1
|
Armakolas A, Alevizopoulos N, Stathaki M, Petraki C, Agrogiannis G, Samiotaki M, Panayotou G, Chatzinikita E, Koutsilieris M. Anti-PEc: Development of a novel monoclonal antibody against prostate cancer. Br J Cancer 2024; 131:551-564. [PMID: 38902531 PMCID: PMC11300853 DOI: 10.1038/s41416-024-02713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The Ec peptide (PEc) that defines the IGF-1Ec isoform, is associated with prostate cancer progression by inducing proliferation, metastases, and tumour repair. On these grounds, an anti-PEc monoclonal antibody (MAb) was developed. Our objective is to examine the effects of this antibody on prostate cancer and its possible side effects. METHODS The effects of the obtained MAb were examined in cancer and non-cancerous cell lines (unmodified and modified either to overexpress or silence PEc) and in tumours in SCID mice injected with unmodified prostate cancer cells. The investigation was obtained with respect to cellular proliferation, migration, invasion, toxicity to tumours, effects on the cell cycle, immune response activation, effects on mesenchymal stem cell mobilisation leading to tumour repair, tissue distribution, and toxicity to mice. RESULTS Anti-PEc MAb treatment led to a significant decrease in cellular proliferation, migration, and invasion compared to the untreated cell lines (p < 0.0005 in every case). Mechanistically, these effects were associated with the downregulation of pERK1/2 and vimentin and the upregulation of E-Cadherin. In vivo, anti-PEc MAb treatment was associated with a significant decrease in tumour size and metastases rate (p < 0.0005 in every case) by reversing the tumours mesenchymal phenotype. It also inhibited host stem cell mobilisation towards the tumour, leading to apoptosis. Anti-PEc MAb assessment in respect to distribution and toxicity, indicated its tumour specificity and lack of toxicity. CONCLUSIONS These data indicate that the therapeutic targeting of PEc with the anti-PEc MAb may have considerable clinical benefit for prostate cancer patients.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodestrian University of Athens, Athens, Greece.
| | - Nektarios Alevizopoulos
- Physiology Laboratory, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Martha Stathaki
- Surgical Department, Elena Venizelou Hospital, Athens, Greece
| | | | - George Agrogiannis
- Department of Pathology, University of Athens, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Martina Samiotaki
- Bioinnovation Institute, Biomedical Science Research Center "Alexander Fleming.", Vari, Greece
| | - George Panayotou
- Bioinnovation Institute, Biomedical Science Research Center "Alexander Fleming.", Vari, Greece
| | - Eirini Chatzinikita
- Physiology Laboratory, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Medical School, National and Kapodestrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Liu Y, Duan M, Zhang D, Xie J. The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:701-712. [PMID: 37171185 PMCID: PMC10281885 DOI: 10.3724/abbs.2023086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023] Open
Abstract
Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical mechanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation, inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in knowledge.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Demao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
3
|
Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors. Int J Mol Sci 2020; 21:ijms21196995. [PMID: 32977489 PMCID: PMC7582825 DOI: 10.3390/ijms21196995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is a key regulator of tissue growth and development that is also implicated in the initiation and progression of various cancers. The human IGF1 gene contains six exons and five long introns, the transcription of which is controlled by two promoters (P1 and P2). Alternate promoter usage, as well as alternative splicing (AS) of IGF1, results in the expression of six various variants (isoforms) of mRNA, i.e., IA, IB, IC, IIA, IIB, and IIC. A mature 70-kDa IGF1 protein is coded only by exons 3 and 4, while exons 5 and 6 are alternatively spliced code for the three C-terminal E peptides: Ea (exon 6), Eb (exon 5), and Ec (fragments of exons 5 and 6). The most abundant of those transcripts is IGF1Ea, followed by IGF1Eb and IGF1Ec (also known as mechano-growth factor, MGF). The presence of different IGF1 transcripts suggests tissue-specific auto- and/or paracrine action, as well as separate regulation of both of these gene promoters. In physiology, the role of different IGF1 mRNA isoforms and pro-peptides is best recognized in skeletal muscle tissue. Their functions include the development and regeneration of muscles, as well as maintenance of proper muscle mass. In turn, in nervous tissue, a neuroprotective function of short peptides, produced as a result of IGF1 expression and characterized by significant blood-brain barrier penetrance, has been described and could be a potential therapeutic target. When it comes to the regulation of carcinogenesis, the potential biological role of different var iants of IGF1 mRNAs and pro-peptides is also intensively studied. This review highlights the role of IGF1 isoform expression (mRNAs, proteins) in physiology and different types of human tumors (e.g., breast cancer, cervical cancer, colorectal cancer, osteosarcoma, prostate and thyroid cancers), as well as mechanisms of IGF1 spliced variants involvement in tumor biology.
