1
|
Li S, Zhang F, Wang G, Liu Q, Wang X, Chen Q, Chu D. Tau Isoform-Regulated Schwann Cell Proliferation and Migration Improve Peripheral Nerve Regeneration After Injury. Int J Mol Sci 2024; 25:12352. [PMID: 39596423 PMCID: PMC11594695 DOI: 10.3390/ijms252212352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Tau is a microtubule-associated protein that plays a vital role in the mammalian nervous system. Alternative splicing of the MAPT gene leads to the formation of tau isoforms with varying N-terminal inserts and microtubule-binding repeats. Dysregulation of tau alternative splicing has been linked to diseases in the central nervous system, but the roles of tau isoforms in the peripheral nervous system remain unclear. Here, we investigated the alternative splicing of tau exons 4A and 10 in the sciatic nerve and Schwann cells during development and following injury. We discovered that low-molecular-weight (LMW) tau, resulting from the exclusion of exon 4A, and 3R tau, generated by the exclusion of exon 10, diminishes with aging in rat sciatic nerve and Schwann cells. High-molecular-weight (HMW) tau and 3R tau increase in the adult sciatic nerve post-injury. We constructed viruses that expressed HMW-4R, LMW-4R, HMW-3R, and LMW-3R and introduced them into cultured cells or the distal part of the injured sciatic nerve to assess their effects on Schwann cell migration and proliferation. We also examined the effects of the four isoforms on axon growth and debris clearance after sciatic nerve injury. Our results demonstrated that tau isoforms inhibit Schwann cell proliferation while promoting Schwann cell migration and sciatic nerve regeneration. Specifically, the 3R-tau isoforms were more effective than the 4R-tau isoforms in promoting nerve regeneration. In conclusion, our study reveals the roles of tau isoforms in the peripheral nervous system and provides insights into the development of new therapeutic strategies for peripheral nerve injuries.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Fuqian Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Guifang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (S.L.); (F.Z.); (G.W.); (Q.L.); (X.W.)
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
3
|
Yazdanpanah Moghadam E, Sonenberg N, Packirisamy M. Microfluidic Wound-Healing Assay for Comparative Study on Fluid Dynamic, Chemical and Mechanical Wounding on Microglia BV2 Migration. MICROMACHINES 2024; 15:1004. [PMID: 39203655 PMCID: PMC11356282 DOI: 10.3390/mi15081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Microglial cells, or brain immune cells, are highly dynamic and continuously migrate in pathophysiological conditions. Their adhesion, as a physical characteristic, plays a key role in migration. In this study, we presented a microfluidic chip combination of two assays: a microglial BV2 adhesion assay and a wound-healing migration assay. The chip could create the cell-free area (wound) under chemical stimuli with trypsin (chemical assay) and also mechanical stimuli with the PBS flow (mechanical assay). The microfluidic chip functioned as the cell adhesion assay during wounding, when the cell adhesion of microglia BV2 cells was characterized by the cell removal time under various shear stress ranges. The cell detachment pattern on the glass substrate was found under physiological conditions. After wounding, the chip operated as a migration assay; it was shown that cell migration in the cell-free area generated chemically with trypsin was highly improved compared to mechanical cell-free area creations with PBS flow and the scratch assay. Our findings indicated that the increase in inlet flow rate in the mechanical assay led to a reduced experiment time and mechanical force on the cells, which could improve cell migration. Furthermore, the study on the effect of the device geometry showed that the increased channel width had an inhibitory effect on cell migration. The bi-functional chip offers an opportunity for the development of new models for a better understanding of cellular adhesion and migration in in vitro microenvironments.
Collapse
Affiliation(s)
- Ehsan Yazdanpanah Moghadam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3G 1Y62, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3G 1Y62, Canada;
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
4
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 294] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
5
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Yazdanpanah Moghadam E, Sonenberg N, Packirisamy M. Microfluidic Wound-Healing Assay for ECM and Microenvironment Properties on Microglia BV2 Cells Migration. BIOSENSORS 2023; 13:290. [PMID: 36832056 PMCID: PMC9954450 DOI: 10.3390/bios13020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Microglia cells, as the resident immune cells of the central nervous system (CNS), are highly motile and migratory in development and pathophysiological conditions. During their migration, microglia cells interact with their surroundings based on the various physical and chemical properties in the brain. Herein, a microfluidic wound-healing chip is developed to investigate microglial BV2 cell migration on the substrates coated with extracellular matrixes (ECMs) and substrates usually used for bio-applications on cell migration. In order to generate the cell-free space (wound), gravity was utilized as a driving force to flow the trypsin with the device. It was shown that, despite the scratch assay, the cell-free area was created without removing the extracellular matrix coating (fibronectin) using the microfluidic assay. It was found that the substrates coated with Poly-L-Lysine (PLL) and gelatin stimulated microglial BV2 migration, while collagen and fibronectin coatings had an inhibitory effect compared to the control conditions (uncoated glass substrate). In addition, the results showed that the polystyrene substrate induced higher cell migration than the PDMS and glass substrates. The microfluidic migration assay provides an in vitro microenvironment closer to in vivo conditions for further understanding the microglia migration mechanism in the brain, where the environment properties change under homeostatic and pathological conditions.
