1
|
Ravelonandro M, Briard P, Scorza R, Callahan A, Zagrai I, Kundu JK, Dardick C. Robust Response to Plum pox virus Infection via Plant Biotechnology. Genes (Basel) 2021; 12:genes12060816. [PMID: 34071769 PMCID: PMC8227089 DOI: 10.3390/genes12060816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Our goal was to target silencing of the Plum pox virus coat protein (PPV CP) gene independently expressed in plants. Clone C-2 is a transgenic plum expressing CP. We introduced and verified, in planta, the effects of the inverse repeat of CP sequence split by a hairpin (IRSH) that was characterized in the HoneySweet plum. The IRSH construct was driven by two CaMV35S promoter sequences flanking the CP sequence and had been introduced into C1738 plum. To determine if this structure was enough to induce silencing, cross-hybridization was made with the C1738 clone and the CP expressing but PPV-susceptible C2 clone. In total, 4 out of 63 clones were silenced. While introduction of the IRSH is reduced due to the heterozygous character in C1738 plum, the silencing induced by the IRSH PPV CP is robust. Extensive studies, in greenhouse containment, demonstrated that the genetic resource of C1738 clone can silence the CP production. In addition, these were verified through the virus transgene pyramiding in the BO70146 BlueByrd cv. plum that successfully produced resistant BlueByrd BO70146 × C1738 (HybC1738) hybrid plums.
Collapse
Affiliation(s)
- Michel Ravelonandro
- UMR-BFP-1332, INRAE-Bordeaux, Bordeaux-UniversityII, 71 Avenue Bourleaux, 33883 Villenave d’Ornon, France;
- Correspondence:
| | - Pascal Briard
- UMR-BFP-1332, INRAE-Bordeaux, Bordeaux-UniversityII, 71 Avenue Bourleaux, 33883 Villenave d’Ornon, France;
| | - Ralph Scorza
- USDA-ARS Fruit Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA; (R.S.); (A.C.); (C.D.)
| | - Ann Callahan
- USDA-ARS Fruit Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA; (R.S.); (A.C.); (C.D.)
| | - Ioan Zagrai
- Fruit Research and Development Station Bistrita, Drumul Dumitrei Nou street, 420127 Bistrita, Romania;
| | - Jiban K. Kundu
- Crop Research Institute, Drnovska 507/73, 161 06 Praha, Czech Republic;
| | - Chris Dardick
- USDA-ARS Fruit Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA; (R.S.); (A.C.); (C.D.)
| |
Collapse
|
2
|
Kesoju SR, Kramer M, Brunet J, Greene SL, Jordan A, Martin RC. Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence. PLoS One 2021; 16:e0248746. [PMID: 33765070 PMCID: PMC7993763 DOI: 10.1371/journal.pone.0248746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields on adventitious presence (AP) which represents the unwanted presence of a GE gene. Variables other than distance, however, may affect AP. In addition, some AP is often present in the parent seed lots used to establish conventional fields. To identify variables that influence the proportion of AP in conventional alfalfa fields, we performed variable selection regression analyses. Analyses based on a sample-level and a field-level analysis gave similar, though not identical results. For the sample-level model, distance from the GE field explained 66% of the variance in AP, confirming its importance in affecting AP. The area of GE fields within the pollinator foraging range explained an additional 30% of the variation in AP in the model. The density of alfalfa leafcutting bee domiciles influenced AP in both models. To minimize AP in conventional alfalfa seed fields, management practices should focus on optimizing isolation distances while also considering the size of the GE pollen pool within the pollinator foraging range, and the foraging behavior of pollinators.
Collapse
Affiliation(s)
- Sandya R. Kesoju
- Department of Agriculture, Columbia Basin College, Pasco, Washington, United States of America
| | - Matthew Kramer
- Statistics Group, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA, Agricultural Research Service, Madison, Wisconsin, United States of America
| | - Stephanie L. Greene
- Agricultural Genetic Resources Preservation Research Unit, USDA, Agricultural Research Service, Fort Collins, Colorado, United States of America
| | - Amelia Jordan
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington, United States of America
| | - Ruth C. Martin
- Forage Seed and Cereal Research, USDA, Agricultural Research Service, Corvallis, Oregon, United States of America
| |
Collapse
|
3
|
Zhang CJ, Yook MJ, Park HR, Lim SH, Kim JW, Song JS, Nah G, Song HR, Jo BH, Roh KH, Park S, Jang YS, Noua IS, Kim DS. Evaluation of maximum potential gene flow from herbicide resistant Brassica napus to its male sterile relatives under open and wind pollination conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:821-830. [PMID: 29653426 DOI: 10.1016/j.scitotenv.2018.03.390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated gene flow (PMGF) from genetically modified (GM) Brassica napus to its wild relatives by wind and insects is a major ecological concern in agricultural ecosystems. This study conducted is to estimate maximum potential gene flow and differentiate between wind- and bee-mediated gene flows from herbicide resistant (HR) B. napus to its closely-related male sterile (MS) relatives, B. napus, B. juncea and Raphanus sativus. Various markers, including pods formation in MS plants, herbicide resistance, and SSR markers, were used to identify the hybrids. Our results revealed the following: 1) maximum potential gene flow (a maximum % of the progeny of pollen recipient confirmed hybrid) to MS B. napus ranged from 32.48 to 0.30% and from 14.69 to 0.26% at 2-128 m from HR B. napus under open and wind pollination conditions, respectively, and to MS B. juncea ranged from 21.95 to 0.24% and from 6.16 to 0.16%, respectively; 2) estimates of honeybee-mediated gene flow decreased with increasing distance from HR B. napus and ranged from 17.78 to 0.03% at 2-128 m for MS B. napus and from 15.33 to 0.08% for MS B. juncea; 3) a small-scale donor plots would strongly favour insect over wind pollination; 4) no gene flow occurred from HR B. napus to MS R. sativus. Our approach and findings are helpful in understanding the relative contribution of wind and bees to gene flow and useful for estimating maximum potential gene flow and managing environmental risks associated with gene flow.
