-La-Neuve, Belgium.
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K L Ledeganckstraat 35, 9000, Gent, Belgium.
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 5, 1348, Louvain-La-Neuve, Belgium.
| | - Marie-Christine Van Labeke
- Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| |
Collapse
|
13
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
14
|
Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit Rev Biotechnol 2019; 39:861-883. [DOI: 10.1080/07388551.2019.1616669] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Gunvant Patil
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Steven Mulkey
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Henry T. Nguyen
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
15
|
Luo Z, Kong X, Zhang Y, Li W, Zhang D, Dai J, Fang S, Chu J, Dong H. Leaf-Derived Jasmonate Mediates Water Uptake from Hydrated Cotton Roots under Partial Root-Zone Irrigation. PLANT PHYSIOLOGY 2019; 180:1660-1676. [PMID: 31079035 PMCID: PMC6752905 DOI: 10.1104/pp.19.00315] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 05/19/2023]
Abstract
Partial root-zone irrigation (PRI), a water-saving technique, improves water uptake in hydrated roots by inducing specific responses that are thought to be regulated by signals originating from leaves; however, this signaling is poorly understood. Using a split-root system and polyethylene glycol 6000 to simulate PRI in cotton (Gossypium hirsutum), we showed that increased root hydraulic conductance (L) and water uptake in the hydrated roots may be due to the elevated expression of cotton plasma membrane intrinsic protein (PIP) genes. Jasmonate (jasmonic acid [JA] and jasmonic acid-isoleucine conjugate [JA-Ile]) content and the expression of three JA biosynthesis genes increased in the leaves of the PRI plants compared with those of the polyethylene glycol-free control. JA/JA-Ile content also increased in the hydrated roots, although the expression of the three JA genes was unaltered, compared with the control. The JA/JA-Ile contents in leaves increased after the foliar application of exogenous JA and was followed by an increase in both JA/JA-Ile content and L in the hydrated roots, whereas the silencing of the three JA genes had the opposite effect in the leaves. Ring-barking the hydrated hypocotyls increased the JA/JA-Ile content in the leaves but decreased the JA/JA-Ile content and L in the hydrated roots. These results suggested that the increased JA/JA-Ile in the hydrated roots was mostly transported from the leaves through the phloem, thus increasing L by increasing the expression of GhPIP in the hydrated roots under PRI. We believe that leaf-derived JA/JA-Ile, as a long-distance signal, positively mediates water uptake from the hydrated roots of cotton under PRI.
Collapse
Affiliation(s)
- Zhen Luo
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xiangqiang Kong
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Yanjun Zhang
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Weijiang Li
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Dongmei Zhang
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Jianlong Dai
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Shuang Fang
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hezhong Dong
- Cotton Research Center, Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
16
|
Khan S, Thomas BR, de la Mata R, Randall MJ, Zhang W, Zwiazek JJ. Variation in Aquaporin and Physiological Responses Among Pinus contorta Families Under Different Moisture Conditions. PLANTS 2019; 8:plants8010013. [PMID: 30621354 PMCID: PMC6359517 DOI: 10.3390/plants8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023]
Abstract
A population of eight open pollinated families of Pinus contorta was selected from sites varying in precipitation regimes and elevation to examine the possible role of aquaporins in adaptation to different moisture conditions. Five Pinus contorta aquaporins encoding PiconPIP2;1, PiconPIP2;2, PiconPIP2;3, PiconPIP1;2, and PiconTIP1;1 were cloned and detailed structural analyses were conducted to provide essential information that can explain their biological and molecular function. All five PiconAQPs contained hydrophilic aromatic/arginine selective filters to facilitate the transport of water. Transcript abundance patterns of PiconAQPs varied significantly across the P. contorta families under varying soil moisture conditions. The transcript abundance of five PiconPIPs remained unchanged under control and water-stress conditions in two families that originated from the sites with lower precipitation levels. These two families also displayed a different adaptive strategy of photosynthesis to cope with drought stress, which was manifested by reduced sensitivity in photosynthesis (maintaining the same rate) while exhibiting a reduction in stomatal conductance. In general, root:shoot ratios were not affected by drought stress, but some variation was observed between families. The results showed variability in drought coping mechanisms, including the expression of aquaporin genes and plant biomass allocation among eight families of Pinus contorta.