Collapse
Affiliation(s)
- Ehsan Yazdanpanah Moghadam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
7
|
Preclinical validation of a novel oral Edaravone formulation for treatment of frontotemporal dementia. Neurotox Res 2021; 39:1689-1707. [PMID: 34599751 DOI: 10.1007/s12640-021-00405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Oxidative stress is a key factor in the pathogenesis of several neurodegenerative disorders and is involved in the accumulation of amyloid beta plaques and Tau inclusions. Edaravone (EDR) is a free radical scavenger that is approved for motor neuron disease and acute ischemic stroke. EDR alleviates pathologies and cognitive impairment of AD via targeting multiple key pathways in transgenic mice. Herein, we aimed to study the effect of EDR on Tau pathology in P301L mice; an animal model of frontotemporal dementia (FTD), at two age time points representing the early and late stages of the disease. A novel EDR formulation was utilized in the study and the drug was delivered orally in drinking water for 3 months. Then, behavioral tests were conducted followed by animal sacrifice and brain dissection. Treatment with EDR improved the reference memory and accuracy in the probe trial as evaluated in Morris water maze, as well as novel object recognition and significantly alleviated motor deficits in these mice. EDR also reduced the levels of 4-hydroxy-2-nonenal and 3-nitrotyrosine adducts. In addition, immunohistochemistry showed that EDR reduced tau phosphorylation and neuroinflammation and partially rescued neurons against oxidative neurotoxicity. Moreover, EDR attenuated downstream pathologies involved in Tau hyperphosphorylation. These results suggest that EDR may be a potential therapeutic agent for the treatment of FTD.
Collapse
|
8
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
10
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Zhao J, Zeng Y, Wang Y, Shi J, Zhao W, Wu B, Du H. Humanin protects cortical neurons from calyculin A-induced neurotoxicities by increasing PP2A activity and SOD. Int J Neurosci 2020; 131:527-535. [PMID: 32408779 DOI: 10.1080/00207454.2020.1769617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Humanin (HN) is an extensive neuroprotective peptide. This study aims to investigate the neuroprotective effects of HN on Calyculin A (CA)-induced neurotoxicities in cortical neurons and the underlying mechanism. METHODS CA was added into the cultured cortical neurons to induce neurotoxicity. Cortical neurons were preincubated with HN which plays a protective role. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and Calcein-AM were applied to evaluate the neural insults. Caspase 3 signal and Tunnel were performed to test neural apoptosis. Western blot analysis was used to detect the expressions of phosphorylated tau. The corresponding kits were used to measure the contents of malondialdehyde (MDA) and superoxide dismutase (SOD), and the activity of PP2A, respectively. RESULTS HN preincubation preserved cell viability, protected the neurons, alleviated oxidative stress, and reserved PP2A activity. It also blocked tau overphosphorylation at Ser199/202, Ser396, and Thr231 sites and protected neurons against CA-induced insults. CONCLUSION These results suggest that HN may serve as a potential therapeutic agent to prevent the pathological changes induced by CA via modulating the activity of PP2A and oxidative stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinfeng Zhao
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yu Zeng
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Yaxin Wang
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Junzhen Shi
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Wenhui Zhao
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, China
| | - Baoai Wu
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Huizhi Du
- Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype. Sci Rep 2020; 10:2924. [PMID: 32076055 PMCID: PMC7031423 DOI: 10.1038/s41598-020-59869-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease with a multitude of contributing genetic factors, many of which are related to inflammation. The apolipoprotein E (APOE) ε4 allele is the most common genetic risk factor for AD and is related to a pro-inflammatory state. To test the hypothesis that microglia and AD-implicated cytokines were differentially associated with AD pathology based on the presence of APOE ε4, we examined the dorsolateral frontal cortex from deceased participants within a community-based aging cohort (n = 154). Cellular density of Iba1, a marker of microglia, was positively associated with tau pathology only in APOE ε4 positive participants (p = 0.001). The cytokines IL-10, IL-13, IL-4, and IL-1α were negatively associated with tau pathology, independent of Aβ1–42 levels, only in APOE ε4 negative participants. Overall, the association of mostly anti-inflammatory cytokines with less tau pathology suggests a protective effect in APOE ε4 negative participants. These associations are largely absent in the presence of APOE ε4 where tau pathology was significantly associated with increased microglial cell density. Taken together, these results suggest that APOE ε4 mediates an altered inflammatory response and increased tau pathology independent of Aβ1–42 pathology.
