1
|
Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci Rep 2021; 11:24485. [PMID: 34966175 PMCID: PMC8716528 DOI: 10.1038/s41598-021-03932-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human β-defensin-3 (HβD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
2
|
Fadlallah GM, Ma F, Zhang Z, Hao M, Hu J, Li M, Liu H, Liang B, Yao Y, Gong R, Zhang B, Liu D, Chen J. Vaccination with Consensus H7 Elicits Broadly Reactive and Protective Antibodies against Eurasian and North American Lineage H7 Viruses. Vaccines (Basel) 2020; 8:E143. [PMID: 32210092 PMCID: PMC7157604 DOI: 10.3390/vaccines8010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
H7 subtype avian influenza viruses have caused outbreaks in poultry, and even human infection, for decades in both Eurasia and North America. Although effective vaccines offer the best protection against avian influenza viruses, antigenically distinct Eurasian and North American lineage subtype H7 viruses require the development of cross-protective vaccine candidates. In this study, a methodology called computationally optimized broadly reactive antigen (COBRA) was used to develop four consensus H7 antigens (CH7-22, CH7-24, CH7-26, and CH7-28). In vitro experiments confirmed the binding of monoclonal antibodies to the head and stem domains of cell surface-expressed consensus HAs, indicating display of their antigenicity. Immunization with DNA vaccines encoding the four antigens was evaluated in a mouse model. Broadly reactive antibodies against H7 viruses from Eurasian and North American lineages were elicited and detected by binding, inhibition, and neutralizing analyses. Further infection with Eurasian H7N9 and North American H7N3 virus strains confirmed that CH7-22 and CH7-24 conferred the most effective protection against hetero-lethal challenge. Our data showed that the consensus H7 vaccines elicit a broadly reactive, protective response against Eurasian and North American lineage H7 viruses, which are suitable for development against other zoonotic influenza viruses.
Collapse
Affiliation(s)
- Gendeal M. Fadlallah
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.M.F.); (F.M.)
| | - Zherui Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biling Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yanfeng Yao
- National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (Z.Z.); (M.H.); (J.H.); (M.L.); (H.L.); (B.L.); (R.G.); (B.Z.); (D.L.)
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
3
|
Liu H, Xiong C, Chen J, Chen G, Zhang J, Li Y, Xiong Y, Wang R, Cao Y, Chen Q, Liu D, Wang H, Chen J. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China. Emerg Microbes Infect 2018; 7:62. [PMID: 29636458 PMCID: PMC5893581 DOI: 10.1038/s41426-018-0064-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/03/2022]
Abstract
After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.
Collapse
Affiliation(s)
- Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yanping Xiong
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 101409, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Landgraf GO, Karev VE, Suvorov AN, Rudenko LG. Prevention of Influenza A(H7N9) and Bacterial Infections in Mice Using Intranasal Immunization With Live Influenza Vaccine and the Group B Streptococcus Recombinant Polypeptides. Virology (Auckl) 2017; 8:1178122X17710949. [PMID: 28615930 PMCID: PMC5462492 DOI: 10.1177/1178122x17710949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV) and group B streptococcus (GBS) recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 107 50% egg infectious dose (EID50) of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV]), or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9)CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.
Collapse
Affiliation(s)
- Yulia A Desheva
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina F Leontieva
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Kramskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Smolonogina
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Kornelia B Grabovskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Galina O Landgraf
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Vadim E Karev
- Laboratory of Pathomorphology, Children's Scientific and Clinical Center of Infectious Diseases Saint Petersburg, Russian Federation
| | - Alexander N Suvorov
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Larisa G Rudenko
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| |
Collapse
|
5
|
Isakova-Sivak I, Rudenko L. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28532182 DOI: 10.1080/14760584.2017.1333907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term 'H7N9 influenza vaccine'. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO's GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
6
|
de Jonge J, Isakova-Sivak I, van Dijken H, Spijkers S, Mouthaan J, de Jong R, Smolonogina T, Roholl P, Rudenko L. H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Mol Ther 2016; 24:991-1002. [PMID: 26796670 PMCID: PMC4881767 DOI: 10.1038/mt.2016.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Avian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines. In this study, we developed and evaluated in ferrets an intranasal live attenuated influenza vaccine (LAIV) against H7N9 based on the A/Leningrad/134/17/57 (H2N2) cold-adapted master donor virus. We demonstrate that the LAIV is attenuated and safe in ferrets and induces high hemagglutination- and neuraminidase-inhibiting and virus-neutralizing titers. The antibodies against hemagglutinin were also cross-reactive with divergent H7 strains. To assess efficacy, we used an intratracheal challenge ferret model in which an acute severe viral pneumonia is induced that closely resembles viral pneumonia observed in severe human cases. A single- and two-dose strategy provided complete protection against severe pneumonia and prevented virus replication. The protective effect of the two-dose strategy appeared better than the single dose only on the microscopic level in the lungs. We observed, however, an increased lymphocytic infiltration after challenge in single-vaccinated animals and hypothesize that this a side effect of the model.