Collapse
Affiliation(s)
- Shanjida Khan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Barb R Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Raul de la Mata
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain.
| | - Morgan J Randall
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Wenqing Zhang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB T6G 2E3, Canada.
| |
Collapse
|
17
|
Merlaen B, De Keyser E, Van Labeke MC. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development. HORTICULTURE RESEARCH 2018; 5:20. [PMID: 29619231 PMCID: PMC5880810 DOI: 10.1038/s41438-018-0019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 05/07/2023]
Abstract
The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry (Fragaria x ananassa). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa, few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.
Collapse
Affiliation(s)
- Britt Merlaen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ellen De Keyser
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Marie-Christine Van Labeke
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
18
|
Putpeerawit P, Sojikul P, Thitamadee S, Narangajavana J. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:118-127. [PMID: 29100101 DOI: 10.1016/j.plaphy.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed.
Collapse
Affiliation(s)
- Pattaranit Putpeerawit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siripong Thitamadee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.
| |
Collapse
|
19
|
Shelden MC, Vandeleur R, Kaiser BN, Tyerman SD. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. FRONTIERS IN PLANT SCIENCE 2017; 8:1893. [PMID: 29163613 PMCID: PMC5681967 DOI: 10.3389/fpls.2017.01893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 05/11/2023]
Abstract
We report physiological, anatomical and molecular differences in two economically important grapevine (Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψL) and stem water potential (ψS), stomatal conductance (gs), transpiration (E), petiole hydraulics (KPet), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψL in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ50Petiole = -1.14 and ψ50Stem = -2.24 MPa) but not in Grenache (ψ50Petiole = -0.73 and ψ50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher KPet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves (VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1, and VvTIP2;1) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψL and ψS in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin genes correlated with gas exchange measurements, however, these genes differed between cultivars. In summary, the data shows two contrasting responses in petiole hydraulics and aquaporin expression between the near-isohydric cultivar, Grenache and anisohydric cultivar, Chardonnay.
Collapse
Affiliation(s)
- Megan C. Shelden
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Rebecca Vandeleur
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Brent N. Kaiser
- Centre for Carbon, Water and Food, School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Grant OM, O'Reilly C. Impact of genetic variation and long-term limited water availability on the ecophysiology of young Sitka spruce (Picea sitchensis (Bong.) Carr.). TREE PHYSIOLOGY 2017; 37:536-549. [PMID: 27677274 DOI: 10.1093/treephys/tpw093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Future limited water availability may reduce the potential of tree improvement to increase timber yields. We investigated ecophysiological variation between full-sibling families of Sitka spruce (Picea sitchensis (Bong.) Carr.) growing under contrasting water availability conditions: control (optimal) water availability and limited water availability. One-year-old seedlings of nine improved families plus an unimproved seed lot were grown in pots in a greenhouse and the two water availability treatments imposed via drip irrigation. Whole-plant water use varied between families. Stomatal conductance and the light-saturated quantum yield of photosystem II at times differed between families, but not consistently. Certain families showed considerably greater increases in electron transport rate with increasing photosynthetically active radiation. Limited water availability resulted in reduced branch water potential, leaf stomatal conductance and transpiration per unit leaf area, and increased whole-plant water-use efficiency, in all genetic material. The responses of plant water use and leaf carbon isotope composition to water limitation, were, however, initially influenced by variation in vigour between families-with conservative growth in some material slowing the decline in substrate moisture content. As the duration of water deficit extended, these variables showed a more uniform response across families. Between-family variation in physiological mechanisms of drought tolerance was not detected. Thus, for Sitka spruce, assessing juvenile material may not allow selection to prevent reductions in productivity associated with long-term sub-optimal growing conditions, but screening for conservative growth (within families as well as between families) may be beneficial where survival of relatively short-term water limitation is the primary concern.
