1
|
Boubrik F, Boubellouta T, Benyoucef N, Bellik Y, Gali L, Akdoğan A, Kucher DE, Utkina AO, Kucher OD, Rebouh NY. Investigating the chemical composition and antifungal effect of Cinnamomum cassia essential oil against Saccharomyces cerevisiae and Acremonium sp. Sci Rep 2025; 15:10195. [PMID: 40133504 PMCID: PMC11937399 DOI: 10.1038/s41598-025-94785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Essential oils are promising, safe, and eco-friendly alternatives to chemical fungicides. This study aimed to develop an effective biological control agent using Cinnamomum cassia essential oil (CCEO) as potential fungicidal agent against Saccharomyces cerevisiae and Acremonium sp, both isolated from natural orange juice. The yield, chemical composition and antifungal activity of CCEO were evaluated. The essential oil was extracted via hydro-distillation, and its composition was analyzed using gas chromatography-mass spectrometry (GC-MS). The antifungal activity was assessed using the disk diffusion agar method. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined using microdilution methods. The extraction yield was 2.8%. (E)-cinnamaldehyde was identified as the major compound (37.72%). Inhibition zones ranged from 51 mm to 80 mm against Saccharomyces cerevisiae and from 75 mm to 90 mm against Acremonium sp. Equal MIC and MFC values were recorded for both fungal strains: MIC = MFC = 6.25% against Saccharomyces cerevisiae and MIC = MFC = 3.125% against Acremonium sp. These findings demonstrate for the first time that CCEO could be a promising antifungal agent against the two primary fungal contaminants of fruit products, Saccharomyces cerevisiae and Acremonium sp.
Collapse
Affiliation(s)
- Fairouz Boubrik
- Laboratory of Characterization and Valorization of Natural Resources (L.C.V.R), Faculty of Life and Natural Sciences and of Earth and Universe Sciences, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, 34000, Algeria
| | - Tahar Boubellouta
- Laboratory of Characterization and Valorization of Natural Resources (L.C.V.R), Faculty of Life and Natural Sciences and of Earth and Universe Sciences, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, 34000, Algeria
| | - Nabil Benyoucef
- BIOGEP Laboratory-Ecole Nationale Polytechnique ENP-El-Harrach, Alger, 16200, Algeria
- Faculty of Sciences, Department of Natural andlife sciences, Benyoucef Benkhedda University, Algiers, 16000, Algeria
| | - Yuva Bellik
- Laboratory of Characterization and Valorization of Natural Resources (L.C.V.R), Faculty of Life and Natural Sciences and of Earth and Universe Sciences, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, 34000, Algeria
| | - Lynda Gali
- Biotechnology Research Center-CRBt, Constantine, Algeria
| | - Abdullah Akdoğan
- Chemical Engineering Department, Faculty of Engineering, Pamukkale University, Denizli, 20017, Turkey
| | - Dmitry E Kucher
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - Aleksandra O Utkina
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - Olga D Kucher
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - Nazih Y Rebouh
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia.
