1
|
Basak P, Dastidar DG, Ghosh D, Chakraborty T, Sau S, Chakrabarti G. Staphylococcus aureus major cell division protein FtsZ assembly is inhibited by silibinin, a natural flavonolignan that also blocked bacterial growth and biofilm formation. Int J Biol Macromol 2024; 279:135252. [PMID: 39222779 DOI: 10.1016/j.ijbiomac.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 μM and 200 μM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 μM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 μM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.
Collapse
Affiliation(s)
- Prithvi Basak
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
2
|
Malla A, Gupta S, Sur R. Inhibition of lactate dehydrogenase A by diclofenac sodium induces apoptosis in HeLa cells through activation of AMPK. FEBS J 2024; 291:3628-3652. [PMID: 38767406 DOI: 10.1111/febs.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells exhibit a unique metabolic preference for the glycolytic pathway over oxidative phosphorylation for maintaining the tumor microenvironment. Lactate dehydrogenase A (LDHA) is a key enzyme that facilitates glycolysis by converting pyruvate to lactate and has been shown to be upregulated in multiple cancers due to the hypoxic tumor microenvironment. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, has been shown to exhibit anticancer effects by interfering with the glucose metabolism pathway. However, the specific targets of this drug remain unknown. Using in silico, biochemical, and biophysical studies, we show that DCF binds to LDHA adjacent to the substrate binding site and inhibits its activity in a dose-dependent and allosteric manner in HeLa cells. Thus, DCF inhibits the hypoxic microenvironment and induces apoptosis-mediated cell death. DCF failed to induce cytotoxicity in HeLa cells when LDHA was knocked down, confirming that DCF exerts its antimitotic effects via LDHA inhibition. DCF-induced LDHA inhibition alters pyruvate, lactate, NAD+, and ATP production in cells, and this could be a possible mechanism through which DCF inhibits glucose uptake in cancer cells. DCF-induced ATP deprivation leads to mitochondria-mediated oxidative stress, which results in DNA damage, lipid peroxidation, and apoptosis-mediated cell death. Reduction in intracellular ATP levels additionally activates the sensor kinase, adenosine monophosphate-activated protein kinase (AMPK), which further downregulates phosphorylated ribosomal S6 kinase (p-S6K), leading to apoptosis-mediated cell death. We find that in LDHA knocked down cells, intracellular ATP levels were depleted, resulting in the inhibition of p-S6K, suggesting the involvement of DCF-induced LDHA inhibition in the activation of the AMPK/S6K signaling pathway.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Suvroma Gupta
- Khejuri College, Purba Medinipur, West Bengal, India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| |
Collapse
|
3
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Das A, Chakrabarty S, Nag D, Paul S, Ganguli A, Chakrabarti G. Heavy water (D 2O) induces autophagy-dependent apoptotic cell death in non-small cell lung cancer A549 cells by generating reactive oxygen species (ROS) upon microtubule disruption. Toxicol In Vitro 2023; 93:105703. [PMID: 37751786 DOI: 10.1016/j.tiv.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Deuterium oxide (D2O) or heavy water is known to have diverse biological activities and have a few therapeutic applications due to its limited toxicity to human subjects. In the present study, we investigated the mechanism of D2O-induced cytotoxicity in non-small cell lung cancer A549 cells. RESULTS We found that D2O-treatment resulted in cytotoxicity, cell cycle arrest, and apoptosis in A549 cells in a dose-dependent fashion. In contrast, limited cytotoxicity was observed in lung fibroblasts WI38 cells. Moreover, D2O-treatment resulted in the disruption of the cellular microtubule network, accompanied by the generation of ROS. On further investigation, we observed that the intracellular ROS triggered autophagic responses in D2O-treated cells, leading to apoptosis by inhibiting the oncogenic PI3K/ Akt/ mTOR signaling. D2O-treatment was also found to enhance the efficacy of paclitaxel in A549 cells. SIGNIFICANCE D2O induces autophagy-dependent apoptosis in A549 cells via ROS generation upon microtubule depolymerization and inhibition of PI3K/ Akt/ mTOR signaling. It augments the efficacy of other microtubule-targeting anticancer drug taxol, which indicates the potential therapeutic importance of D2O as an anticancer agent either alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Amlan Das
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal 700019, India; Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Assam 781035, India.
| | - Subhendu Chakrabarty
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal 700019, India; Department of Microbiology, M.U.C. Women's College, Burdwan, West Bengal 713104, India
| | - Debasish Nag
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Santanu Paul
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal 700019, India; Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore, West Bengal 700121, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal 700091, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal 700019, India.
| |
Collapse
|
5
|
Sołek P, Mytych J, Tabęcka-Łonczyńska A, Koziorowski M. Molecular Consequences of Depression Treatment: A Potential In Vitro Mechanism for Antidepressants-Induced Reprotoxic Side Effects. Int J Mol Sci 2021; 22:11855. [PMID: 34769286 PMCID: PMC8584852 DOI: 10.3390/ijms222111855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.