Collapse
|
4
|
Wei W, Liu S, Song J, Feng T, Yang R, Cheng Y, Li H, Hao L. MGF-19E peptide promoted proliferation, differentiation and mineralization of MC3T3-E1 cell and promoted bone defect healing. Gene 2020; 749:144703. [PMID: 32339623 DOI: 10.1016/j.gene.2020.144703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
The repair of segmental bone defects and bone fractures is a clinical challenge involving high risk and postsurgical morbidity. Bone injury and partial bone tumor resection via traditional bone grafting result in high complications. Growth factors have been proposed as alternatives to promote bone repair and formation and circumvent these limitations. In this study, we classified different lengths of mechano growth factor (MGF) E peptides in different species and analyzed their effects on MC3T3-E1 cell proliferation, cell cycle, alkaline phosphatase (ALP) activity, differentiation-related factor expression, and cell mineralization. A rabbit bone injury model was constructed, and the repair function of MGF E peptide was verified by injecting the candidate MGF E peptide. We analyzed 52 different MGF-E peptides and classified them into the following four categories: T-MGF-25E, M-MGF-25E, T-MGF-19E, and M-MGF-19E. These peptides were synthesized for further study. T-MGF-19E peptide obviously promoted cell proliferation by regulating cell cycle after MGF E peptide treatment at 72 h. T-MGF-25E and T-MGF-19E peptide significantly promoted the differentiation of osteoblasts on day 14, and M-MGF-25E peptide promoted cell differentiation on day 7. T-MGF-19E, T-MGF-25E, and M-MGF-19E significantly promoted osteoblast mineralization, with T-MGF19E showing the most significant effect. These results implied that T-MGF19E peptide could remarkably promote MC3T3-E1 cell proliferation, differentiation, and mineralization. The rabbit bone defect model showed that the low-dose T-MGF-19E peptide significantly promoted bone injury healing, suggesting its promoting effect on the healing of bone injury.
Collapse
Affiliation(s)
- Wenzhen Wei
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; Changchun Qijian Biological Products Co., Ltd., No.1, Torch Road, High Tech Development Zone, Changchun, Jilin Province 130012, China
| | - Songcai Liu
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; College of Animal Science, South China Agricultural University, No.483, Wushan, Tianhe Distrct, Guangzhou, Guangdong 510642, China
| | - Haoyang Li
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
6
|
Xu GS, Li ZW, Huang ZP, Brunicardi FC, Jia F, Song C, Zou HJ, Sun RF. MiR-497-5p inhibits cell proliferation and metastasis in hepatocellular carcinoma by targeting insulin-like growth factor 1. Mol Genet Genomic Med 2019; 7:e00860. [PMID: 31441605 PMCID: PMC6785451 DOI: 10.1002/mgg3.860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) play an important regulatory role in carcinogenesis and cancer progression. Aberrant expression of miR‐497‐5p has been reported in various human malignancies. However, the role of miR‐497‐5p in hepatocellular carcinoma (HCC) remains unclear. Results In this study, we found that miR‐497‐5p was downregulated in HCC tissues. The low level of miR‐497‐5p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. The overexpression of miR‐497‐5p significantly inhibited HCC cell proliferation, colony formation, and metastasis in vitro and vivo. Bioinformatics analysis further identified insulin‐like growth factor 1 (IGF1) as a novel target of miR‐497‐5p in HCC cells. Conclusion Our study suggested that miR‐497‐5p regulates HCC cell survival, partially through downregulation of IGF1. Therefore, the miR‐497‐5p/IGF1 axis might serve as a novel therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Guo-Shu Xu
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zi-Wei Li
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zhi-Ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - F Charles Brunicardi
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Fu Jia
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| | - Chao Song
- Department of Orthopedic, National Clinical Key Specialty, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Hai-Jian Zou
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| | - Rui-Fen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, China
| |