| |
Collapse
|
2
|
Khwaza V, Aderibigbe BA. Antifungal Activities of Natural Products and Their Hybrid Molecules. Pharmaceutics 2023; 15:2673. [PMID: 38140014 PMCID: PMC10747321 DOI: 10.3390/pharmaceutics15122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing cases of drug resistance and high toxicity associated with the currently used antifungal agents are a worldwide public health concern. There is an urgent need to develop new antifungal drugs with unique target mechanisms. Plant-based compounds, such as carvacrol, eugenol, coumarin, cinnamaldehyde, curcumin, thymol, etc., have been explored for the development of promising antifungal agents due to their diverse biological activities, lack of toxicity, and availability. However, researchers around the world are unable to fully utilize the potential of natural products due to limitations, such as their poor bioavailability and aqueous solubility. The development of hybrid molecules containing natural products is a promising synthetic approach to overcome these limitations and control microbes' capability to develop resistance. Based on the potential advantages of hybrid compounds containing natural products to improve antifungal activity, there have been different reported synthesized hybrid compounds. This paper reviews different literature to report the potential antifungal activities of hybrid compounds containing natural products.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
3
|
Chen L, Li X, Wang Y, Guo Z, Wang G, Zhang Y. The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. FRONTIERS IN PLANT SCIENCE 2023; 14:1285722. [PMID: 38023889 PMCID: PMC10667483 DOI: 10.3389/fpls.2023.1285722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Plant essential oils have played an important role in the field of antibiotic alternatives because of their efficient bacteriostatic and fungistatic activity. As plant essential oils are widely used, their activity to improve the quality of plant silage has also been explored. This review expounds on the active ingredients of essential oils, their bacteriostatic and fungistatic activity, and mechanisms, as well as discusses the application of plant essential oils in plant silage fermentation, to provide a reference for the development and application of plant essential oils as silage additives in plant silage fermentation feed.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zelin Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guoming Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Yang J, Wang Q, Li L, Li P, Yin M, Xu S, Chen Y, Feng X, Wang B. Chemical Composition and Antifungal Activity of Zanthoxylum armatum Fruit Essential Oil against Phytophthora capsici. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238636. [PMID: 36500729 PMCID: PMC9740196 DOI: 10.3390/molecules27238636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Pathogenic plant oomycetes cause devastating damage to fruits and vegetables worldwide. Plant essential oils (EOs) are known to be promising candidates for the development of fungicides. In this study, we isolated twelve EOs from Tetradium ruticarpum, Tetradium daniellii, Tetradium fraxinifolium, Zanthoxylum armatum, Ruta graveolens, and Citrus medica leaves and fruits. We then investigated their chemical composition and antifungal activity against phytopathogenic oomycetes. Our results demonstrated that Z. armatum fruit essential oil (ZFO) in particular substantially inhibited the mycelial growth of Phytophthora capsici. Similarly, ZFO also strongly suppressed spore production and germination of P. capsici, and the application of ZFO significantly reduced disease symptoms caused by P. capsici in pepper. Furthermore, results from microscopic and biochemical studies indicated that ZFO damaged the ultrastructure and destroyed the membrane integrity of P. capsici, leading to the leakage of the cellular contents and ultimately causing cell death. It was concluded that ZFO could enhance the activities of defense-related enzymes in pepper fruits, which may also be responsible for the inhibition of phytophthora disease. Moreover, linalool and D-limonene were proven to be the primary effective components of ZFO. Our results collectively indicate that ZFO could be a potential candidate for the management of disease caused by P. capsici.
Collapse
Affiliation(s)
- Jingjing Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qizhi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Correspondence: ; Tel.: +86-25-8434-7074
| |
Collapse
|
5
|
Ahmed B, Jailani A, Lee JH, Lee J. Inhibition of growth, biofilm formation, virulence, and surface attachment of Agrobacterium tumefaciens by cinnamaldehyde derivatives. Front Microbiol 2022; 13:1001865. [PMID: 36304952 PMCID: PMC9595724 DOI: 10.3389/fmicb.2022.1001865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium tumefaciens, a soil-borne, saprophytic plant pathogen that colonizes plant surfaces and induces tumors in a wide range of dicotyledonous plants by transferring and expressing its T-DNA genes. The limited availabilities and efficacies of current treatments necessitate the exploration of new anti-Agrobacterium agents. We examined the effects of trans-cinnamaldehyde (t-CNMA) and its derivatives on the cell surface hydrophobicity, exopolysaccharide and exo-protease production, swimming motility on agar, and biofilm forming ability of A. tumefaciens. Based on initial biofilm inhibition results and minimum inhibitory concentration (MIC) data, 4-nitro, 4-chloro, and 4-fluoro CNMAs were further tested. 4-Nitro, 4-chloro, and 4-fluoro CNMA at ≥150 μg/ml significantly inhibited biofilm formation by 94–99%. Similarly, biofilm formation on polystyrene or nylon was substantially reduced by 4-nitro and 4-chloro CNMAs as determined by optical microscopy and scanning electron microscopy (SEM) and 3-D spectrum plots. 4-Nitro and 4-chloro CNMAs induced cell shortening and concentration- and time-dependently reduced cell growth. Virulence factors were significantly and dose-dependently suppressed by 4-nitro and 4-chloro CNMAs (P ≤ 0.05). Gene expressional changes were greater after 4-nitro CNMA than t-CNMA treatment, as determined by qRT-PCR. Furthermore, some genes essential for biofilm formation, motility, and virulence genes significantly downregulated by 4-nitro CNMA. Seed germination of Raphanus sativus was not hindered by 4-nitro or 4-fluoro CNMA at concentrations ≤200 μg/ml, but root surface biofilm formation was severely inhibited. This study is the first to report the anti-Agrobacterium biofilm and anti-virulence effects of 4-nitro, 4-chloro, and 4-fluoro CNMAs and t-CNMA and indicates that they should be considered starting points for the development of anti-Agrobacterium agents.
