1
|
Ebrahim N, Al Saihati HA, Alali Z, Mahmoud SYM, Rabaan AA, Dessouky AA, Salim RF, Shamaa AA, Abdallah AN, Elsherbiny NM, Othman G, Badawy AA, Di Leva G, Badr OA. Lyophilized MSC-EVs attenuates COVID-19 pathogenesis by regulating the JAK/STAT pathway. Stem Cell Res Ther 2025; 16:244. [PMID: 40369583 PMCID: PMC12079845 DOI: 10.1186/s13287-025-04284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/19/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The JAK/STAT signaling pathway plays a crucial role in the release of interferons (IFNs) and the proinflammatory response during SARS-CoV-2 infection, contributing to the cytokine storm characteristic of severe COVID-19 cases. STAT3, a key protein in this pathway, has been implicated in promoting inflammation, making its inhibition a potential therapeutic strategy to mitigate disease severity. Mesenchymal Stem Cell-derived Extracellular Vesicles (MSC-EVs), enriched with immunomodulatory and antiviral miRNAs, offer a promising therapeutic approach by modulating gene expression and regulating inflammatory responses. This study investigates the ability of Lyophilized MSC-EVs to inhibit the JAK/STAT pathway, highlighting their potential application in COVID-19 management. METHODS Male Syrian hamsters were used as an experimental model, housed under controlled laboratory conditions. SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020) was propagated in Vero E6 cells, and viral titers were determined using plaque assays. Hamsters were intranasally challenged with the virus and treated intraperitoneally with 0.5 mL of lyophilized human Wharton's jelly-derived MSC-extracellular vesicles (MSC-EVs). Histopathological evaluations were performed on lung tissues using H&E, Masson's trichrome, and immunohistochemical staining. Morphometric analyses were conducted to assess lung injury and fibrosis. Western blotting was employed to evaluate protein expression. All procedures adhered to ethical and biosafety guidelines. RESULTS The administration of MSC-EVs significantly upregulated the expression levels of miRNA-146a, miRNA-124, miRNA-155, miRNA-29b, miRNA-7, miRNA-145 and miRNA-18a compared to their levels in the COVID-19 group, suggesting a targeted release of miRNA-cargo from the MSC-EVs into the lung tissue of the animals. MSC-EVs impaired the activation of the STAT3/STAT1 signaling pathway and reduced the cytokine storm and coagulopathy associated with COVID-19. CONCLUSIONS These findings suggest that MSC-EVs have the potential to effectively mitigate the pathogenesis of COVID-19 by targeting the JAK/STAT signaling pathway. Further research is needed to fully understand the mechanisms underlying the therapeutic effects of MSC-EVs and their clinical application in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt
- Faculty of Medicine, Benha National University, Obour, Egypt
- Keele University, Keele, UK
| | - Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Hafar Al-Batin, Saudi Arabia.
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, P.O Box 1803, 31991, Hafr Al Batin, Saudi Arabia
| | - Sabry Younis Mohamed Mahmoud
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, 31991, Hafar Al Batin, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Ashraf A Shamaa
- Anesthesiology & Radiology, Faculty of Vet. Men, Cairo University, P. O. Box 12211, Giza, Egypt
| | - Ahmed N Abdallah
- Hormones Department, National Research Centre, Medical Research and Clinical Studies Institute, Cairo, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Gamal Othman
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
| | - Abdelnaser A Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Gianpiero Di Leva
- School of Life Sciences, Keele University Staffordshire, Keele, ST5 5BG, UK
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.
| |
Collapse
|
2
|
Chen Y, Jiao W, Wang Y, Liang Z, Wang L, Li D, Liang Y, Niu H. Microtubule interacting and trafficking domain containing 1 deficiency leads to poor survival via tissue factor-mediated coagulation in bladder cancer. J Thromb Haemost 2024; 22:1956-1972. [PMID: 38554936 DOI: 10.1016/j.jtha.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with cancer are at an increased risk of developing a hypercoagulative phenotype and venous thromboembolism. However, no clinical trial has yet confirmed that anticoagulant therapy improves cancer prognosis, and the mechanism underlying hypercoagulation in patients with bladder cancer is not well understood. OBJECTIVES We hypothesized that the prognostic genes affect tumor progression via tumor-mediated coagulation. METHODS We detected the most significant prognostic genes of bladder cancer with The Cancer Genome Atlas dataset and validated them in 2 Gene Expression Omnibus datasets and 1 ArrayExpress dataset. Immunohistochemical tests were performed on a cohort of 80 individuals to further examine the prognostic genes. For the most reliable prognostic gene, its influence on coagulation was evaluated with gene knockdown followed by next-generation sequencing and cellular and animal experiments. RESULTS Depletion of microtubule interacting and trafficking domain containing 1 (MITD1), a major prognostic gene of bladder cancer, significantly increased the tissue factor (TF) expression. MITD1 deficiency led to cytokinesis arrest, which, in turn, promoted the TF expression via unfolded protein response and c-Jun. The knockdown of IRE1, an essential kinase of unfolded protein response or the inactivation of c-Jun using c-Jun N-terminal kinase inhibitors weakened MITD1 deficiency- or dithiothreitol-induced TF upregulation. Cells lacking MITD1 promoted coagulation and metastasis in the experimental metastasis assay. CONCLUSION Our findings suggest the novel role of tumor prognostic genes upon the development of hypercoagulative phenotype and venous thromboembolism, thereby underlining the importance of anticoagulant therapy and shedding light on the therapeutic value of targeting MITD1 in bladder cancer.