Collapse
|
7
|
Xu Q, Fang H, Zhao L, Zhang C, Zhang L, Tian B. Mechano growth factor attenuates mechanical overload-induced nucleus pulposus cell apoptosis through inhibiting the p38 MAPK pathway. Biosci Rep 2019; 39:BSR20182462. [PMID: 30858307 PMCID: PMC6438874 DOI: 10.1042/bsr20182462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
Mechanical overload is a risk factor of disc degeneration. It can induce disc degeneration through mediating cell apoptosis. Mechano growth factor (MGF) has been reported to inhibit mechanical overload-induced apoptosis of chondrocytes. The present study is aimed to investigate whether MGF can attenuate mechanical overload-induced nucleus pulposus (NP) cell apoptosis and the possible signaling transduction pathway. Rat NP cells were cultured and subjected to mechanical overload for 7 days. The control NP cells did not experience mechanical load. The exogenous MGF peptide was added into the culture medium to investigate its protective effects. NP cell apoptosis ratio, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3, protein expression of cleaved caspase-3, cleaved PARP, Bax and Bcl-2 were analyzed to evaluate NP cell apoptosis. In addition, activity of the p38 MAPK pathway was also detected. Compared with the control NP cells, mechanical overload significantly increased NP cell apoptosis and caspase-3 activity, up-regulated gene/protein expression of pro-apoptosis molecules (i.e. Bax, caspase-3, cleaved caspase-3 and cleaved PARP) whereas down-regulated gene/protein expression of anti-apoptosis molecule (i.e. Bcl-2). However, exogenous MGF partly reversed these effects of mechanical overload on NP cell apoptosis. Further results showed that activity of the p38 MAPK pathway of NP cells cultured under mechanical overload was decreased by addition of MGF peptide. In conclusion, MGF is able to attenuate mechanical overload-induced NP cell apoptosis, and the p38 MAPK signaling pathway may be involved in this process. The present study provides that MGF supplementation may be a promising strategy to retard mechanical overload-induced disc degeneration.
Collapse
Affiliation(s)
- Qing Xu
- Department of Anesthesia Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Haolin Fang
- Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Liang Zhao
- Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Luo Zhang
- Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Baofang Tian
- Department of Emergency Trauma Surgery, Jining NO. 1 People's Hospital, Affiliated Jining NO. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| |
Collapse
|
8
|
Jing X, Ye Y, Bao Y, Zhang J, Huang J, Wang R, Guo J, Guo F. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway. Exp Cell Res 2018; 366:81-91. [PMID: 29470961 DOI: 10.1016/j.yexcr.2018.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Abstract
Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Song Y, Xu K, Yu C, Dong L, Chen P, Lv Y, Chiang MY, Li L, Liu W, Yang L. The use of mechano growth factor to prevent cartilage degeneration in knee osteoarthritis. J Tissue Eng Regen Med 2017; 12:738-749. [DOI: 10.1002/term.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Kang Xu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA USA
| | - Can Yu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Lili Dong
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Peixing Chen
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Yonggang Lv
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Martin Y.M. Chiang
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Linhao Li
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical EngineeringBeihang University Beijing China
| | - Wanqian Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Li Yang
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| |
Collapse
|
10
|
