1
|
Yu L, Liu W, Zhang Y, Tan Q, Song J, Fan L, You X, Zhou M, Wang B, Chen W. Styrene and ethylbenzene exposure and type 2 diabetes mellitus: A longitudinal gene-environment interaction study. ECO-ENVIRONMENT & HEALTH 2024; 3:452-457. [PMID: 39559189 PMCID: PMC11570399 DOI: 10.1016/j.eehl.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 11/20/2024]
Abstract
Styrene and ethylbenzene (S/EB) are identified as hazardous air contaminants that raise significant concerns. The association between S/EB exposure and the incidence of type 2 diabetes mellitus (T2DM), and the interaction between genes and environment, remains poorly understood. Our study consisted of 2219 Chinese adults who were part of the Wuhan-Zhuhai cohort. A follow-up assessment was conducted after six years. Exposure to S/EB was quantified by determining the concentrations of urinary biomarkers of exposure to S/EB (UBE-S/EB; urinary phenylglyoxylic acid level plus urinary mandelic acid level). Logistic regression models were constructed to investigate the relations of UBE-S/EB and genetic risk score (GRS) with T2DM prevalence and incidence. The interaction effects of UBE-S/EB and GRS on T2DM were investigated on multiplicative and additive scales. UBE-S/EB was dose-dependently and positively related to T2DM prevalence and incidence. Participants with high levels of UBE-S/EB [relative risk (RR) = 1.930, 95% confidence interval (CI): 1.157-3.309] or GRS (1.943, 1.110-3.462) demonstrated the highest risk of incident T2DM, in comparison to those with low levels of UBE-S/EB or GRS. Significant additive interaction between UBE-S/EB and GRS on T2DM incidence was discovered with relative excess risk due to interaction (95% CI) of 0.178 (0.065-0.292). The RR (95% CI) of T2DM incidence was 2.602 (1.238-6.140) for individuals with high UBE-S/EB and high GRS, compared to those with low UBE-S/EB and low GRS. This study presented the initial evidence that S/EB exposure was significantly related to increased risk of T2DM incidence, and the relationship was interactively aggravated by genetic predisposition.
Collapse
Affiliation(s)
- Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongfang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Yu L, Wang B, Liu W, Xu T, Yang M, Wang X, Tan Q, Yang S, Fan L, Cheng M, Qiu W, Chen W. Cross-sectional and longitudinal associations of styrene and ethylbenzene exposure with heart rate variability alternation among urban adult population in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157231. [PMID: 35810908 DOI: 10.1016/j.scitotenv.2022.157231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Styrene and ethylbenzene (S/EB) are the monomers of polystyrene (PS) and polyethylene (PE), respectively, and have been identified as significant hazardous air pollutants by the U.S. Environmental Protection Agency. However, the adverse effects of S/EB on human health, especially cardiovascular health, have not been well established. Urinary biomarker of S/EB exposure and heart rate variability (HRV) were measured in urban adults from the Wuhan-Zhuhai cohort and were repeated after 3-year and 6-year follow-ups. Linear mixed models were used to estimate associations of S/EB exposure biomarker with HRV and longitudinal additional annual change of HRV. The mediating role of transforming growth factor (TGF)-β1 was tested by using mediation analysis. A total of 2842 general adults were included at baseline analysis, and 4748 observations were included in the repeated measurement study. In the cross-sectional analysis, each 1% increment in urinary S/EB exposure biomarker was significantly associated with a 0.106 % (95 % CI: -0.160, -0.052), 0.109 % (-0.169, -0.049), 0.099 % (-0.145, -0.053), 0.040 % (-0.060, -0.020), and 0.031 % (-0.054, -0.007) decrement in low frequency (LF), high frequency (HF), total power (TP), standard deviation of all normal-to-normal intervals (SDNN), and square root of the mean squared difference between adjacent normal-to-normal interval, respectively. Smoking status modified the relationships of urinary S/EB exposure biomarker with TP and SDNN. TGF-β1 mediated 3.09-5.16 % of the association between urinary S/EB biomarker and lower HRV. The follow-up analyses detected a negative association between urinary S/EB exposure biomarker and the additional annual change of LF (β: -0.016; 95 % CI: -0.028, -0.004), HF (-0.014; -0.026, -0.001), and TP (-0.011; -0.021, -0.001). Our findings demonstrated that S/EB exposure was associated with HRV reduction among the general urban adults and the TGF-β pathway may play a part of the mediating role in this association.