Collapse
|
13
|
Lahiani-Cohen I, Touloumi O, Lagoudaki R, Grigoriadis N, Rosenmann H. Exposure to 3-Nitropropionic Acid Mitochondrial Toxin Induces Tau Pathology in Tangle-Mouse Model and in Wild Type-Mice. Front Cell Dev Biol 2020; 7:321. [PMID: 32010684 PMCID: PMC6971403 DOI: 10.3389/fcell.2019.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress, particularly of mitochondrial origin, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer’s disease (AD) and other tauopathies. Controversies regarding the responses of tau phosphorylation state to various stimuli causing oxidative stress have been reported. Here we investigated the effect of 3-nitropropionic acid (3NP), a mitochondrial toxin which induces oxidative stress, on the tangle-pathology in our previously generated double mutant (E257T/P301S, DM) -Tau-tg mice and in WT-mice. We detected an increase in tangle pathology in the hippocampus and cortex of the DM-Tau-tg mice following exposure of the mice to the toxin, as well as generation of tangles in WT-mice. This increase was accompanied with alterations in the level of the glycogen synthase kinase 3β (GSK3β), the kinase which phosphorylates the tau protein, and in the phosphorylation state of this kinase. A response of microglial cells was noticed. These results point to the involvement of mitochondrial dysfunction in the development of the tangle-pathology and may suggest that interfering with mitochondrial dysfunction may have an anti-tangle therapeutic potential.
Collapse
Affiliation(s)
- Inbal Lahiani-Cohen
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
Das R, Balmik AA, Chinnathambi S. Phagocytosis of full-length Tau oligomers by Actin-remodeling of activated microglia. J Neuroinflammation 2020; 17:10. [PMID: 31915009 PMCID: PMC6950897 DOI: 10.1186/s12974-019-1694-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease is associated with the accumulation of intracellular Tau tangles within neurons and extracellular amyloid-β plaques in the brain parenchyma, which altogether results in synaptic loss and neurodegeneration. Extracellular concentrations of oligomers and aggregated proteins initiate microglial activation and convert their state of synaptic surveillance into a destructive inflammatory state. Although Tau oligomers have fleeting nature, they were shown to mediate neurotoxicity and microglial pro-inflammation. Due to the instability of oligomers, in vitro experiments become challenging, and hence, the stability of the full-length Tau oligomers is a major concern. METHODS In this study, we have prepared and stabilized hTau40WT oligomers, which were purified by size-exclusion chromatography. The formation of the oligomers was confirmed by western blot, thioflavin-S, 8-anilinonaphthaalene-1-sulfonic acid fluorescence, and circular dichroism spectroscopy, which determine the intermolecular cross-β sheet structure and hydrophobicity. The efficiency of N9 microglial cells to phagocytose hTau40WT oligomer and subsequent microglial activation was studied by immunofluorescence microscopy with apotome. The one-way ANOVA was performed for the statistical analysis of fluorometric assay and microscopic analysis. RESULTS Full-length Tau oligomers were detected in heterogeneous globular structures ranging from 5 to 50 nm as observed by high-resolution transmission electron microscopy, which was further characterized by oligomer-specific A11 antibody. Immunocytochemistry studies for oligomer treatment were evidenced with A11+ Iba1high microglia, suggesting that the phagocytosis of extracellular Tau oligomers leads to microglial activation. Also, the microglia were observed with remodeled filopodia-like actin structures upon the exposure of oligomers and aggregated Tau. CONCLUSION The peri-membrane polymerization of actin filament and co-localization of Iba1 relate to the microglial movements for phagocytosis. Here, these findings suggest that microglia modified actin cytoskeleton for phagocytosis and rapid clearance of Tau oligomers in Alzheimer's disease condition.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
15
|
Bortolotti D, Gentili V, Rotola A, Caselli E, Rizzo R. HHV-6A infection induces amyloid-beta expression and activation of microglial cells. ALZHEIMERS RESEARCH & THERAPY 2019; 11:104. [PMID: 31831060 PMCID: PMC6909659 DOI: 10.1186/s13195-019-0552-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND The control of viral infections in the brain involves the activation of microglial cells, the macrophages of the brain that are constantly surveying the central nervous system, and the production of amyloid-beta (Aβ) as an anti-microbial molecule. Recent findings suggest a possible implication of HHV-6A in AD. We evaluated the effect of HHV-6A infection on microglial cell expression Aβ and the activation status, determined by TREM2, ApoE, cytokines, and tau expression. METHODS We have infected microglial cells (HMC3, ATCC®CRL-3304), in monolayer and human peripheral blood monocyte-derived microglia (PBM-microglia) spheroid 3D model, with HHV-6A (strain U1102) cell-free virus inocula with 100 genome equivalents per 1 cell. We collected the cells 1, 3, 7, and 14 days post-infection (d.p.i.) and analyzed them for viral DNA and RNA, ApoE, Aβ (1-40, 1-42), tau, and phospho-tau (Threonine 181) by real-time immunofluorescence and cytokines by immunoenzymatic assay. RESULTS We observed a productive infection by HHV-6A. The expression of Aβ 1-42 increased from 3 d.p.i., while no significant induction was observed for Aβ 1-40. The HHV-6A infection induced the activation (TREM2, IL-1beta, ApoE) and migration of microglial cells. The secretion of tau started from 7 d.p.i., with an increasing percentage of the phosphorylated form. CONCLUSIONS In conclusion, microglial cells are permissive to HHV-6A infection that induces the expression of Aβ and an activation status. Meanwhile, we hypothesize a paracrine effect of HHV-6A infection that activates and induces microglia migration to the site of infection.