Collapse
|
6
|
Nißl L, Westhaeuser F, Noll M. Antimycotic Effects of 11 Essential Oil Components and Their Combinations on 13 Food Spoilage Yeasts and Molds. J Fungi (Basel) 2021; 7:872. [PMID: 34682293 PMCID: PMC8537543 DOI: 10.3390/jof7100872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
Food safety is important to reduce food spoilage microorganisms and foodborne pathogens. However, food safety is challenging, as customers' demand for natural preservatives is increasing. Essential oils (EOs) and their components (EOCs) are alternative antibacterial and antimycotic food additives. In this study, the minimal inhibitory concentrations (MIC) of 11 different EOCs against 13 food spoilage molds and yeasts were investigated via the microdilution method. Cinnamaldehyde (CA) revealed the lowest MIC for all tested strains and all EOCs (32.81-328.1 µg ml-1). However, CA is organoleptic and was therefore combined with other EOCs via the checkerboard method. Overall, 27 out of 91 combinations showed a synergistic effect, and both respective EOC concentrations could be reduced by maintaining MIC. Thereby, the combination with citral or citronellal showed promising results. The concentration-dependent effect of CA was studied in further detail on Saccharomyces cerevisiae, with CA causing delayed growth-kinetics and reduced total cell numbers. In addition, flow cytometric measurements combined with live-dead staining indicate the fungicidal effect of CA, due to decreasing total cell numbers and increasing relative amount of propidium iodide-positive cells. In this study, we demonstrated that CA is a potent candidate for the use as a natural preservative against food-relevant mold and yeasts showing fungistatic and fungicidal effects. Therefore, CA and EOC combinations with respective lower EOC concentrations reduce organoleptic reservations, which ease their application in the food industry.
Collapse
Affiliation(s)
| | | | - Matthias Noll
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (L.N.); (F.W.)
| |
Collapse
|
7
|
Wang B, Li P, Xu S, Liu L, Xu Y, Feng X, Zhao X, Chen Y. Inhibitory Effects of the Natural Product Esculetin on Phytophthora capsici and Its Possible Mechanism. PLANT DISEASE 2021; 105:1814-1822. [PMID: 33332162 DOI: 10.1094/pdis-09-20-2054-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Esculetin is an important plant-derived natural product that has multiple bioactivities and applications. Phytophthora capsici is a notorious plant pathogen capable of infecting a broad range of hosts. In this study, we evaluated the antifungal activity of esculetin against P. capsici. The baseline sensitivity of P. capsici to esculetin was established using 108 isolates collected from various geographical regions in the Jiangsu and Shandong Provinces of China. The median effective concentration (EC50) values for esculetin ranged from 2.08 to 16.46 μg/ml (mean, 6.87 ± 2.70 μg/ml) and were normally distributed. Furthermore, both zoospore production and germination were strongly inhibited by esculetin. Importantly, esculetin exhibited protective as well as curative activities against P. capsici on tomato and was capable of restricting the early infection of P. capsici on Nicotiana benthamiana. We found that the esculetin treatment led to cell membrane damage of P. capsici, as revealed by morphological observations and measurements of relative conductivity and malondialdehyde (MDA). Finally, our results also suggested that esculetin may adversely affect P. capsici by inhibiting its DNA and protein synthesis. These findings will contribute to the broader evaluation of the use of esculetin to control diseases caused by P. capsici and toward a better understanding of its mode of action as a potential fungicide.