Collapse
Affiliation(s)
- Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Werder EJ, Sandler DP, Richardson DB, Emch ME, Kwok RK, Engel LS. Determinants of environmental styrene exposure in Gulf coast residents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:831-841. [PMID: 30546124 PMCID: PMC6763388 DOI: 10.1038/s41370-018-0098-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND In a previous study of exposure to oil-related chemicals in Gulf coast residents, we measured blood levels of volatile organic compounds. Levels of styrene were substantially elevated compared to a nationally representative sample. We sought to identify factors contributing to these levels, given the opportunities for styrene exposure in this community. METHODS We measured blood styrene levels in 667 Gulf coast residents and compared participants' levels of blood styrene to a nationally representative sample. We assessed personal and environmental predictors of blood styrene levels using linear regression and predicted the risk of elevated blood styrene (defined as above the National Health and Nutrition Examination Survey 95th percentile) using modified Poisson regression. We assessed exposure to styrene using questionnaire data on recent exposure opportunities and leveraged existing databases to assign ambient styrene exposure based on geocoded residential location. RESULTS These Gulf coast residents were 4-6 times as likely as the nationally representative sample to have elevated blood styrene levels. The change in styrene (log ng/mL) was 0.42 (95% CI: 0.34, 0.51) for smoking, 0.34 (0.09, 0.59) for time spent in vehicles and 1.10 (0.31, 1.89) for boats, and -0.41 (-0.73, -0.10) for fall/winter blood draws. Residential proximity to industrial styrene emissions did not predict blood styrene levels. Ambient styrene predicted elevated blood styrene in subgroups. CONCLUSIONS Personal predictors of increasing blood styrene levels included smoking, vehicle emissions, and housing characteristics. There was a suggestive association between ambient and blood styrene. Our measures of increased regional exposure opportunity do not fully explain the observed elevated blood styrene levels in this population.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David B Richardson
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Michael E Emch
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Sandler DP, White AJ. Airborne mammary carcinogens and breast cancer risk in the Sister Study. ENVIRONMENT INTERNATIONAL 2019; 130:104897. [PMID: 31226564 PMCID: PMC6679994 DOI: 10.1016/j.envint.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Potentially carcinogenic hazardous air pollutants (air toxics) have been inconsistently associated with breast cancer. Whether metabolic factors modify these associations is unknown. We studied 29 non-metallic air toxics classified as mammary gland carcinogens in animal studies in relation to breast cancer risk. METHODS Participants included 49,718 women from the Sister Study. Census tract air toxic concentration estimates from the 2005 National Air Toxics Assessment were linked to enrollment residential addresses. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for individual air toxics were estimated using Cox regression. Body mass index (BMI) was considered a potential modifier. Relevant mixtures were identified using classification trees. RESULTS Over follow-up (average = 8.4 years), 2975 women were newly diagnosed with breast cancer (invasive or ductal carcinoma in situ). Several air toxics, including methylene chloride, polycyclic organic matter, propylene dichloride, and styrene, were associated with increased risk. Of these, methylene chloride was most consistently associated with risk across multiple analyses. It was associated with overall (HRquintile 4vs1 = 1.21 (95%CI = 1.07-1.38)) and estrogen receptor positive (ER+) invasive breast cancer (HRquintile 4vs1 = 1.28 (95%CI = 1.08-1.52)) in individual pollutant models, although no dose-response was observed. Associations were stronger among overweight/obese (vs. non-overweight/obese) women (p < 0.05) for six air toxics. The classification tree identified combinations of age, methylene chloride, BMI, and four other toxics (propylene dichloride, ethylene dibromide, ethylidene dichloride, styrene) related to overall breast cancer. CONCLUSIONS Some non-metallic air toxics, particularly methylene chloride, were associated with the hazard for overall and ER+ breast cancer. Overweight/obese women may be particularly susceptible to air toxics.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America.
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| |
Collapse
|
5
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Taylor JA, White AJ, Sandler DP. Hazardous air pollutants and telomere length in the Sister Study. Environ Epidemiol 2019; 3:e053. [PMID: 32984752 PMCID: PMC7517667 DOI: 10.1097/ee9.0000000000000053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Telomeres are vital for genomic integrity and telomere length has been linked to many adverse health outcomes. Some hazardous air pollutants, or air toxics, increase oxidative stress and inflammation, two possible determinants of shortened telomere length. No studies have examined air toxic-telomere length associations in a non-occupational setting. METHODS This study included 731 Sister Study participants (enrolled 2003-2007) who were randomly selected to assess telomere length in baseline blood samples. Multiplex qPCR was used to determine telomere to single copy gene (T/S) ratios. Census tract concentration estimates of 29 air toxics from the 2005 National Air Toxics Assessment were linked to baseline residential addresses. Air toxics were classified into tertile-based categories of the exposure. Multivariable linear regression was used to estimate β coefficients and 95% confidence intervals (CI) in single pollutant models. Multipollutant groups were identified with regression trees. RESULTS The average T/S ratio was 1.24. Benzidine (T3vsT1 β= -0.08; 95% CI: -0.14, -0.01) and 1,4-dioxane (T3vsT1 β= -0.06; 95% CI: -0.13, 0.00) in particular, as well as carbon tetrachloride, chloroprene, ethylene dibromide, and propylene dichloride, were associated with shorter relative telomere length. Benzidine (p=0.02) and 1,4-dioxane (p=0.06) demonstrated some evidence of a monotonic trend. The regression tree identified age, BMI, physical activity, ethylene oxide, acrylonitrile, ethylidene dichloride, propylene dichloride, and styrene in multipollutant groups related to telomere length. CONCLUSIONS In this first study of air toxics and telomere length in a non-occupational setting, several air toxics, particularly 1,4-dioxane and benzidine, were associated with shorter relative telomere length.