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Antonella Rotola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
16
|
Glaucocalyxin A as a natural product increases amyloid β clearance and decreases tau phosphorylation involving the mammalian target of rapamycin signaling pathway. Neuroreport 2019; 30:310-316. [PMID: 30688759 DOI: 10.1097/wnr.0000000000001202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder correlated with age, characterized by the accumulation of amyloid β (Aβ) plaques and neurofibrillary tangles. The mammalian target of rapamycin (mTOR) is an important protein that regulates Aβ clearance and tau phosphorylation. Therefore, mTOR has become a pivotal therapeutic target for AD treatment. In this study, we discovered a natural product, glaucocalyxin A (GLA), as a new mTOR inhibitor based on a high-throughput screening platform with α-screen technology against our natural product library. Further study showed that GLA increased Aβ clearance involving the protein kinase B/mTOR/autophagy signaling pathway and inhibited tau phosphorylation involving the mTOR/70-kDa ribosomal protein S6 kinase pathway, which highlighted the therapeutic potential of GLA for the AD treatment.
Collapse
|
17
|
Kisby B, Jarrell JT, Agar ME, Cohen DS, Rosin ER, Cahill CM, Rogers JT, Huang X. Alzheimer's Disease and Its Potential Alternative Therapeutics. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2019; 9. [PMID: 31588368 PMCID: PMC6777730 DOI: 10.4172/2161-0460.1000477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that affects over 5 million individuals in the United States alone. Currently, there are only two kinds of pharmacological interventions available for symptomatic relief of AD; Acetyl Cholinesterase Inhibitors (AChEI) and N-methyl-D-aspartic Acid (NMDA) receptor antagonists and these drugs do not slow down or stop the progression of the disease. Several molecular targets have been implicated in the pathophysiology of AD, such as the tau (τ) protein, Amyloid-beta (Aβ), the Amyloid Precursor Protein (APP) and more and several responses have also been observed in the advancement of the disease, such as reduced neurogenesis, neuroinflammation, oxidative stress and iron overload. In this review, we discuss general features of AD and several small molecules across different experimental AD drug classes that have been studied for their effects in the context of the molecular targets and responses associated with the AD progression. These drugs include: Paroxetine, Desferrioxamine (DFO), N-acetylcysteine (NAC), Posiphen/-(−)Phenserine, JTR-009, Carvedilol, LY450139, Intravenous immunoglobulin G 10%, Indomethacin and Lithium Carbonate (Li2CO3).
Collapse
Affiliation(s)
- Brent Kisby
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - M Enes Agar
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
18
|
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 2019; 10:1008. [PMID: 31572186 PMCID: PMC6751310 DOI: 10.3389/fphar.2019.01008] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases share the fact that they derive from altered proteins that undergo an unfolding process followed by formation of β-structures and a pathological tendency to self-aggregate in neuronal cells. This is a characteristic of tau protein in Alzheimer’s disease and several tauopathies associated with tau unfolding, α-synuclein in Parkinson’s disease, and huntingtin in Huntington disease. Usually, the self-aggregation products are toxic to these cells, and toxicity spreads all over different brain areas. We have postulated that these protein unfolding events are the molecular alterations that trigger several neurodegenerative disorders. Most interestingly, these events occur as a result of neuroinflammatory cascades involving alterations in the cross-talks between glial cells and neurons as a consequence of the activation of microglia and astrocytes. The model we have hypothesized for Alzheimer’s disease involves damage signals that promote glial activation, followed by nuclear factor NF-kβ activation, synthesis, and release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 that affect neuronal receptors with an overactivation of protein kinases. These patterns of pathological events can be applied to several neurodegenerative disorders. In this context, the involvement of innate immunity seems to be a major paradigm in the pathogenesis of these diseases. This is an important element for the search for potential therapeutic approaches for all these brain disorders.