Collapse
Affiliation(s)
- Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lanying Liu
- State Wolfberry Engineering Technique Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yannan Xu
- Centre of Co-Innovation for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xingzeng Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
8
|
Wang Y, Wang M, Li M, Zhao T, Zhou L. Cinnamaldehyde inhibits the growth of Phytophthora capsici through disturbing metabolic homoeostasis. PeerJ 2021; 9:e11339. [PMID: 33987017 PMCID: PMC8092109 DOI: 10.7717/peerj.11339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Phytophthora capsici Leonian (P. capsici) can cause wilting and roots rotting on pepper and other cash crops. The new fungicide cinnamaldehyde (CA) has high activity against this pathogen. However, its potential mechanism is still unknown. Methods In order to gain insights into the mechanism, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics was used to analyze P. capsici treated with CA. The iTRAQ results were evaluated by parallel reaction monitoring (PRM) analysis and quantitative real-time PCR (qRT-PCR) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to speculate the biochemical pathways that the agent may act on. Results The results showed that 1502 differentially expressed proteins were identified, annotated and classified into 209 different terms (like metabolic process, cellular process, single-organism process) based on Gene Ontology (GO) functional enrichment analysis and nine different pathways (glyoxylate and dicarboxylate metabolism, fatty acid metabolism and so on) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. This study suggested that CA disordered fatty acid metabolism, polysaccharide metabolism and leucine metabolism. Based on PRM analysis, five proteins including CAMK/CAMK1 protein kinase, glucan 1,3-beta-glucosidase, 1,3-beta-glucanosyltransferase, methylcrotonoyl-CoA carboxylase subunit alpha and isovaleryl-CoA dehydrogenase were down-regulated in P. capsici treated with CA. Furthermore, the qRT-PCR analysis showed that the gene expression level of the interested proteins was consistent with the protein expression level, except for CAMK/CAMK1 protein kinase, acetyl-CoA carboxylase and fatty acid synthase subunit alpha. Conclusions CA destroyed the metabolic homoeostasisof P. capsici, which led to cell death. This is the first proteomic analysis of P. capsici treated with CA, which may provide an important information for exploring the mechanism of the fungicide CA against P. capsici.
Collapse
Affiliation(s)
- Yinan Wang
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Mengke Wang
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Min Li
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Te Zhao
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| | - Lin Zhou
- Henan Agricultural University, College of Plant Protection, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Key Laboratory for Creation and Application of New Pesticides, Zhengzhou, Henan, China.,Henan Agricultural University, Henan Research Center of Green Pesticide Engineering and Technology, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Ma Y, Gao K, Yu H, Liu W, Qin Y, Xing R, Liu S, Li P. C-coordinated O-carboxymethyl chitosan Cu(II) complex exerts antifungal activity by disrupting the cell membrane integrity of Phytophthora capsici Leonian. Carbohydr Polym 2021; 261:117821. [PMID: 33766331 DOI: 10.1016/j.carbpol.2021.117821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/11/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022]
Abstract
Damage to the cell membrane is an effective method to prevent drug resistance in plant fungal diseases. Here, we proposed a negative remodeling model of the cell membrane structure induced by the C-coordinated O-carboxymethyl chitosan Cu (II) complex (O-CSLn-Cu). FITC-labeled O-CSLn-Cu (FITC-O-CSLn-Cu) was first synthesized via a nucleophilic substitution reaction and confirmed by FT-IR. FITC-labeled O-CSLn-Cu could pass through the fungal cell membrane, as detected by confocal laser scanning microscopy (CLSM) coupled with fluorescein isothiocyanate (FITC)-fluorescence. O-CSLn-Cu treatment led to apparent morphological changes in the membranes of P. capsici Leonian and giant unilamellar vesicles (GUVs) by transmission electron microscopy (TEM). Then, we performed component analysis of the cell membrane from the P. capsici Leonian affected by O-CSLn-Cu with a particular interest in membrane physicochemical properties. Many unsaturated fatty acids (UFAs) and key enzymes promoting UFA synthesis of the cell membrane were downregulated. Similarly, a large number of membrane proteins responsible for substance transport and biochemical reactions were downregulated. Furthermore, O-CSLn-Cu treatments increased plasma membrane permeability with significant leakage of intercellular electrolytes, soluble proteins and sugars, and lipid peroxidation with decreasing membrane fluidity. Finally, aquaporin 10 was proven to be a potential molecular target sensitive to antimicrobial agents according to composition analysis of membrane structure and immunohistochemistry.