Collapse
Affiliation(s)
- Olga M Grant
- School of Agriculture and Food Science, University College Dublin, UCD Forestry, Belfield, Dublin 4, Ireland
- Present address: Room 239, Engineering Building, University College Dublin, Belfield, Dublin 4, Ireland
| | - Conor O'Reilly
- School of Agriculture and Food Science, University College Dublin, UCD Forestry, Belfield, Dublin 4, Ireland
- Present address: Room 239, Engineering Building, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Li R, Wang J, Li S, Zhang L, Qi C, Weeda S, Zhao B, Ren S, Guo YD. Plasma Membrane Intrinsic Proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 Conferring Enhanced Drought Stress Tolerance in Tomato. Sci Rep 2016; 6:31814. [PMID: 27545827 PMCID: PMC4992886 DOI: 10.1038/srep31814] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.
Collapse
Affiliation(s)
- Ren Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jinfang Wang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuangtao Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chuandong Qi
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Sarah Weeda
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Bing Zhao
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
22
|
Carniel FC, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. PLANT MOLECULAR BIOLOGY 2016; 91:319-339. [PMID: 26992400 DOI: 10.1007/s11103-016-0468-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
- Institute of Botany, University of Innsbruck, Sternwartestraße, 15, 6020, Innsbruck, Austria
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy.
| | - Alice Montagner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Elisa Banchi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Chiara Manfrin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Lucia Muggia
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| |
Collapse
|
23
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
24
|
Yan X, Zhou M, Dong X, Zou S, Xiao H, Ma XF. Molecular mechanisms of foliar water uptake in a desert tree. AOB PLANTS 2015; 7:plv129. [PMID: 26567212 PMCID: PMC4685171 DOI: 10.1093/aobpla/plv129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/29/2015] [Indexed: 05/22/2023]
Abstract
Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants.
Collapse
Affiliation(s)
- Xia Yan
- Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Maoxian Zhou
- School of Agriculture and Forestry Economics and Management, Lanzhou University of Finance and Economics, Lanzhou 730020, PR China
| | - Xicun Dong
- Department of Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Songbing Zou
- Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Honglang Xiao
- Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
25
|
Molina-Hidalgo FJ, Medina-Puche L, Gelis S, Ramos J, Sabir F, Soveral G, Prista C, Iglesias-Fernández R, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:198-211. [PMID: 26259188 DOI: 10.1016/j.plantsci.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 05/23/2023]
Abstract
Strawberry fruit (Fragaria × ananassa) is a soft fruit with high water content at ripe stage (more than 90% of its fresh weight). Aquaporins play an important role in plant water homeostasis, through the facilitation of water transport and solutes. We report the role played by FaNIP1;1 in the receptacle ripening process. The analysis by qRT-PCR of FaNIP1;1 showed that this gene is mainly expressed in fruit receptacle and has a ripening-related expression pattern that was accompanied by an increase in both the abscisic acid and water content of the receptacle throughout fruit ripening. Moreover, FaNIP1;1 was induced in situations of water deficit. Additionally, we show that FaNIP1;1 expression was positively regulated by abscisic acid and negatively regulated by auxins. The water transport capacity of FaNIP1;1 was determined by a stopped-flow spectroscopy in yeast over-expressing FaNIP1;1. Glycerol, H2O2 and boron transport were also demonstrated in yeast. On the other hand, GFP-FaNIP1;1 fusion protein was located in plasma membrane. In conclusion, FaNIP1;1 seems to play an important role increasing the plasma membrane permeability, that allows the water accumulation in the strawberry fruit receptacle throughout the ripening process.