Collapse
Affiliation(s)
- Leonardo Guzman-Martinez
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Patricio Navarrete
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - María Gabriela Pastor
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nicolas Ramos-Escobar
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
19
|
Vogels T, Murgoci AN, Hromádka T. Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Commun 2019; 7:109. [PMID: 31277708 PMCID: PMC6612163 DOI: 10.1186/s40478-019-0754-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tauopathies are a heterogenous class of diseases characterized by cellular accumulation of aggregated tau and include diseases such as Alzheimer’s disease (AD), progressive supranuclear palsy and chronic traumatic encephalopathy. Tau pathology is strongly linked to neurodegeneration and clinical symptoms in tauopathy patients. Furthermore, synapse loss is an early pathological event in tauopathies and is the strongest correlate of cognitive decline. Tau pathology is additionally associated with chronic neuroinflammatory processes, such as reactive microglia, astrocytes, and increased levels of pro-inflammatory molecules (e.g. complement proteins, cytokines). Recent studies show that as the principal immune cells of the brain, microglia play a particularly important role in the initiation and progression of tau pathology and associated neurodegeneration. Furthermore, AD risk genes such as Triggering receptor expressed on myeloid cells 2 (TREM2) and Apolipoprotein E (APOE) are enriched in the innate immune system and modulate the neuroinflammatory response of microglia to tau pathology. Microglia can play an active role in synaptic dysfunction by abnormally phagocytosing synaptic compartments of neurons with tau pathology. Furthermore, microglia are involved in synaptic spreading of tau – a process which is thought to underlie the progressive nature of tau pathology propagation through the brain. Spreading of pathological tau is also the predominant target for tau-based immunotherapy. Active tau vaccines, therapeutic tau antibodies and other approaches targeting the immune system are actively explored as treatment options for AD and other tauopathies. This review describes the role of microglia in the pathobiology of tauopathies and the mechanism of action of potential therapeutics targeting the immune system in tauopathies.
Collapse
|
20
|
Abstract
Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer's disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Activation of microglia associated with lentiviral transduction: A semiautomated method of assessment. Acta Histochem 2019; 121:368-375. [PMID: 30771905 DOI: 10.1016/j.acthis.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/24/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023]
Abstract
Lentiviral transduction is a powerful tool and widely used in neuroscience research to manipulate gene expression of cells. However, the injection of lentiviral vectors in the brain is not totally benign, it potentially induces focal neuroinflammation. Upon inflammation, microglial cells get activated and can induce major changes in tissue environment, which may interfere with experimental results. In the current study, two weeks after the injection of control viral construction in the dentate gyrus (DG) of rats, an activation of microglia was detected. To access the activation status, we used a fast and accurate method of phenotype detection - measurement of fractal dimension (FD). Microglial morphology is a key indicator of neuroinflammation, therefore FD of microglial cells may serve as a reliable index of inflammation status in the brain. Here we present a detailed description of image processing procedure of images of individual microglial cells. The method allows to preserve the complex structure of microglial cells and their thin processes on the output image, which is important for accurate FD assessment.
Collapse
|
22
|
Breuzard G, Pagano A, Bastonero S, Malesinski S, Parat F, Barbier P, Peyrot V, Kovacic H. Tau regulates the microtubule-dependent migration of glioblastoma cells via the Rho-ROCK signaling pathway. J Cell Sci 2019; 132:jcs.222851. [PMID: 30659115 DOI: 10.1242/jcs.222851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/08/2019] [Indexed: 12/24/2022] Open
Abstract
The pathological significance of Tau (encoded by MAPT) in mechanisms driving cell migration in glioblastoma is unclear. By using an shRNA approach to deplete microtubule-stabilizing Tau in U87 cells, we determined its impact on cytoskeletal coordination during migration. We demonstrated here that the motility of these Tau-knockdown cells (shTau cells) was significantly (36%) lower than that of control cells. The shTau cells displayed a slightly changed motility in the presence of nocodazole, which inhibits microtubule formation. Such reduced motility of shTau cells was characterized by a 28% lower number of microtubule bundles at the non-adhesive edges of the tails. In accordance with Tau-stabilized microtubules being required for cell movement, measurements of the front, body and rear section displacements of cells showed inefficient tail retraction in shTau cells. The tail retraction was restored by treatment with Y27632, an inhibitor of Rho-ROCK signaling. Moreover, we clearly identified that shTau cells displayed relocation of the active phosphorylated form of p190-RhoGAP (also known as ARHGAP35), which inhibits Rho-ROCK signaling, and focal adhesion kinase (FAK, also known as PTK2) in cell bodies. In conclusion, our findings indicate that Tau governs the remodeling of microtubule and actin networks for the retraction of the tail of cells, which is necessary for effective migration.