Collapse
Affiliation(s)
- Yuzhen Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Weixiang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
10
|
da Nóbrega Alves D, Monteiro AFM, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS, Scotti MT, Scotti L, Rosalen PL, de Castro RD. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020; 25:molecules25245969. [PMID: 33339401 PMCID: PMC7767272 DOI: 10.3390/molecules25245969] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antifungal activity of cinnamaldehyde on Candida spp. In vitro and in situ assays were carried out to test cinnamaldehyde for its anti-Candida effects, antibiofilm activity, effects on fungal micromorphology, antioxidant activity, and toxicity on keratinocytes and human erythrocytes. Statistical analysis was performed considering α = 5%. Results: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 18.91 μM to 37.83 μM. MIC values did not change in the presence of 0.8 M sorbitol, whereas an 8-fold increase was observed in the presence of ergosterol, suggesting that cinnamaldehyde may act on the cell membrane, which was subsequently confirmed by docking analysis. The action of cinnamaldehyde likely includes binding to enzymes involved in the formation of the cytoplasmic membrane in yeast cells. Cinnamaldehyde-treated microcultures showed impaired cellular development, with an expression of rare pseudo-hyphae and absence of chlamydoconidia. Cinnamaldehyde reduced biofilm adherence by 64.52% to 33.75% (p < 0.0001) at low concentrations (378.3–151.3 µM). Cinnamaldehyde did not show antioxidant properties. Conclusions: Cinnamaldehyde showed fungicidal activity through a mechanism of action likely related to ergosterol complexation; it was non-cytotoxic to keratinocytes and human erythrocytes and showed no antioxidant activity.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Alex France Messias Monteiro
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Patrícia Néris Andrade
- Experimental Pharmacology and Cell Culture Laboratory, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil;
| | - Josy Goldoni Lazarini
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
| | - Gisely Maria Freire Abílio
- Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Felipe Queiroga Sarmento Guerra
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Marcus Tullius Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Department of Chemistry, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Luciana Scotti
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Cheminformatics Laboratory, Center for Health Sciences, Federal University of Paraíba, João Pessoa-PB 58051-900, Brazil;
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas, Campinas-SP 13414-903, Brazil; (J.G.L.); (P.L.R.)
- Biological Sciences Graduate Program (PPGCB), Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-000, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Center for Health Sciences, Federal University of Paraiba, João Pessoa-PB 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7742
| |
Collapse
|
11
|
Zheng L, Prestwich BD, Harrison PT, Mackrill JJ. Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes. Pathogens 2020; 9:pathogens9070577. [PMID: 32708691 PMCID: PMC7399828 DOI: 10.3390/pathogens9070577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
In eukaryotes, two sources of Ca2+ are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca2+ stores, such as the endoplasmic reticulum. One class of channel that permits Ca2+ entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca2+ from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from Phytophthora infestans is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.