Collapse
Affiliation(s)
- Yuanbin Chen
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liping Wang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Li
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haitao Niu
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020. [PMID: 33037393 DOI: 10.1038/s41418‐020‐00633‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shawn P Kubli
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Medical Biophysics and Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Medicine, University of Hong Kong, Pok Fu Lam, 999077, Hong Kong.
| |
Collapse
|
5
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
6
|
Zheng D, Zhang J, Zhang Z, Kuang L, Zhu Y, Wu Y, Xue M, Zhao H, Duan C, Liu L, Li T. Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis. Front Cell Dev Biol 2020; 8:643. [PMID: 32766250 PMCID: PMC7379030 DOI: 10.3389/fcell.2020.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a prevalent severe syndrome in clinic. Vascular leakage and lung injury are important pathophysiological processes during sepsis, but the mechanism remains obscure. Microvesicles (MVs) play an essential role in many diseases, while whether MVs participate in vascular leakage and lung injury during sepsis is unknown. Using cecal ligation and puncture induced sepsis rats and lipopolysaccharide stimulated vascular endothelial cells (VECs), the role and the underlying mechanism of endothelial microvesicles (EMVs) in pulmonary vascular leakage and lung injury were observed. The role of MVs from sepsis patients was verified. The results showed that the concentration of MVs in blood was significantly increased after sepsis. MVs from sepsis rats and patients induced apparent pulmonary vascular leakage and lung injury, among which EMVs played the dominant role, in which miR-23b was the key inducing factor in vascular leakage. Furthermore, downregulation and upregulation of miR-23b in EMVs showed that miR-23b mainly targeted on ZO-1 to induce vascular leakage. MVs from sepsis patients induced pulmonary vascular leakage and lung injury in normal rats. Application of classic antidepressants amitriptyline reduced the secretion of EMVs, and alleviated vascular leakage and lung injury. The study suggests that EMVs play an important role in pulmonary vascular leakage and lung injury during sepsis by transferring functional miR-23b. Antagonizing the secretion of EMVs and the miR-23b might be a potential target for the treatment of severe sepsis.
Collapse
Affiliation(s)
- Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongliang Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Xu Y, Bankhead A, Tian X, Tang J, Ljungman M, Neamati N. Deletion of Glutathione S-Transferase Omega 1 Activates Type I Interferon Genes and Downregulates Tissue Factor. Cancer Res 2020; 80:3692-3705. [PMID: 32571799 DOI: 10.1158/0008-5472.can-20-0530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
GST omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we have validated GSTO1 as an impactful target in oncology. Transcriptional profiling coupled with proteomics uncovered novel pharmacodynamic markers and cellular pathways regulated by GSTO1. CRISPR/Cas9 GSTO1 knockout (KO) cell lines failed to form tumors or displayed growth delay in vivo; they also formed smaller 3D spheroids in vitro. Multiomics analysis in GSTO1 KO cells found a strong positive correlation with cell adhesion molecules and IFN response pathways and a strong negative correlation with Myc transcriptional signature. In addition, several clinically used drugs showed significant synthetic lethality with loss or inhibition of GSTO1. Transcription and protein expression of tissue factor (gene name, F3) were downregulated in response to GSTO1 KO. F3 is associated with poor patient survival and promotion of tumor progression in multiple cancers and is a known risk factor for metastasis. Transcription of F3 was regulated by IL1β, whose secretion decreased upon inhibition of GSTO1, suggesting that IL1β links GSTO1 expression and F3 transcription. In summary, our results implicate GSTO1 as a potential therapeutic target in cancer and offer new mechanistic insights into its significant role in cancer progression. SIGNIFICANCE: These findings validate GSTO1 as a therapeutic target in cancer and implicate GSTO1 in the modulation of tumor growth, immune responses, and expression of F3.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Armand Bankhead
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Biostatistics and Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | - Xiaoli Tian