Collapse
Affiliation(s)
- Gilles Breuzard
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Alessandra Pagano
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Sonia Bastonero
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Soazig Malesinski
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Fabrice Parat
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Pascale Barbier
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Vincent Peyrot
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| | - Hervé Kovacic
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), 13385 Marseille, France
| |
Collapse
|
23
|
Katsumoto A, Takeuchi H, Takahashi K, Tanaka F. Microglia in Alzheimer's Disease: Risk Factors and Inflammation. Front Neurol 2018; 9:978. [PMID: 30498474 PMCID: PMC6249341 DOI: 10.3389/fneur.2018.00978] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that originate from myeloid progenitor cells in the embryonic yolk sac and are maintained independently of circulating monocytes throughout life. In the healthy state, microglia are highly dynamic and control the environment by rapidly extending and retracting their processes. When the CNS is inflamed, microglia can give rise to macrophages, but the regulatory mechanisms underlying this process have not been fully elucidated. Recent genetic studies have suggested that microglial function is compromised in Alzheimer's disease (AD), and that environmental factors such as diet and brain injury also affect microglial activation. In addition, studies of triggering receptor expressed on myeloid cells 2-deficiency in AD mice revealed heterogeneous microglial reactions at different disease stages, complicating the therapeutic strategy for AD. In this paper, we describe the relationship between genetic and environmental risk factors and the roles of microglia in AD pathogenesis, based on studies performed in human patients and animal models. We also discuss the mechanisms of inflammasomes and neurotransmitters in microglia, which accelerate the development of amyloid-β and tau pathology.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies? Biomed J 2018; 41:21-33. [PMID: 29673549 PMCID: PMC6138617 DOI: 10.1016/j.bj.2018.01.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder and the most common type of dementia (60–80% of cases). In 2016, nearly 44 million people were affected by AD or related dementia. AD is characterized by progressive neuronal damages leading to subtle and latter obvious decline in cognitive functions including symptoms such as memory loss or confusion, which ultimately require full-time medical care. Its neuropathology is defined by the extracellular accumulation of amyloid-β (Aβ) peptide into amyloid plaques, and intraneuronal neurofibrillary tangles (NFT) consisting of aggregated hyper- and abnormal phosphorylation of tau protein. The latter, identified also as Tau pathology, is observed in a broad spectrum of neurological diseases commonly referred to as “Tauopathies”. Besides these lesions, sustained neuroinflammatory processes occur, involving notably micro- and astro-glial activation, which contribute to disease progression. Recent findings from genome wide association studies further support an instrumental role of neuroinflammation. While the interconnections existing between this innate immune response and the amyloid pathogenesis are widely characterized and described as complex, elaborated and evolving, only few studies focused on Tau pathology. An adaptive immune response takes place conjointly during the disease course, as indicated by the presence of vascular and parenchymal T-cell in AD patients' brain. The underlying mechanisms of this infiltration and its consequences with regards to Tau pathology remain understudied so far. In the present review, we highlight the interplays existing between Tau pathology and the innate/adaptive immune responses.
Collapse
|
25
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
26
|
Ma RH, Zhang Y, Hong XY, Zhang JF, Wang JZ, Liu GP. Role of microtubule-associated protein tau phosphorylation in Alzheimer's disease. ACTA ACUST UNITED AC 2017; 37:307-312. [PMID: 28585125 DOI: 10.1007/s11596-017-1732-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Indexed: 12/16/2022]
Abstract
As a major microtubule-associated protein, tau plays an important role in promoting microtubule assembly and stabilizing microtubules. In Alzheimer's disease (AD) and other tauopathies, the abnormally hyperphosphorylated tau proteins are aggregated into paired helical filaments and accumulated in the neurons with the form of neurofibrillary tangles. An imbalanced regulation in protein kinases and protein phosphatases is the direct cause of tau hyperphosphorylation. Among various kinases and phosphatases, glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) are the most implicated. Accumulation of the hyperphosphorylated tau induces synaptic toxicity and cognitive impairments. Here, we review the upstream factors or pathways that can regulate GSK-3β or PP2A activity mainly based on our recent findings. We will also discuss the mechanisms that may underlie tau-induced synaptic toxicity.