Collapse
Affiliation(s)
- Limian Zheng
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Patrick T. Harrison
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - John J. Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
- Correspondence:
| |
Collapse
|
12
|
Inhibitory Properties of Aldehydes and Related Compounds against Phytophthora infestans-Identification of a New Lead. Pathogens 2020; 9:pathogens9070542. [PMID: 32645837 PMCID: PMC7400633 DOI: 10.3390/pathogens9070542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
The pathogen Phytophthora infestans is responsible for catastrophic crop damage on a global scale which totals billions of euros annually. The discovery of new inhibitors of this organism is of paramount agricultural importance and of critical relevance to food security. Current strategies for crop treatment are inadequate with the emergence of resistant strains and problematic toxicity. Natural products such as cinnamaldehyde have been reported to have fungicidal properties and are the seed for many new discovery research programmes. We report a probe of the cinnamaldehyde framework to investigate the aldehyde subunit and its role in a subset of aromatic aldehydes in order to identify new lead compounds to act against P. infestans. An ellipticine derivative which incorporates an aldehyde (9-formyl-6-methyl ellipticine, 34) has been identified with exceptional activity versus P. infestans with limited toxicity and potential for use as a fungicide.
Collapse
|
13
|
Sun Q, Li J, Sun Y, Chen Q, Zhang L, Le T. The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem 2020; 317:126405. [DOI: 10.1016/j.foodchem.2020.126405] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022]
|
14
|
Qu S, Yang K, Chen L, Liu M, Geng Q, He X, Li Y, Liu Y, Tian J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front Microbiol 2019; 10:2895. [PMID: 31921070 PMCID: PMC6930169 DOI: 10.3389/fmicb.2019.02895] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
The problem of food spoilage due to Aspergillus flavus (A. flavus) needs to be resolved. In this study, we found that the minimum inhibitory concentration of cinnamaldehyde (CA) that inhibited A. flavus was 0.065 mg/ml and that corn can be prevented from spoiling at a concentration of 0.13 mg/cm3. In addition to inhibiting spore germination, mycelial growth, and biomass production, CA can also reduce ergosterol synthesis and can cause cytomembrane damage. Our intention was to elucidate the antifungal mechanism of CA. Flow cytometry, fluorescence microscopy, and western blot were used to reveal that different concentrations of CA can cause a series of apoptotic events in A. flavus, including elevated Ca2+ and reactive oxygen species, decrease in mitochondrial membrane potential (Δψ m ), the release of cytochrome c, the activation of metacaspase, phosphatidylserine (PS) externalization, and DNA damage. Moreover, CA significantly increased the expression levels of apoptosis-related genes (Mst3, Stm1, AMID, Yca1, DAP3, and HtrA2). In summary, our results indicate that CA is a promising antifungal agent for use in food preservation.
Collapse
Affiliation(s)
- Su Qu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Lei Chen
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongxin Li
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Ma Y, Yu H, Liu W, Qin Y, Xing R, Li P. Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex. Int J Biol Macromol 2019; 155:1491-1509. [PMID: 31751736 DOI: 10.1016/j.ijbiomac.2019.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
With wide application in agriculture, copper fungicides have undergone three stages of development: inorganic copper, synthetic organic copper, and natural organic copper. Using chitin/chitosan (CS) as a substrate, the natural organic copper fungicide C-coordinated O-carboxymethyl chitosan Cu(II) complex (O-CSLn-Cu) was developed in the laboratory. Taking Phytophthora capsici Leonian as an example, we explored the antifungal mechanism of O-CSLn-Cu by combining tandem mass tag (TMT)-based proteomics with non-targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. A total of 1172 differentially expressed proteins were identified by proteomics analysis. According to the metabolomics analysis, 93 differentially metabolites were identified. Acetyl-CoA-related and membrane localized proteins showed significant differences in the proteomics analysis. Most of the differential expressed metabolites were distributed in the cytoplasm, followed by mitochondria. The integrated analysis revealed that O-CSLn-Cu could induce the "Warburg effect", with increased glycolysis in the cytoplasm and decreased metabolism in the mitochondria. Therefore, P. capsici Leonian had to compensate for ATP loss in the TCA cycle by increasing the glycolysis rate. However, this metabolic shift could not prevent the death of P. capsici Leonian. To verify this hypothesis, a series of biological experiments, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and enzyme activity measurements were carried out. The results suggest that O-CSLn-Cu causes mitochondrial injury, which consequently leads to excessive ROS levels and insufficient ATP levels, thereby killing P. capsici Leonian.