Collapse
Affiliation(s)
- Chuan-Jie Zhang
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jung Yook
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae-Rim Park
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hyun Lim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Won Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seok Song
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyoungju Nah
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae-Ryong Song
- Division of Conservation Ecology, Bureau of Ecological Conservation Research, National Institute of Ecology, Seocheon-gun, Choongnam 33657, Republic of Korea
| | - Beom-Ho Jo
- Division of Conservation Ecology, Bureau of Ecological Conservation Research, National Institute of Ecology, Seocheon-gun, Choongnam 33657, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Institute of Agricultural Academy, Rural Development Administration, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Suhyoung Park
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Jeonbuk 55365, Republic of Korea
| | - Young-Seok Jang
- Bioenery Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, Jeonnam 58545, Republic of Korea
| | - Ill-Sup Noua
- Department of Horticulture, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Do-Soon Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH. Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes. Front Bioeng Biotechnol 2018; 6:100. [PMID: 30123794 PMCID: PMC6085431 DOI: 10.3389/fbioe.2018.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
Genetic engineering (GE) has the potential to help meet demand for forest products and ecological services. However, high research and development costs, market restrictions, and regulatory obstacles to performing field tests have severely limited the extent and duration of field research. There is a notable paucity of field studies of flowering GE trees due to the time frame required and regulatory constraints. Here we summarize our findings from field testing over 3,300 GE poplar trees and 948 transformation events in a single, 3.6 hectare field trial for seven growing seasons; this trial appears to be the largest field-based scientific study of GE forest trees in the world. The goal was to assess a diversity of approaches for obtaining bisexual sterility by modifying RNA expression or protein function of floral regulatory genes, including LEAFY, AGAMOUS, APETALA1, SHORT VEGETATIVE PHASE, and FLOWERING LOCUS T. Two female and one male clone were transformed with up to 23 different genetic constructs designed to obtain sterile flowers or delay onset of flowering. To prevent gene flow by pollen and facilitate regulatory approval, the test genotypes chosen were incompatible with native poplars in the area. We monitored tree survival, growth, floral onset, floral abundance, pollen production, seed formation and seed viability. Tree survival was above 95%, and variation in site conditions generally had a larger impact on vegetative performance and onset of flowering than did genetic constructs. Floral traits, when modified, were stable over three to five flowering seasons, and we successfully identified RNAi or overexpression constructs that either postponed floral onset or led to sterile flowers. There was an absence of detectable somaclonal variation; no trees were identified that showed vegetative or floral modifications that did not appear to be related to the transgene added. Surveys for seedling and sucker establishment both within and around the plantation identified small numbers of vegetative shoots (root sprouts) but no seedlings, indicative of a lack of establishment of trees via seeds in the area. Overall, this long term study showed that GE containment traits can be obtained which are effective, stable, and not associated with vegetative abnormalities or somaclonal variation.
Collapse
Affiliation(s)
| | | | | | | | | | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
5
|
Yan S, Zhu W, Zhang B, Zhang X, Zhu J, Shi J, Wu P, Wu F, Li X, Zhang Q, Liu X. Pollen-mediated gene flow from transgenic cotton is constrained by physical isolation measures. Sci Rep 2018; 8:2862. [PMID: 29434358 PMCID: PMC5809611 DOI: 10.1038/s41598-018-21312-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/02/2018] [Indexed: 11/09/2022] Open
Abstract
The public concern about pollen-mediated gene flow (PGF) from genetically modified (GM) crops to non-GM crops heats up in recent years over China. In the current study, we conducted greenhouse and field experiments to measure PGF with various physical isolation measures, including 90, 80, 60 and 40 holes/cm2 separation nets and Sorghum bicolor, Zea mays and Lycopersicon esculentum separation crops between GM cotton and non-GM line (Shiyuan321) by seed DNA test during 2013 to 2015, and pollen grain dyeing was also conducted to assess the pollen flow in greenhouse during 2013. Our results revealed that (1) PGF varied depending on the physical isolation measures. PGF was the lowest with 90 holes/cm2 separation net and S. bicolor separation crop, and the highest with 40 holes/cm2 separation net and no isolation measure. (2) Similar to PGF results, 90 holes/cm2 separation net and S. bicolor separation crop could minimize the pollen dispersal. (3) PGF declined exponentially with increasing distance between GM cotton and Shiyuan321. Because of the production mode of farm household (limited cultivated area) in China, our study is particularly important, which is not only benefit for constraining PGF, but also has potential application value in practical production and the scientific researches.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,National Agricultural Technology Extension and Service Center, Beijing, 100125, P.R. China
| | - Weilong Zhu
- Liuzhou Agriculture Technology Extend Service Center, Liuzhou, 545002, P.R. China
| | - Boyu Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinmi Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, 36830, USA
| | - Jialin Zhu
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, 100026, P.R. China
| | - Jizhe Shi
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pengxiang Wu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Fengming Wu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China.