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jianming Tang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Mats Ljungman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Mesquida M, Drawnel F, Lait PJ, Copland DA, Stimpson ML, Llorenç V, Sainz de la Maza M, Adan A, Widmer G, Strassburger P, Fauser S, Dick AD, Lee RWJ, Molins B. Modelling Macular Edema: The Effect of IL-6 and IL-6R Blockade on Human Blood-Retinal Barrier Integrity In Vitro. Transl Vis Sci Technol 2019; 8:32. [PMID: 31667008 PMCID: PMC6819001 DOI: 10.1167/tvst.8.5.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/22/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose Macular edema (ME) is a leading cause of visual loss in a range of retinal diseases and despite the use of antivascular endothelial growth factor (anti-VEGF) agents, its successful treatment remains a major clinical challenge. Based on the indirect clinical evidence that interleukin-6 (IL-6) is a key additional candidate mediator of ME, we interrogated the effect of IL-6 on blood–retinal barrier (BRB) integrity in vitro. Methods Human retinal pigment epithelial cell (ARPE-19) and human retinal microvascular endothelial cell (HRMEC) monolayers were used to mimic the outer and inner BRB, respectively. Their paracellular permeability was assessed by measuring the passive permeation of 40 kDa fluorescein isothiocyanate (FITC)-dextran across confluent cells in the presence of IL-6. Transendothelial/epithelial electrical resistance (TEER) then was measured and the distribution of the tight junction protein ZO-1 was assessed by immunofluorescence using confocal microscopy. Results Treatment with IL-6 for 48 hours significantly increased the diffusion rate of FITC-dextran, decreased TEER, and disrupted the distribution of ZO-1 in ARPE-19 cells, which constitutively express the IL-6 transmembrane receptor, and this was reversed with IL-6R blockade. In contrast, IL-6 did not affect the paracellular permeability, TEER, or ZO-1 distribution in HRMECs. Conclusions These in vitro data support the hypothesis that IL-6 reversibly disrupts the integrity of ARPE-19 cells, but it does not affect HRMECs. Translational Relevance IL-6 is a candidate therapeutic target in the treatment of outer BRB driven ME.
Collapse
Affiliation(s)
- Marina Mesquida
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain.,Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Philippa J Lait
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Victor Llorenç
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Maite Sainz de la Maza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Alfredo Adan
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| | - Gabriella Widmer
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Pamela Strassburger
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innocation Centre Basel, Switzerland
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Richard W J Lee
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Blanca Molins
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Hospital Clínic de Barcelona, Spain
| |
Collapse
|
9
|
Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br J Cancer 2018; 120:207-217. [PMID: 30518816 PMCID: PMC6342981 DOI: 10.1038/s41416-018-0339-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
Background Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. Methods Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. Results The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). Conclusion In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.
Collapse
|
10
|
Zhang Q, Wang H, Li H, Xu J, Tian K, Yang J, Lu Z, Zheng J. Chimeric antigen receptor-modified T Cells inhibit the growth and metastases of established tissue factor-positive tumors in NOG mice. Oncotarget 2018; 8:9488-9499. [PMID: 28055955 PMCID: PMC5354747 DOI: 10.18632/oncotarget.14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell (CAR T) is a promising therapeutic option for patients with cancer. Such an approach requires the identification of tumor-specific antigen targets that are expressed in solid tumors. We developed a new third-generation CAR directed against tissue factor (TF), a surface molecule overexpressed in some types of lung cancer, melanoma and other cancers. First, we demonstrated by immunohistochemistry that TF was overexpressed in squamous cell carcinoma and adenocarcinoma of non-small cell lung cancer (NSCLC) and melanoma using a human tissue microarray. In the presence of TF-positive cancer cells, the CAR-modified T cells (TF-CAR T) were highly activated and showed specific cytotoxicity to TF-positive cancer cells in vitro. In established s.c. xenograft and lung metastasis models, TF-CAR T cells could significantly suppress the growth of s.c. xenograft and metastasis of TF-positive cancer cells. Additionally, the safety evaluation of TF-CAR T cells in vivo showed that the treatment did not cause obvious toxicity in mice. Taken together, these findings indicate that TF-CAR T cells might be a novel potential therapeutic agent for the treatment of patients with TF-positive cancers.