Alexandraki KI, Philippou A, Boutzios G, Theohari I, Koutsilieris M, Delladetsima IK, Kaltsas GA. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms. Oncotarget 2017; 8:79003-79011. [PMID: 29108282 PMCID: PMC5668015 DOI: 10.18632/oncotarget.20743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Different Insulin-like growth factor-I (IGF-I) mRNA transcripts are produced by alternative splicing and particularly the IGF-IEc isoform has been implicated in the development and/or progression of various types of cancer. In the present study, we examined the potential role of IGF-IEc expression as a new immunohistochemical marker of aggressiveness in neuroendocrine neoplasms (NENs). We utilized immunohistochemical analysis in tissue specimens of 47 patients with NENs, to evaluate the expression of IGF-IEc (%) and Ki-67 proliferation index (%). Specimens from patients with tumors of different tissue origin, of either primary or metastatic lesions and of different grade were examined. Cytoplasmic IGF-IEc staining was found in 23 specimens of NENs or NECs: 10 pancreatic, 4 small bowel, 3 gastric, 1 lung, 1 uterine and 4 poorly differentiated of unknown primary origin. Ki-67 and IGF-IEc expression was positively correlated in all the samples studied (r=0.31, p=0.03). IGF-1Ec expression was more prevalent in specimens originating from metastatic foci with high Ki-67 compared to primary sites with low Ki-67 expression (p=0.036). These findings suggest a possible role of IGF-IEc in NEN tumorigenesis and progression to metastases that could be used as an additional new marker of a more aggressive behavior and a potential drugable target.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Boutzios
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gregory A Kaltsas
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 2017; 10:23. [PMID: 28683812 PMCID: PMC5501366 DOI: 10.1186/s13041-017-0304-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.
Collapse
Affiliation(s)
- Jason J Tang
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jewel L Podratz
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Miranda Lange
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Heidi J Scrable
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA.,The Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anthony J Windebank
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Fink J, Kikuchi N, Nakazato K. Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clin Physiol Funct Imaging 2016; 38:261-268. [DOI: 10.1111/cpf.12409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Julius Fink
- Graduate Schools of Health and Sport Science; Nippon Sport Science University; Tokyo Japan
| | - Naoki Kikuchi
- Department of Training Science; Nippon Sport Science University; Tokyo Japan
| | - Koichi Nakazato
- Graduate Schools of Health and Sport Science; Nippon Sport Science University; Tokyo Japan
| |
Collapse
|
13
|
Gorski JP, Price JL. Bone muscle crosstalk targets muscle regeneration pathway regulated by core circadian transcriptional repressors DEC1 and DEC2. BONEKEY REPORTS 2016; 5:850. [PMID: 27867498 DOI: 10.1038/bonekey.2016.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
Abstract
Deletion of proprotein convertase Mbtps1 in bone osteocytes leads to a significant postnatal increase in skeletal muscle size and contractile function, while causing only a 25% increase in stiffness in long bones. Concerns about leakiness in skeletal muscle were discounted since Cre recombinase expression does not account for our findings, and, Mbtps1 protein and mRNA is not deleted. Interestingly, the response of normal skeletal muscle to exercise and the regenerative response of skeletal muscle to the deletion of Mbtps1 in bone share some key regulatory features including a preference for slow twitch muscle fibers. In addition, transcriptional regulators PPAR, PGC-1α, LXR, and repressors DEC1 and DEC2 all occupy central positions within these two pathways. We hypothesize that the age-dependent muscle phenotype in Dmp1-Cre Mbtps1 cKO mice is due to bone→muscle crosstalk. Many of the myogenic genes altered in this larger and functionally improved muscle are regulated by circadian core transcriptional repressors DEC1 and DEC2, and furthermore, display a temporal coordination with Dec1 and Dec2 expression consistent with a regulatory co-dependency. These considerations lead us to propose that Dmp1-Cre Mbtps1 cKO osteocytes activate myogenesis by increased release of an activator of muscle PPAR-gamma, for example, PGE2 or sphingosine-1-P, or, by diminished release of an inhibitor of LXR, for example, long-chain polyunsaturated fatty acids. We hope that further investigation of these interacting pathways in the Dmp1-Cre Mbtps1 cKO model will lead to clinically translatable findings applicable to age-related sarcopenia and other muscle wasting syndromes.