Collapse
Affiliation(s)
- Yuzhen Ma
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Weixiang Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
16
|
Jiang H, Hwang HW, Ge T, Cole B, Perkins B, Hao J. Leucine Regulates Zoosporic Germination and Infection by Phytophthora erythroseptica. Front Microbiol 2019; 10:131. [PMID: 30804912 PMCID: PMC6370700 DOI: 10.3389/fmicb.2019.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Pink rot (Phytophthora erythroseptica) of potato is a major concern in many potato production regions. The pathogen produces zoospores that serve as a primary inoculum for infection. To understand how the pink rot incidence is related to pathogen population, qualitative, and quantitative chemical analyses were conducted. It was demonstrated that P. erythroseptica zoospores required a minimal population of 103 zoospores/ml (threshold) for initiating germination and the subsequent infection; the percentage of zoosporic germination was positively correlated with the density of zoospores above the threshold. To elucidate the density-dependent behavior, zoospore exudate (ZE) was extracted from high-density (105/ml) zoospore suspension. Zoosporic inocula of P. erythroseptica at different concentrations were inoculated on potato tubers. Necrotic lesions were caused by inoculum with 100 zoospores per inoculation site; 5 zoospores per site did not cause lesions on the tuber. However, five zoospores did cause lesions when they were placed in ZE, suggesting ZE contained chemical compounds that regulate germination of zoospores. ZE was collected and analyzed using liquid chromatography mass spectroscopy (LC-MS). Results showed that the amino acid leucine was associated with zoosporic germination. Therefore, zoosporic germination and infection of P. erythroseptica were mediated by signaling molecules secreted from zoospores.
Collapse
Affiliation(s)
- He Jiang
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Hye Weon Hwang
- Department of Chemistry, The University of Maine, Orono, ME, United States
| | - Tongling Ge
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Barbara Cole
- Department of Chemistry, The University of Maine, Orono, ME, United States
| | - Brian Perkins
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| |
Collapse
|
17
|
OuYang Q, Duan X, Li L, Tao N. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of Geotrichum citri-aurantii. Front Microbiol 2019; 10:55. [PMID: 30761105 PMCID: PMC6364577 DOI: 10.3389/fmicb.2019.00055] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
Our previous study showed that cinnamaldehyde (CA) significantly inhibited the mycelial growth of Geotrichum citri-aurantii, one of the main postharvest pathogens in citrus fruits. This study investigated the antifungal mechanism of CA against G. citri-aurantii. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that CA treatment led to clear morphological changes in the cell walls and membranes of G. citri-aurantii. However, the membrane integrity, total lipids and ergosterol contents were not apparently affected by CA treatment. Notably, the extracellular alkaline phosphatase (AKP) activity was increased after CA treatment, suggesting impairment in cell wall permeability. A weakened fluorescence in the cell wall, a decrease in the chitin contents, and changes of ten genes involved in cell wall integrity were also observed. These results suggested that CA may exhibit its antifungal activity against G. citri-aurantii by interfering the build of cell wall and therefore lead to the damage of cell wall permeability and integrity.
Collapse
Affiliation(s)
| | | | | | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
18
|
Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli. PLoS One 2017; 12:e0182122. [PMID: 28750057 PMCID: PMC5531548 DOI: 10.1371/journal.pone.0182122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, parasites, and even cancerous human cell populations, leading to recurrent infections and relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the exponential phase. Considering the heterogeneous nature of persisters, multiple types of persisters were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp-overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) were induced. Chemical induction by carbonyl cyanide m-chlorophenylhydrazone (CCCP) led to the formation of more than 10% persister to Amp and Cip in the entire population, and Br-CA still completely eradicated them. In addition, the cells in the stationary phase, which are usually highly recalcitrant to antibiotics treatment, were also completely eradicated by 400 μg/ml of Br-CA. Further studies showed that neither thiourea (hydroxyl-radical scavenger) nor DPTA (Fe3+ chelator to block the hydroxyl-radical) affected the bactericidal efficiency of the Br-CA to kill E. coli, indicating a ROS-independent bactericidal mechanism. Taken together, we concluded that Br-CA compound has a novel bactericidal mechanism and the potential to mitigate antibiotics resistance crisis.