Collapse
Affiliation(s)
- Przemysław Sołek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (A.T.-Ł.); (M.K.)
| | - Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Werynia 2, 36-100 Kolbuszowa, Poland; (A.T.-Ł.); (M.K.)
| | | | | |
Collapse
|
6
|
Design, synthesis, and cytotoxic screening of novel azole derivatives on hepatocellular carcinoma (HepG2 Cells). Bioorg Chem 2020; 101:103995. [PMID: 32569897 DOI: 10.1016/j.bioorg.2020.103995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Novel azole derivatives 3-30 were designed, synthesized, and screened for their antitumor activity on HepG2 cell line. The cytotoxicity screening demonstrated that imidazolone 8 and triazoles 25 and 29 exhibited more potent cytotoxic activities by 1.21-, 4.75-, and 1.8-fold compared to Sorafenib (SOR). Furthermore, vascular endothelial growth factor receptor-2 (VEGFR-2) enzyme inhibition assay declared that compounds 25 and 29 had inhibitory activity at the nanomolar concentration. Moreover, the tested compounds exhibited good β-tubulin (TUB) polymerization inhibition percentages. In addition, DNA flow cytometry analysis over HepG2 cells indicated that triazoles 25 and 29 demonstrated arrest at G1 and G2/M phase of the cell cycle and induced apoptotic activity by increasing sub-G1 phase. Finally, mechanistic studies of the proapoptotic activities of compounds 8, 10, 11, 25, and 29 indicated that they induced upregulation of P53, Fas/Fas-ligand, and BAX/BCL-2 ratio expression that resulted in increasing the active caspase 3/7 percentages and trigger apoptosis.
Collapse
|
7
|
Fouda AM, Okasha RM, Alblewi FF, Mora A, Afifi TH, El-Agrody AM. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg Chem 2019; 95:103549. [PMID: 31887476 DOI: 10.1016/j.bioorg.2019.103549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022]
Abstract
In our endeavors to develop novel and powerful agents with antiproliferative activities, a series of β-enamionitriles, linked to the 8-bromo-1H-benzo[f]chromene moieties (4a-m), was designed and synthesized under microwave irradiation conditions. The structures of the target compounds were established on the basis of their spectral data: IR, 1H NMR, 13C NMR, 13C NMR-DEPT/APT, 19F NMR and MS. Furthermore, the antiproliferative properties were evaluated against the human cancer cell lines MCF-7, HCT-116, and HepG-2 in comparison to the positive controls Vinblastine and Doxorubicin, employing the viability assay. The obtained results confirmed that most of the tested molecules revealed strong and selective cytotoxic activities against the three cancer cell lines. The most potent cytotoxic compounds 4b, 4d, 4e, 4i, and 4k were elected for further examination, such as the cell cycle analysis, the apoptosis assay, the Caspase production, and the DNA fragmentation. This study also revealed that the desired compounds stimulate cell cycle arrest at the G2/M phases, increase the production of Caspases 3, 8, and 9, and finally cause intrinsic and extrinsic apoptotic cell death. Moreover, these compounds suppress the action of the topoisomerase II enzyme and also disrupt the microtubule functions. The SAR study of the synthesized compounds verified that the substitution on the phenyl ring of the 1H-benzo[f]chromene nucleus, accompanied with the presence of the bromine atom at the 8-position, increases the ability of these molecules against different cell lines.
Collapse
Affiliation(s)
- Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rawda M Okasha
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Fawzia F Alblewi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
8
|
Nelson VK, Ali A, Dutta N, Ghosh S, Jana M, Ganguli A, Komarov A, Paul S, Dwivedi V, Chatterjee S, Jana NR, Lakhotia SC, Chakrabarti G, Misra AK, Mandal SC, Pal M. Azadiradione ameliorates polyglutamine expansion disease in Drosophila by potentiating DNA binding activity of heat shock factor 1. Oncotarget 2018; 7:78281-78296. [PMID: 27835876 PMCID: PMC5346638 DOI: 10.18632/oncotarget.12930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.