Collapse
Affiliation(s)
- Jeffrey P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry , Kansas City, MO, USA
| | - Jeffrey L Price
- School of Biological Sciences University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
14
|
Chen L, Zou X, Zhang RX, Pi CJ, Wu N, Yin LJ, Deng ZL. IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling. BMB Rep 2016; 49:122-7. [PMID: 26645636 PMCID: PMC4915116 DOI: 10.5483/bmbrep.2016.49.2.228] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Engineered bone tissue is thought to be the ideal alternative for bone grafts in the treatment of related bone diseases. BMP9 has been demonstrated as one of the most osteogenic factors, and enhancement of BMP9-induced osteogenesis will greatly accelerate the development of bone tissue engineering. Here, we investigated the effect of insulin-like growth factor 1 (IGF1) on BMP9-induced osteogenic differentiation, and unveiled a possible molecular mechanism underling this process. We found that IGF1 and BMP9 are both detectable in mesenchymal stem cells (MSCs). Exogenous expression of IGF1 potentiates BMP9-induced alkaline phosphatase (ALP), matrix mineralization, and ectopic bone formation. Similarly, IGF1 enhances BMP9-induced endochondral ossification. Mechanistically, we found that IGF1 increases BMP9-induced activation of BMP/Smad signaling in MSCs. Our findings demonstrate that IGF1 can enhance BMP9-induced osteogenic differentiation in MSCs, and that this effect may be mediated by the enhancement of the BMP/Smad signaling transduction triggered by BMP9. [BMB Reports 2016; 49(2): 122-127]
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xiang Zou
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Ran-Xi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Chang-Jun Pi
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Nian Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Liang-Jun Yin
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
15
|
Troib A, Guterman M, Rabkin R, Landau D, Segev Y. Endurance exercise and growth hormone improve bone formation in young and growth-retarded chronic kidney disease rats. Nephrol Dial Transplant 2015; 31:1270-9. [PMID: 26560811 DOI: 10.1093/ndt/gfv373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Childhood chronic kidney disease (CKD) is associated with both short stature and abnormal bone mineralization. Normal longitudinal growth depends on proper maturation of epiphyseal growth plate (EGP) chondrocytes, leading to the formation of trabecular bone in the primary ossification centre. We have recently shown that linear growth impairment in CKD is associated with impaired EGP growth hormone (GH) receptor signalling and that exercise improved insulin-like growth factor I (IGF-I) signalling in CKD-related muscle atrophy. METHODS In this study, 20-day-old rats underwent 5/6 nephrectomy (CKD) or sham surgery (C) and were exercised with treadmill, with or without GH supplementation. RESULTS CKD-related growth retardation was associated with a widened EGP hypertrophic zone. This was not fully corrected by exercise (except for tibial length). Exercise in CKD improved the expression of EGP key factors of endochondral ossification such as IGF-I, vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteocalcin. Combining GH treatment with treadmill exercise for 2 weeks improved the decreased trabecular bone volume in CKD, as well as the expression of growth plate runt-related transcription factor 2, RANKL, metalloproteinase 13 and VEGF, while GH treatment alone could not do that. CONCLUSIONS Treadmill exercise improves tibial bone linear growth, as well as growth plate local IGF-I. When combined with GH treatment, running exercise shows beneficial effects on trabecular bone formation, suggesting the potential benefit of this combination for CKD-related short stature and bone disease.