Collapse
|
19
|
Valette N, Perrot T, Sormani R, Gelhaye E, Morel-Rouhier M. Antifungal activities of wood extractives. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Liu P, Gong J, Ding X, Jiang Y, Chen G, Li B, Weng Q, Chen Q. The L-type Ca(2+) Channel Blocker Nifedipine Inhibits Mycelial Growth, Sporulation, and Virulence of Phytophthora capsici. Front Microbiol 2016; 7:1236. [PMID: 27540377 PMCID: PMC4972815 DOI: 10.3389/fmicb.2016.01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
The oomycete vegetable pathogen Phytophthora capsici causes significant losses of important vegetable crops worldwide. Calcium and other plant nutrients have been used in disease management of oomycete pathogens. Calcium homeostasis and signaling is essential for numerous biological processes, and Ca(2+) channel blockers prevent excessive Ca(2+) influx into the fungal cell. However, it is not known whether voltage-gated Ca(2+) channel blockers improve control over oomycete pathogens. In the present study, we compared the inhibitory effects of CaCl2 and the extracellular Ca(2+) chelator EDTA on mycelial growth and found that calcium assimilation plays a key role in P. capsici mycelial growth. Next, we involved the voltage-gated Ca(2+) channel blockers verapamil (VP) and nifedipine (NFD) to analyze the effect of Ca(2+) channel blockers on mycelial growth and sporulation; the results suggested that NFD, but not VP, caused significant inhibition. Ion rescue in an NFD-induced inhibition assay suggested that NFD-induced inhibition is calcium-dependent. In addition, NFD increased P. capsici sensitivity to H2O2 in a calcium-dependent manner, and extracellular calcium rescued it. Furthermore, NFD inhibited the virulence and gene expression related to its pathogenicity. These results suggest that NFD inhibits mycelial growth, sporulation, and virulence of P. capsici.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiyong Weng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Qinghe Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural SciencesFuzhou, China
| |
Collapse
|
21
|
Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, Ali I, Siddiqi WA, Hun LT. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016; 112:116-31. [PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 02/07/2023]
Abstract
The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
Collapse
Affiliation(s)
- Sheikh Shreaz
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Waseem A Wani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
| | - Jawad M Behbehani
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Vaseem Raja
- Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), P.O. Box 110025, New Delhi, India
| | - Md Irshad
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Laboratory, Faculty of Dentistry, Health Sciences Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Intzar Ali
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Weqar A Siddiqi
- Department of Applied Sciences & Humanities, Jamia Millia Islamia (A Central University), P.O. Box 110025, New Delhi, India
| | - Lee Ting Hun
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor, Malaysia
| |
Collapse
|
22
|
Xue YF, Zhang M, Qi ZQ, Li YQ, Shi Z, Chen J. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:909-914. [PMID: 25752512 DOI: 10.1002/jsfa.7164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. RESULTS The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CONCLUSION CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching.
Collapse
Affiliation(s)
- Yan-Feng Xue
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Meng Zhang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhong-Qiang Qi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - You-Qin Li
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
23
|
Nanocapsular dispersion of cinnamaldehyde for enhanced inhibitory activity against aflatoxin production by Aspergillus flavus. Molecules 2015; 20:6022-32. [PMID: 25853318 PMCID: PMC6272766 DOI: 10.3390/molecules20046022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/21/2023] Open
Abstract
Cinnamaldehyde (CA) is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA) was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD) culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC) value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.
Collapse
|