Collapse
Affiliation(s)
- Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jinjing Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Kang Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
11
|
Kopparam J, Chiffelle J, Angelino P, Piersigilli A, Zangger N, Delorenzi M, Meylan E. RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation. Cell Death Differ 2017; 24:1761-1771. [PMID: 28574510 PMCID: PMC5596425 DOI: 10.1038/cdd.2017.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
Loss of epithelial differentiation and extracellular matrix (ECM) remodeling are known to facilitate cancer progression and are associated with poor prognosis in patients with lung cancer. We have identified Receptor-interacting serine/threonine protein kinase 4 (RIP4) as a regulator of tumor differentiation in lung adenocarcinoma (AC). Bioinformatics analyses of human lung AC samples showed that poorly differentiated tumors express low levels of RIP4, whereas high levels are associated with better overall survival. In vitro, lung tumor cells expressing reduced RIP4 levels showed enhanced activation of STAT3 signaling and had a greater ability to invade through collagen. In contrast, overexpression of RIP4 inhibited STAT3 activation, which abrogated interleukin-6-dependent induction of lysyl oxidase, a collagen cross-linking enzyme. In an autochthonous mouse model of lung AC initiated by Kras(G12D) expression with loss of p53, Rip4 knockdown tumors progressed to a poorly differentiated state marked by an increase in Hmga2, reduced Ttf1, and enrichment of genes regulating extracellular remodeling and Jak-Stat signaling. Tail vein injections of cells overexpressing Rip4 showed a reduced potential to invade and form tumors, which was restored by co-expression of Stat3. Altogether, our work has identified that loss of RIP4 enhances STAT3 signaling in lung cancer cells, promoting the expression of ECM remodeling genes and cancer dedifferentiation.
Collapse
Affiliation(s)
- Jawahar Kopparam
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Johanna Chiffelle
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Paolo Angelino
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Alessandra Piersigilli
- Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern CH-3012, Switzerland.,Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nadine Zangger
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland.,Ludwig Center for Cancer Research, University of Lausanne, Epalinges CH-1066, Switzerland.,Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1011, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
12
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
13
|
Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, Hou X, Xiang R, Cheng P. Mesenchymal Stem Cells Engineered to Secrete Pigment Epithelium-Derived Factor Inhibit Tumor Metastasis and the Formation of Malignant Ascites in a Murine Colorectal Peritoneal Carcinomatosis Model. Hum Gene Ther 2016; 27:267-77. [PMID: 26756933 DOI: 10.1089/hum.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC.
Collapse
Affiliation(s)
- Liping Yang
- 1 Tumor Biotherapy Center/Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Gansu Province, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuwei Zhang
- 2 Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Liuliu Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Dan Yue
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhu Ma
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Da Zhao
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoming Hou
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Rong Xiang
- 5 School of Medicine/Collaborative Innovation Center for Biotherapy, Nankai University , Tianjin, People's Republic of China
| | - Ping Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Effect of Endostar combined with angiopoietin-2 inhibitor on malignant pleural effusion in mice. Med Oncol 2014; 32:410. [DOI: 10.1007/s12032-014-0410-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
15
|
Lung cancer cells induce senescence and apoptosis of pleural mesothelial cells via transforming growth factor-beta1. Tumour Biol 2014; 36:2657-65. [PMID: 25433501 DOI: 10.1007/s13277-014-2888-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/06/2023] Open
Abstract
Pleural dissemination is commonly associated with metastatic advanced lung cancer. The injury of pleural mesothelial cells (PMCs) by soluble factors, such as transforming growth factor-beta1 (TGF-β1), is a major driver of lung cancer pleural dissemination (LCPD). In this study, we examine the effects of TGF-β1 on PMC injury and the ability of TGF-β1 inhibition to alleviate this effect both in vitro and in vivo. PMCs were co-cultured with the high TGF-β1-expressing lung cancer cell line A549 and with various TGF-β1 signaling inhibitors. Expression of cleaved-caspase 3, cleaved-caspase 9, p21, and p16 were evaluated by Western blot and immunofluorescent confocal imaging. Apoptosis was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltrazoliumbromide assay and AnnexinV-propidium iodide (PI) staining. PMC senescence was assessed by staining for senescence-associated β-galactosidase (SA-β-Gal). The ability of lung cancer cells (LCCs) to adhere to injured PMCs was investigated using an LCC-PMC adhesion assay. In our mouse model, PMC injury status was monitored by hematoxylin-eosin (H&E) and Masson's trichrome staining. LCCs expressing high levels of TGF-β1 induce apoptosis and senescence of PMCs in a co-culture system. Injured PMCs adhere to LCCs, which may further promote LCPD. Importantly, PMC monolayer injury could be reversed with TGF-β1 inhibitors. This was consistent with our in vivo data showing that the TGF-β1 inhibitor SB-431542 attenuated PMC barrier injury induced by A549 culture medium in our mouse model. Our study highlights the importance of TGF-β1 signaling in LCPD and establishes this signaling pathway as a potential therapeutic target in the disease.
Collapse
|
16
|
Zhang M, Bian ZG, Zhang Y, Wang JH, Kan L, Wang X, Niu HY, He P. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells. Mol Med Rep 2014; 10:2905-11. [PMID: 25242136 PMCID: PMC4227420 DOI: 10.3892/mmr.2014.2581] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/21/2014] [Indexed: 01/11/2023] Open
Abstract
Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Gang Bian
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jia-He Wang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Wang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hui-Yan Niu
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ping He
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|