Collapse
Affiliation(s)
- Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sanne Spijkers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: BioNovion, Oss, the Netherlands
| | - Justin Mouthaan
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Current address: Genmab, Utrecht, the Netherlands
| | - Rineke de Jong
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, the Netherlands
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Paul Roholl
- Microscope Consultancy, Weesp, the Netherlands
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
7
|
Zhang L, Jia N, Li J, Han Y, Cao W, Wang S, Huang Z, Lu S. Optimal designs of an HA-based DNA vaccine against H7 subtype influenza viruses. Hum Vaccin Immunother 2016; 10:1949-58. [PMID: 25424804 DOI: 10.4161/hv.28795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The outbreak of a novel H7N9 influenza virus in 2013 has raised serious concerns for the potential of another avian-source pandemic influenza. Effective vaccines against H7N9 virus are important in the prevention and control of any major outbreak. Novel vaccination technologies are useful additions to existing approaches. In the current report, DNA vaccine studies were conducted to identify the optimal design of an H7 HA antigen using the HA gene from a previously reported H7N7 virus that is lethal in humans as the model antigen. New Zealand White rabbits were immunized with DNA vaccines expressing 1 of 3 forms of H7 HA antigen inserts encoding the HA gene from the same H7N7 virus. High-level H7 HA-specific IgG was detected by ELISA, and functional antibodies were confirmed by hemagglutination inhibition assay and pseudotyped virus-based neutralization assay against viruses expressing HA antigens from either the previous H7N7 virus or the novel H7N9 virus. HA antigen design under the tissue plasminogen activator leader (tPA) was the most immunogenic. The data presented in the current report confirm the immunogenicity of the H7 HA antigen and provide useful guidance to prepare for an optimized H7 HA DNA vaccine to help to control the emerging H7N9 virus if and when it is needed.
Collapse
Affiliation(s)
- Lu Zhang
- a Department of Infectious Diseases; The First Affiliated Hospital with Nanjing Medical University; Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mallett CP, Beaulieu E, Joly MH, Baras B, Lu X, Liu F, Levine MZ, Katz JM, Innis BL, Giannini SL. AS03-adjuvanted H7N1 detergent-split virion vaccine is highly immunogenic in unprimed mice and induces cross-reactive antibodies to emerged H7N9 and additional H7 subtypes. Vaccine 2015; 33:3784-7. [PMID: 26100923 DOI: 10.1016/j.vaccine.2015.06.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Avian H7 is one of several influenza A virus subtypes that have the potential to cause pandemics. Herein we describe preclinical results following administration of an investigational H7N1 inactivated detergent-split virion vaccine adjuvanted with the AS03 Adjuvant System. The adjuvanted H7N1 vaccine was highly immunogenic compared to the non-adjuvanted H7N1 vaccine in unprimed mice with less than 100ng of hemagglutinin antigen per dose. In addition, compared to the non-adjuvanted vaccine, the AS03-adjuvanted H7N1 vaccine also induced robust HI and VN antibody responses that cross-reacted with other H7 subtypes, including recently emerged H7N9 virus. These H7 data from the preclinical mouse model add to the existing H5 data to suggest that AS03 adjuvant technology may be generally effective for formulating antigen-sparing detergent-split virion vaccines against intrinsically sub-immunogenic avian influenza A virus subtypes.
Collapse
Affiliation(s)
| | | | | | | | - Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | | | | |
Collapse
|
9
|
Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J Virol 2015; 89:7401-8. [PMID: 25926639 DOI: 10.1128/jvi.00031-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/14/2015] [Indexed: 02/02/2023] Open
Abstract
Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China. In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively. Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection.
Collapse
|
10
|
Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015; 479-480:259-70. [PMID: 25816764 PMCID: PMC7111696 DOI: 10.1016/j.virol.2015.03.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
Emerging and well-known viral diseases remain one the most important global public health threats. A better understanding of their pathogenesis and mechanisms of transmission requires animal models that accurately reproduce these aspects of the disease. Here we review the role of ferrets as an animal model for the pathogenesis of different respiratory viruses with an emphasis on influenza and paramyxoviruses. We will describe the anatomic and physiologic characteristics that contribute to the natural susceptibility of ferrets to these viruses, and provide an overview of the approaches available to analyze their immune responses. Recent insights gained using this model will be highlighted, including the development of new prophylactic and therapeutic approaches. To provide decision criteria for the use of this animal model, its strengths and limitations will be discussed. Ferrets as models for respiratory virus pathogenesis. Ferrets as models for vaccine and drug efficacy assessment. Immunological tools for ferrets. Housing and handling of ferrets.