Collapse
Affiliation(s)
- Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Hazel B. Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jack A. Taylor
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
6
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
7
|
Kobos L, Teimouri Sendesi SM, Whelton AJ, Boor BE, Howarter JA, Shannahan J. In vitro toxicity assessment of emitted materials collected during the manufacture of water pipe plastic linings. Inhal Toxicol 2019; 31:131-146. [PMID: 31187656 DOI: 10.1080/08958378.2019.1621966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damaged pipe. The CIPP process can release materials resulting in occupational and public health concerns. To understand hazards associated with CIPP-related emission exposures, an in vitro toxicity assessment was performed. Materials and Methods: Mouse alveolar epithelial and alveolar macrophage cell lines and condensates collected at 3 worksites utilizing styrene-based resins were utilized for evaluations. All condensate samples were normalized based on the major emission component, styrene. Further, a styrene-only exposure group was used as a control to determine mixture related toxicity. Results: Cytotoxicity differences were observed between worksite samples, with the CIPP worksite 4 sample inducing the most cell death. A proteomic evaluation was performed, which demonstrated styrene-, worksite-, and cell-specific alterations. This examination of protein expression changes determined potential biomarkers of exposure including transglutaminase 2, advillin, collagen type 1, perilipin-2, and others. Pathway analysis of exposure-induced proteomic alterations identified MYC and p53 to be regulators of cellular responses. Protein changes were also related to pathways involved in cell damage, immune response, and cancer. Conclusions: Together these findings demonstrate potential risks associated with the CIPP procedure as well as variations between worksites regarding emissions and toxicity. Our evaluation identified biological pathways that require a future evaluation and also demonstrates that exposure assessment of CIPP worksites should examine multiple chemical components beyond styrene, as many cellular responses were styrene-independent.
Collapse
Affiliation(s)
- Lisa Kobos
- a School of Health Sciences, College of Human and Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Seyedeh Mahboobeh Teimouri Sendesi
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - Andrew J Whelton
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - Brandon E Boor
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - John A Howarter
- c Division of Environmental and Ecological Engineering, and School of Materials Engineering, College of Engineering , Purdue University , West Lafayette , IN , USA
| | - Jonathan Shannahan
- a School of Health Sciences, College of Human and Health Sciences , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
8
|
Niaz K, Hassan FI, Mabqool F, Khan F, Momtaz S, Baeeri M, Navaei-Nigjeh M, Rahimifard M, Abdollahi M. Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:62-73. [PMID: 28688303 DOI: 10.1016/j.etap.2017.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Styrene is an aromatic hydrocarbon compound present in the environment and have primary exposure through plastic industry. The current study was designed to evaluate styrene-induced toxicity parameters in rat plasma fasting blood glucose (FBG) level, oral glucose tolerance, insulin secretion, oxidative stress, and inflammatory cytokines in cellular and molecular levels. Styrene was dissolved in corn oil and administered at different doses (250, 500, 1000, 1500, 2000mg/kg/day and control) to each rat, for 42days. In treated groups, styrene significantly increased fasting blood glucose, plasma insulin (p<0.001) and glucose tolerance. Glucose tolerance, insulin resistance and hyperglycemia were found to be the main consequences correlating gene expression of islet cells. Styrene caused a significant enhancement of oxidative stress markers (p<0.001) and inflammatory cytokines in a dose and concentration-dependent manner in plasma (p<0.001). Moreover, the activities of caspase-3 and -9 of the islet cells were significantly up-regulated by this compound at 1500 and 2000mg/kg/day styrene administrated groups (p<0.001). The relative fold change of GLUD1 was downregulated (p<0.05) and upregulated at 1500 and 2000mg/kg, respectively (p<0.01). The relative fold changes of GLUT2 were down regulated at 250 and 1000mg/kg and up regulated in 500, 1500 and 2000mg/kg doses of styrene (p<0.01). The expression level of GCK indicated a significant upregulation at 250mg/kg and downregulation of relative fold changes in the remaining doses of styrene, except for no change at 2000mg/kg of styrene for GCK. Targeting genes (GLUD1, GLUT2 and GCK) of the pancreatic islet cells in styrene exposed groups, disrupted gluconeogenesis, glycogenolysis pathways and insulin secretory functions. The present study illustrated that fasting blood glucose, insulin pathway, oxidative balance, inflammatory cytokines, cell viability and responsible genes of glucose metabolism are susceptible to styrene, which consequently lead to other abnormalities in various organs.
Collapse
Affiliation(s)
- Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Mabqool
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|