Collapse
Affiliation(s)
- Vinod K Nelson
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India.,Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manas Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Andrei Komarov
- Cellecta Inc, Mountain View, California, United States of America
| | - Soumyadip Paul
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Vibha Dwivedi
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Nihar R Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Institute, Manesar, Gurgaon, Haryana, India
| | - Subhash C Lakhotia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Chakrabarti
- Dr. B. C. Guha Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Anup K Misra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Pharmacognosy and Phytotherapy Laboratory, Jadavpur University, Jadavpur, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Synthesis of benzo[ d ]imidazo[2,1- b ]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg Chem 2018; 76:1-12. [DOI: 10.1016/j.bioorg.2017.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023]
|
10
|
Zhang C, Yu G, Shen Y. The naturally occurring xanthone α-mangostin induces ROS-mediated cytotoxicity in non-small scale lung cancer cells. Saudi J Biol Sci 2017; 25:1090-1095. [PMID: 30174507 PMCID: PMC6116860 DOI: 10.1016/j.sjbs.2017.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 01/22/2023] Open
Abstract
Small cell lung cancer (NSCLC) accounts for 85% of total deaths globally, and recent studies indicate the increasing risks of NSCLC in China and South Asian countries. Hence, development of new therapeutics against NSCLC has been a major concern. α-Mangostin, a naturally occurring xanthone, found abundantly in pericarps of mangosteen fruit is well known for its medicinal importance. The anticancer properties of α-mangostin against several types of cancer are also well documented. But the mechanism of action of α-mangostin against lung cancer is not well understood and requires further investigation. Therefore in the present study, we explored the therapeutic potential of α-mangostin against A549 cells. Treatment of A549 cells with α-mangostin resulted in a dose-dependent loss of cell viability, while the non-malignant cells such as hPBMC and WI-38 remained unaffected. Further we observed that the ROS plays an important role in α-mangostin -induced apoptosis in A549 cells, and administration of N-acetyl cysteine significantly abrogates α-mangostin -mediated cytotoxicity in lung cancer cells. Overall, α-mangostin induces ROS-mediated cytotoxicity in NSCLC cells.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Respiration, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Yifeng Shen
- Guangzhou Wondfo Biotech Co., Ltd, Guangzhou 510663, China
| |
Collapse
|
11
|
Subba Rao A, Swapna K, Shaik SP, Lakshma Nayak V, Srinivasa Reddy T, Sunkari S, Shaik TB, Bagul C, Kamal A. Synthesis and biological evaluation of cis -restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg Med Chem 2017; 25:977-999. [DOI: 10.1016/j.bmc.2016.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
|
12
|
Bhattacharya S, Das A, Datta S, Ganguli A, Chakrabarti G. Colchicine induces autophagy and senescence in lung cancer cells at clinically admissible concentration: potential use of colchicine in combination with autophagy inhibitor in cancer therapy. Tumour Biol 2016; 37:10653-64. [PMID: 26867767 DOI: 10.1007/s13277-016-4972-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
Colchicine is a well-known and potent microtubule targeting agent, but the therapeutic value of colchicine against cancer is limited by its toxicity against normal cells. But, there is no report of its cytotoxic potential against lung cancer cell, at clinically permissible or lower concentrations, minimally toxic to non-cancerous cells. Hence, in the present study, we investigated the possible mechanism by which the efficacy of colchicine against lung cancer cells at less toxic dose could be enhanced. Colchicine at clinically admissible concentration of 2.5 nM had no cytotoxic effect and caused no G2/M arrest in A549 cells. However, at this concentration, colchicine strongly hindered the reformation of cold depolymerised interphase and spindle microtubule. Colchicine induced senescence and reactive oxygen species mediated autophagy in A549 cells at this concentration. Autophagy inhibitor 3-methyladenine (3-MA) sensitised the cytotoxicity of colchicine in A549 cells by switching senescence to apoptotic death, and this combination had reduced cytotoxicity to normal lung fibroblast cells (WI38). Together, these findings indicated the possible use of colchicine at clinically relevant dose along with autophagy inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Surela Bhattacharya
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Amlan Das
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Satabdi Datta
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Arnab Ganguli
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB, 700 019, India.