Collapse
Affiliation(s)
- Ariel Troib
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mayan Guterman
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ralph Rabkin
- Research Service, Veterans Affairs Health Care Palo Alto, Stanford University, Stanford, CA, USA Medicine Department/Renal Division, Stanford University, Stanford, CA, USA
| | - Daniel Landau
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel Department of Pediatrics, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Yael Segev
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
16
|
Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarcoma. Proc Natl Acad Sci U S A 2015; 112:10304-9. [PMID: 26240353 DOI: 10.1073/pnas.1506684112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional tumor models accurately describe different aspects of the tumor microenvironment and are readily available for mechanistic studies of tumor biology and for drug screening. Nevertheless, these systems often overlook biomechanical stimulation, another fundamental driver of tumor progression. To address this issue, we cultured Ewing sarcoma (ES) cells on electrospun poly(ε-caprolactone) 3D scaffolds within a flow perfusion bioreactor. Flow-derived shear stress provided a physiologically relevant mechanical stimulation that significantly promoted insulin-like growth factor-1 (IGF1) production and elicited a superadditive release in the presence of exogenous IGF1. This finding is particularly relevant, given the central role of the IGF1/IGF-1 receptor (IGF-1R) pathway in ES tumorigenesis and as a promising clinical target. Additionally, flow perfusion enhanced in a rate-dependent manner the sensitivity of ES cells to IGF-1R inhibitor dalotuzumab (MK-0646) and showed shear stress-dependent resistance to the IGF-1R blockade. This study demonstrates shear stress-dependent ES cell sensitivity to dalotuzumab, highlighting the importance of biomechanical stimulation on ES-acquired drug resistance to IGF-1R inhibition. Furthermore, flow perfusion increased nutrient supply throughout the scaffold, enriching ES culture over static conditions. Our use of a tissue-engineered model, rather than human tumors or xenografts, enabled precise control of the forces experienced by ES cells, and therefore provided at least one explanation for the remarkable antineoplastic effects observed by some ES tumor patients from IGF-1R targeted therapies, in contrast to the lackluster effect observed in cells grown in conventional monolayer culture.
Collapse
|
17
|
Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 2015; 52:463-75. [PMID: 25818452 DOI: 10.1016/j.biomaterials.2015.01.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (P<0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P<0.05), indicating that MGF and TGF-β3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair.
Collapse
|
18
|
Doroudian G, Pinney J, Ayala P, Los T, Desai TA, Russell B. Sustained delivery of MGF peptide from microrods attracts stem cells and reduces apoptosis of myocytes. Biomed Microdevices 2014; 16:705-15. [PMID: 24908137 PMCID: PMC4418932 DOI: 10.1007/s10544-014-9875-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Local release of drugs may have many advantages for tissue repair but also presents major challenges. Bioengineering approaches allow microstructures to be fabricated that contain bioactive peptides for sustained local delivery. Heart tissue damage is associated with local increases in mechano growth factor (MGF), a member of the IGF-1 family. The E domain of MGF peptide is anti-apoptotic and a stem cell homing factor. The objectives of this study were to fabricate a microrod delivery device of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogel loaded with MGF peptide and to determine the elution profile and bioactivity of MGF. The injectable microrods are 30 kPa stiffness and 15 μm widths by 100 μm lengths, chosen to match heart stiffness and myocyte size. Successful encapsulation of native MGF peptide within microrods was achieved with delivery of MGF for 2 weeks, as measured by HPLC. Migration of human mesenchymal stem cells (hMSCs) increased with MGF microrod treatment (1.72 ± 0.23, p < 0.05). Inhibition of the apoptotic pathway in neonatal rat ventricular myocytes was induced by 8 h of hypoxia (1 % O2). Protection from apoptosis by MGF microrod treatment was shown by the TUNEL assay and increased Bcl-2 expression (2 ± 0.19, p < 0.05). Microrods without MGF regulated the cytoskeleton, adhesion, and proliferation of hMSCs, and MGF had no effect on these properties. Therefore, the combination microdevice provided both the mechanical cues and 2-week MGF bioactivity to reduce apoptosis and recruit stem cells, suggesting potential use of MGF microrods for cardiac regeneration therapy in vivo.
Collapse
Affiliation(s)
- Golnar Doroudian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - James Pinney
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Perla Ayala
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Tamara Los
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Tejal A. Desai
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|