Collapse
Affiliation(s)
- Rong-Hong Ma
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Key Laboratory of Hubei Province for Neurological Disorders, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Yue Hong
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-Fei Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
28
|
Torres-Cruz FM, Rodríguez-Cruz F, Escobar-Herrera J, Barragán-Andrade N, Basurto-Islas G, Ripova D, Ávila J, Garcia-Sierra F. Expression of Tau Produces Aberrant Plasma Membrane Blebbing in Glial Cells Through RhoA-ROCK-Dependent F-Actin Remodeling. J Alzheimers Dis 2016; 52:463-82. [DOI: 10.3233/jad-150396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francisco M. Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Norma Barragán-Andrade
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Daniela Ripova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Spain
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
29
|
Zheng C, Zhou XW, Wang JZ. The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 2016; 5:7. [PMID: 27054030 PMCID: PMC4822284 DOI: 10.1186/s40035-016-0054-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/29/2016] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although the mechanisms underlying AD neurodegeneration are not fully understood, it is well recognized that inflammation plays a crucial role in the initiation and/or deterioration of AD neurodegeneration. Increasing evidence suggests that different cytokines, including interleukins, TNF-α, TGF-β and IFN-γ, are actively participated in AD pathogenesis and may serve as diagnostic or therapeutic targets for AD neurodegeneration. Here, we review the progress in understanding the important role that these cytokines or neuroinflammation has played in AD etiology and pathogenesis.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xin-Wen Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ; Co-innovation Center of Neuroregeneration, Nantong, 226000 China
| |
Collapse
|
30
|
Yan X, Nykänen NP, Brunello CA, Haapasalo A, Hiltunen M, Uronen RL, Huttunen HJ. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci 2016; 129:2003-15. [PMID: 27044754 DOI: 10.1242/jcs.180745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/24/2016] [Indexed: 11/20/2022] Open
Abstract
One of the defining pathological features of Alzheimer's disease is the intraneuronal accumulation of tau (also known as MAPT) protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of Alzheimer's disease patients. Tau pathology might spread from cell to cell through a mechanism involving secretion and uptake. Here, we developed an assay to follow cellular release and uptake of tau dimers. Individual silencing of ten common late-onset Alzheimer's disease risk genes in HEK293T cells expressing the tau reporters suggested that FRMD4A is functionally linked to tau secretion. FRMD4A depletion by using RNA interference (RNAi) reduced and overexpression increased tau secretion. The activity of cytohesins, interactors of FRMD4A and guanine-nucleotide-exchange factors of Arf6, was necessary for FRMD4A-induced tau secretion. Increased Arf6 and cell polarity signaling through Par6 and atypical protein kinase Cζ (aPKCζ) stimulated tau secretion. In mature cortical neurons, FRMD4A RNAi or inhibition of cytohesins strongly upregulated secretion of endogenous tau. These results suggest that FRMD4A, a genetic risk factor for late-onset Alzheimer's disease, regulates tau secretion by activating cytohesin-Arf6 signaling. We conclude that genetic risk factors of Alzheimer's disease might modulate disease progression by altering tau secretion.
Collapse
Affiliation(s)
- Xu Yan
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Annakaisa Haapasalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70029 Kuopio, Finland Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70029 Kuopio, Finland Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
31
|
Kahlson MA, Colodner KJ. Glial Tau Pathology in Tauopathies: Functional Consequences. J Exp Neurosci 2016; 9:43-50. [PMID: 26884683 PMCID: PMC4750898 DOI: 10.4137/jen.s25515] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Martha A Kahlson
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| | - Kenneth J Colodner
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| |
Collapse
|
32
|
Tau Hyperphosphorylation and Oxidative Stress, a Critical Vicious Circle in Neurodegenerative Tauopathies? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:151979. [PMID: 26576216 PMCID: PMC4630413 DOI: 10.1155/2015/151979] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/08/2015] [Indexed: 12/14/2022]
Abstract
Hyperphosphorylation and aggregation of the microtubule-associated protein tau in brain, are pathological hallmarks of a large family of neurodegenerative disorders, named tauopathies, which include Alzheimer's disease. It has been shown that increased phosphorylation of tau destabilizes tau-microtubule interactions, leading to microtubule instability, transport defects along microtubules, and ultimately neuronal death. However, although mutations of the MAPT gene have been detected in familial early-onset tauopathies, causative events in the more frequent sporadic late-onset forms and relationships between tau hyperphosphorylation and neurodegeneration remain largely elusive. Oxidative stress is a further pathological hallmark of tauopathies, but its precise role in the disease process is poorly understood. Another open question is the source of reactive oxygen species, which induce oxidative stress in brain neurons. Mitochondria have been classically viewed as a major source for oxidative stress, but microglial cells were recently identified as reactive oxygen species producers in tauopathies. Here we review the complex relationships between tau pathology and oxidative stress, placing emphasis on (i) tau protein function, (ii) origin and consequences of reactive oxygen species production, and (iii) links between tau phosphorylation and oxidative stress. Further, we go on to discuss the hypothesis that tau hyperphosphorylation and oxidative stress are two key components of a vicious circle, crucial in neurodegenerative tauopathies.