| |
Collapse
|
6
|
Hily J, Demanèche S, Poulicard N, Tannières M, Djennane S, Beuve M, Vigne E, Demangeat G, Komar V, Gertz C, Marmonier A, Hemmer C, Vigneron S, Marais A, Candresse T, Simonet P, Lemaire O. Metagenomic-based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:208-220. [PMID: 28544449 PMCID: PMC5785345 DOI: 10.1111/pbi.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root-associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.
Collapse
Affiliation(s)
| | - Sandrine Demanèche
- Laboratoire Ampère (CNRS UMR5005), Environmental Microbial GenomicsÉcole Centrale de LyonUniversité de LyonEcullyFrance
| | | | - Mélanie Tannières
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
- Present address:
European Biological Control LaboratoryUSDA‐ARSCampus International de Baillarguet CS 90013 Montferrier‐Sur‐Lez34988Saint Gely‐Du‐Fesc CedexFrance
| | | | - Monique Beuve
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
| | | | | | | | - Claude Gertz
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
| | | | | | | | - Armelle Marais
- UMR 1332 Biologie du Fruit et PathologieINRAUniversité de BordeauxVillenave d'Ornon CedexFrance
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et PathologieINRAUniversité de BordeauxVillenave d'Ornon CedexFrance
| | - Pascal Simonet
- Laboratoire Ampère (CNRS UMR5005), Environmental Microbial GenomicsÉcole Centrale de LyonUniversité de LyonEcullyFrance
| | | |
Collapse
|
7
|
Millwood R, Nageswara-Rao M, Ye R, Terry-Emert E, Johnson CR, Hanson M, Burris JN, Kwit C, Stewart CN. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnol 2017; 17:40. [PMID: 28464851 PMCID: PMC5414321 DOI: 10.1186/s12896-017-0363-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Switchgrass is C4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. RESULTS In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. CONCLUSIONS In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.
Collapse
Affiliation(s)
- Reginald Millwood
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Madhugiri Nageswara-Rao
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.,Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM, USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Ellie Terry-Emert
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Chelsea R Johnson
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Micaha Hanson
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Jason N Burris
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - Charles Kwit
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, 274 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Hallerman E, Grabau E. Crop biotechnology: a pivotal moment for global acceptance. Food Energy Secur 2016. [DOI: 10.1002/fes3.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Eric Hallerman
- Department of Fish and Wildlife Conservation Virginia Polytechnic Institute and State University Blacksburg Virginia 24061
| | - Elizabeth Grabau
- Department of Plant Pathology, Physiology and Weed Science Virginia Polytechnic Institute and State University Blacksburg Virginia 24061
| |
Collapse
|
9
|
Zhou D, Xu L, Gao S, Guo J, Luo J, You Q, Que Y. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season. FRONTIERS IN PLANT SCIENCE 2016; 7:265. [PMID: 27014291 PMCID: PMC4781841 DOI: 10.3389/fpls.2016.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/19/2016] [Indexed: 05/13/2023]
Abstract
Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes.
Collapse
|
10
|
Yan S, Zhu J, Zhu W, Li Z, Shelton AM, Luo J, Cui J, Zhang Q, Liu X. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Sci Rep 2015; 5:15917. [PMID: 26525573 PMCID: PMC4630633 DOI: 10.1038/srep15917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/05/2015] [Indexed: 11/27/2022] Open
Abstract
With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
- National Agricultural Technology Extension and Service Center, Beijing, 100125, P.R. China
| | - Jialin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
- Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, 100026, P.R. China
| | - Weilong Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Anthony M. Shelton
- Department of Entomology, Cornell University/New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, P.R. China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, P.R. China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
11
|
Ilardi V, Tavazza M. Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. FRONTIERS IN PLANT SCIENCE 2015; 6:379. [PMID: 26106397 PMCID: PMC4458569 DOI: 10.3389/fpls.2015.00379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants.
Collapse
Affiliation(s)
- Vincenza Ilardi
- Centro di Ricerca per la Patologia Vegetale, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Mario Tavazza
- UTAGRI Centro Ricerche Casaccia, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| |
Collapse
|