Collapse
Affiliation(s)
- Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Samuel Gelis
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - José Ramos
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Farzana Sabir
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal; Departamento de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Catarina Prista
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid 28223, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| |
Collapse
|
26
|
Srivastava AK, Penna S, Nguyen DV, Tran LSP. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 2014; 36:389-98. [PMID: 25430890 DOI: 10.3109/07388551.2014.973367] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Suprasanna Penna
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Dong Van Nguyen
- b National Key Laboratory for Plant Cell Technology , Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science , Hanoi , Vietnam , and
| | - Lam-Son Phan Tran
- c Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
27
|
Liston A, Cronn R, Ashman TL. Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. AMERICAN JOURNAL OF BOTANY 2014; 101:1686-99. [PMID: 25326614 DOI: 10.3732/ajb.1400140] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cultivated strawberry, Fragaria ×ananassa, is one of the youngest domesticated plants. Its 18th century origin via hybridization in Europe between the North American F. virginiana and the South American F. chiloensis was documented by the botanist Antoine Nicolas Duchesne. His 1766 "Natural History of Strawberries" is an extraordinary work that integrates fundamental discoveries on the biology, ecology, and phylogeny of Fragaria with applied information on cultivation and ethnobotanical uses, serving as an inspiration for current research in the genus. Fragaria species exhibit the full range of sexual systems in the gynodioecy pathway from hermaphroditism to dioecy (and back again), as well as variation in self-compatibility, and evidence of sex chromosomes with female heterogamety. The genus is also characterized by interspecific hybridization and polyploidy, with a natural range of ploidy levels from diploids to decaploids. This biological diversity, combined with the availability of genomic resources and the ease of growing and experimenting with the plants, makes Fragaria a very attractive system for ecological and evolutionary genomics. The goal of this review is to introduce Fragaria as a model genus and to provide a roadmap for future integrative research. These research directions will deepen our understanding of the ecological and evolutionary context that shaped the ancestors of the cultivated strawberry, not only providing information that can be applied to efforts to shape the future of this important fruit crop but also our understanding of key transitions in plant evolution.
Collapse
Affiliation(s)
- Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon 97331 USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA
| |
Collapse
|
28
|
Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F. Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One 2014; 9:e104657. [PMID: 25118696 PMCID: PMC4132101 DOI: 10.1371/journal.pone.0104657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/06/2014] [Indexed: 12/27/2022] Open
Abstract
Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.
Collapse
Affiliation(s)
- Zhuoyu Wang
- Department of Horticulture, Auburn University, Alabama, United States of America
| | - Hongtao Hu
- Department of Biological Sciences, Auburn University, Alabama, United States of America
| | - Leslie R. Goertzen
- Department of Biological Sciences, Auburn University, Alabama, United States of America
| | - J. Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Alabama, United States of America
| | - Fenny Dane
- Department of Horticulture, Auburn University, Alabama, United States of America
| |
Collapse
|
29
|
Jarzyniak KM, Jasiński M. Membrane transporters and drought resistance - a complex issue. FRONTIERS IN PLANT SCIENCE 2014; 5:687. [PMID: 25538721 PMCID: PMC4255493 DOI: 10.3389/fpls.2014.00687] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.
Collapse
Affiliation(s)
- Karolina M. Jarzyniak
- Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of SciencesPoznań, Poland
- Laboratory of Molecular Biology, Department of Biochemistry and Biotechnology, University of Life SciencesPoznań, Poland
| | - Michał Jasiński
- Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of SciencesPoznań, Poland
- Laboratory of Molecular Biology, Department of Biochemistry and Biotechnology, University of Life SciencesPoznań, Poland
- *Correspondence: Michał Jasiński, Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland e-mail:
| |
Collapse
|
30
|
Aroca R, Ferrante A, Vernieri P, Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. ANNALS OF BOTANY 2006; 130:735-745. [PMID: 28303406 DOI: 10.1007/s10265-017-0920-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/23/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.
Collapse
Affiliation(s)
- Ricardo Aroca
- Division of Biological Sciences, University of California San Diego La Jolla, CA 92093-0116, USA.
| | | | | | | |
Collapse
|