Collapse
|
33
|
Affiliation(s)
- Tetsuya Mizuno
- Department of Neuroimmunology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
34
|
van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CKX, Ong WY, Hodges JR, Sutherland GT, Kril JJ, Abramowski D, Staufenbiel M, Halliday GM, Ittner LM. Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2015; 41:906-25. [DOI: 10.1111/nan.12233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Janet van Eersel
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Claire H. Stevens
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Magdalena Przybyla
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Amadeus Gladbach
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Kristie Stefanoska
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Chesed Kai-Xin Chan
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Wei-Yi Ong
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - John R. Hodges
- Neuroscience Research Australia; Sydney Australia
- Faculty of Medicine; University of New South Wales; Sydney Australia
| | | | - Jillian J. Kril
- Discipline of Pathology; University of Sydney; Sydney Australia
| | | | | | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney Australia
- Faculty of Medicine; University of New South Wales; Sydney Australia
| | - Lars M. Ittner
- Dementia Research Unit; Department of Anatomy; School of Medical Sciences; Faculty of Medicine; University of New South Wales; Sydney Australia
- Neuroscience Research Australia; Sydney Australia
- Sydney Medical School; University of Sydney; Sydney Australia
| |
Collapse
|
35
|
Li L, Xu ZP, Liu GP, Xu C, Wang ZH, Li XG, Liu EJ, Zeng J, Chai DM, Yao WL, Wang JZ. Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells. PLoS One 2015; 10:e0119865. [PMID: 25822823 PMCID: PMC4378987 DOI: 10.1371/journal.pone.0119865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022] Open
Abstract
Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Six tau isoforms are generated from a single gene through alternative splicing of exons 2, 3 and 10 in human brain. Differential expression of tau isoforms has been detected in different brain areas, during neurodevelopment and in neurodegenerative disorders. However, the biological significance of different tau isoforms is not clear. Here, we investigated the individual effect of six different isoforms of tau on cell proliferation and the possible mechanisms by transient expression of eGFP-labeled tau isoform plasmid in N2a cells. Our study showed the transfection efficiency was comparable between different isoforms of tau by examining GFP expression. Compared with other isoforms, we found expression of 1N3R-tau significantly inhibited cell proliferation by Cell Counting Kit-8 assay and BrdU incorporation. Flow cytometry analysis further showed expression of 1N3R-tau induced S phase arrest. Compared with the longest isoform of tau, expression of 1N3R-tau induced cyclin E translocation from the nuclei to cytoplasm, while it did not change the level of cell cycle checkpoint proteins. These data indicate that 1N3R-tau inhibits cell proliferation through inducing S phase arrest.
Collapse
Affiliation(s)
- Li Li
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Xu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hao Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - En-Jie Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zeng
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Min Chai
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Long Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
36
|
Wang JZ, Wang ZH. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration. Exp Gerontol 2015; 68:82-6. [PMID: 25777063 DOI: 10.1016/j.exger.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Neurodegeneration is the characteristic pathology in the brains of Alzheimer's disease (AD). However, the nature and molecular mechanism leading to the degeneration are not clarified. Given that only the neurons filled with neurofibrillary tangles survive to the end stage of the disease and the major component of the tangles is the hyperphosphorylated tau proteins, it is conceivable that tau hyperphosphorylation must play a crucial role in AD neurodegeneration. We have demonstrated that tau hyperphosphorylation renders the cells more resistant to the acute apoptosis. The molecular mechanisms involve substrate competition of tau and β-catenin for glycogen synthase kinase 3β (GSK-3β); activation of Akt; preservation of Bcl-2 and suppression of Bax, cytosolic cytochrome-c, and caspase-3 activity; and upregulation of unfolded protein response (UPR), i.e., up-regulating phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. On the other hand, tau hyperphosphorylation promotes its intracellular accumulation and disrupts axonal transport; hyperphosphorylated tau also impairs cholinergic function and inhibits proteasome activity. These findings indicate that tau hyperphosphorylation and its intracellular accumulation play dual role in the evolution of AD. We speculate that transient tau phosphorylation helps cells abort from an acute apoptosis, while persistent tau hyperphosphorylation/accumulation may trigger cell senescence that eventually causes a chronic neurodegeneration. Therefore, the nature of "AD neurodegeneration" may represent a new type of tau-regulated chronic neuron death; and the stage of cell senescence may provide a broad window for the intervention of AD.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi-Hao Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014; 20:14660-14671. [PMID: 25356029 PMCID: PMC4209532 DOI: 10.3748/wjg.v20.i40.14660] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.
Collapse
|
38
|
Gangapuram M, Mazzio E, Eyunni S, Soliman KFA, Redda KK. Synthesis and biological evaluation of substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/benzene sulfonamides as anti-inflammatory agents. Arch Pharm (Weinheim) 2014; 347:360-9. [PMID: 24585402 PMCID: PMC4042835 DOI: 10.1002/ardp.201300379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives.
Collapse
Affiliation(s)
- Madhavi Gangapuram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|