| |
Collapse
|
13
|
Yu K, Li R, Yang Z, Wang F, Wu W, Wang X, Nie C, Chen L. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives. Bioorg Med Chem Lett 2015; 25:2302-7. [PMID: 25933592 DOI: 10.1016/j.bmcl.2015.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023]
Abstract
Amino acid prodrugs are known to be very useful for improving the aqueous solubility of sparingly water soluble drugs (Drug Discovery Today 2013, 18, 93). Therefore, we synthesized eleven novel combretastatin A-4 amino acid derivatives and evaluated their anti-tumor activities in vitro and in vivo. Among them, compound 15 (valine attached to compound 3, which was shown to be a potent tubulin polymerization inhibitor in our previous study) exhibited high efficacy in tumor-bearing mice, and pharmacokinetic analysis in rats indicated that compound 15 was an effective prodrug as well. Besides, compound 15 significantly inhibited tubulin polymerization in vitro and in vivo by binding to the colchicine binding site. In addition, compound 15 induced cell cycle arrest in the G2/M phase and triggered apoptosis in a caspase-dependent manner. In conclusion, our study showed that compound 15 could have significant anti-tumor activity as a novel microtubule polymerization disrupting agent with improved aqueous solubility.
Collapse
Affiliation(s)
- Kun Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rong Li
- School of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, PR China
| | - Zhuang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
14
|
Devendar P, Nayak VL, Yadav DK, Kumar AN, Kumar JK, Satya Srinivas KVN, Sridhar B, Khan F, Sastry KP, Ramakrishna S. Synthesis and evaluation of anticancer activity of novel andrographolide derivatives. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00566j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceric ammonium nitrate facilitates andrographolide-3,19-O-acetal formation with alcohols. Anticancer active derivatives showed good docking scores in in silico.
Collapse
Affiliation(s)
- Ponnam Devendar
- Natural Product Chemistry
- CSIR – Central Institute of Medicinal and Aromatic Plants Research Centre
- Hyderabad-500092
- India
| | - Vadithe Lakshma Nayak
- Medicinal Chemistry & Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Dharmendra Kumar Yadav
- Metabolic and Structural Biology Department
- CSIR – Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Arigari Niranjana Kumar
- Natural Product Chemistry
- CSIR – Central Institute of Medicinal and Aromatic Plants Research Centre
- Hyderabad-500092
- India
| | - Jonnala Kotesh Kumar
- Natural Product Chemistry
- CSIR – Central Institute of Medicinal and Aromatic Plants Research Centre
- Hyderabad-500092
- India
| | - KVN Satya Srinivas
- Natural Product Chemistry
- CSIR – Central Institute of Medicinal and Aromatic Plants Research Centre
- Hyderabad-500092
- India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography
- CSIR – Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Feroz Khan
- Metabolic and Structural Biology Department
- CSIR – Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Kakaraparthi Pandu Sastry
- Natural Product Chemistry
- CSIR – Central Institute of Medicinal and Aromatic Plants Research Centre
- Hyderabad-500092
- India
| | - Sistla Ramakrishna
- Metabolic and Structural Biology Department
- CSIR – Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| |
Collapse
|
15
|
Qi H, Zuo DY, Bai ZS, Xu JW, Li ZQ, Shen QR, Wang ZW, Zhang WG, Wu YL. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma. Biochem Biophys Res Commun 2014; 455:262-8. [DOI: 10.1016/j.bbrc.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023]
|
16
|
Kamal A, Shaik B, Nayak VL, Nagaraju B, Kapure JS, Shaheer Malik M, Shaik TB, Prasad B. Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg Med Chem 2014; 22:5155-67. [PMID: 25192811 DOI: 10.1016/j.bmc.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022]
Abstract
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Bajee Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Burri Nagaraju
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Jeevak Sopanrao Kapure
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - M Shaheer Malik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Thokhir Basha Shaik
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - B Prasad
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| |
Collapse
|
17
|
Zhu C, Zuo Y, Wang R, Liang B, Yue X, Wen G, Shang N, Huang L, Chen Y, Du J, Bu X. Discovery of Potent Cytotoxic Ortho-Aryl Chalcones as New Scaffold Targeting Tubulin and Mitosis with Affinity-Based Fluorescence. J Med Chem 2014; 57:6364-82. [DOI: 10.1021/jm500024v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cuige Zhu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yinglin Zuo
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruimin Wang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Baoxia Liang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xin Yue
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gesi Wen
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Nana Shang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Huang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu Chen
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Du
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
C-terminal region of MAP7 domain containing protein 3 (MAP7D3) promotes microtubule polymerization by binding at the C-terminal tail of tubulin. PLoS One 2014; 9:e99539. [PMID: 24927501 PMCID: PMC4057234 DOI: 10.1371/journal.pone.0099539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022] Open
Abstract
MAP7 domain containing protein 3 (MAP7D3), a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7) family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD) with the C-terminal tail (CT) of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0±0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.
Collapse
|