Collapse
Affiliation(s)
- T Enkirch
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - V von Messling
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany.
| |
Collapse
|
11
|
Rekstin A, Desheva Y, Kiseleva I, Ross T, Swayne D, Rudenko L. Live Attenuated Influenza H7N3 Vaccine is Safe, Immunogenic and Confers Protection in Animal Models. Open Microbiol J 2014; 8:154-62. [PMID: 25685247 PMCID: PMC4323838 DOI: 10.2174/1874285801408010154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background: In 2003 the outbreak of highly pathogenic H7 avian influenza occurred in the Netherlands. The avian H7 virus causing the outbreak was also detected in humans; one person died of pneumonia and acute respiratory distress syndrome. Our paper describes preclinical studies of a H7N3 live attenuated influenza A vaccine (LAIV) candidate in various animal models. Objectives: To study safety, immunogenicity and protection of H7N3 LAIV candidate in mice, ferrets and chickens. Methods: The vaccine was generated by a classical reassortment between low pathogenicity A/mallard/Netherlands/00 (H7N3) virus and A/Leningrad4/17/57 (H2N2) master donor virus (MDV). Results: Immunogenicity was found that H7N3 LAIV was similar to the MDV in terms of replication in the respiratory organs of mice and failed to replicate in mouse brains. One dose of a H7N3 LAIV elicited measurable antibody response and it was further boosted with a second vaccine dose. Immunization of mice with H7N3 LAIV provided protection against infection following a homologous challenge with wild type H7N3 virus. Attenuated phenotype of H7N3 LAIV has been confirmed in ferrets. Immunogenicity and protective efficacy of H7N3 LAIV in ferrets were also demonstrated. The vaccine protected animals from subsequent infection with wild type H7N3 virus. The results of histopathology study revealed that inoculation of H7N3 LAIV in ferrets did not cause any inflammation or destructive changes in lungs. Lack of H7N3 LAIV replication in chicken demonstrated complete safety of this preparation for poultry. Conclusion: Results of our study suggest that new H7N3 LAIV candidate is safe, immunogenic and protects from homologues influenza virus infection in mice and ferrets.
Collapse
Affiliation(s)
- Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine RAMS, St. Petersburg, Russia
| | - Yulia Desheva
- Department of Virology, Institute of Experimental Medicine RAMS, St. Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine RAMS, St. Petersburg, Russia
| | - Ted Ross
- University of Pittsburg (Pittsburg, USA)
| | - David Swayne
- Southeast Poultry Research Laboratory (Athens, USA)
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine RAMS, St. Petersburg, Russia
| |
Collapse
|
12
|
Jiang WM, Wang SC, Liu HL, Yu JM, Du X, Hou GY, Li JP, Liu S, Wang KC, Zhuang QY, Liu XM, Chen JM. Evaluation of avian influenza virus isolated from ducks as a potential live vaccine candidate against novel H7N9 viruses. Vaccine 2014; 32:6433-9. [DOI: 10.1016/j.vaccine.2014.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
|
13
|
Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014; 3:845-74. [PMID: 25436508 PMCID: PMC4282889 DOI: 10.3390/pathogens3040845] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.
Collapse
|
14
|
Kreijtz JHCM, Wiersma LCM, De Gruyter HLM, Vogelzang-van Trierum SE, van Amerongen G, Stittelaar KJ, Fouchier RAM, Osterhaus ADME, Sutter G, Rimmelzwaan GF. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. J Infect Dis 2014; 211:791-800. [PMID: 25246535 DOI: 10.1093/infdis/jiu528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center Viroclinics Biosciences, Rotterdam, the Netherlands Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU University of Munich German Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
15
|
Complete protection against lethal challenge of novel H7N9 virus with heterologous inactivated H7 vaccine in mice. Vaccine 2014; 32:5375-8. [PMID: 25130540 DOI: 10.1016/j.vaccine.2014.07.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/29/2014] [Accepted: 07/31/2014] [Indexed: 01/15/2023]
Abstract
A prototype H7 influenza vaccine constructed based on the H7N7 outbreak in 2003 was tested for the protective efficacy against the novel H7N9 virus in a lethal murine challenge model. Serum samples from vaccinated mice showed significant neutralizing activity against the H7N9 virus and the mice were completely protected with no significant weight loss. The results have direct implications on how to overcome potential vaccine shortage and identify donors for immune sera for passive immunization.
Collapse
|
16
|
Chua BY, Brown LE, Jackson DC. Considerations for the rapid deployment of vaccines against H7N9 influenza. Expert Rev Vaccines 2014; 13:1327-37. [PMID: 25017993 DOI: 10.1586/14760584.2014.938641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The threat of an outbreak of avian-origin influenza H7N9 and the devastating consequences that a pandemic could have on global population health and economies has mobilized programs of constant surveillance and the implementation of preemptive plans. Central to these plans is the production of prepandemic vaccines that can be rapidly deployed to minimize disease severity and deaths resulting from such an occurrence. In this article, we review current H7N9 vaccine strategies in place and the available technologies and options that can help accelerate vaccine production and increase dose-sparing capabilities to provide enough vaccines to cover the population. We also present possible means of reducing disease impact during the critical period after an outbreak occurs before a strain matched vaccine becomes available and consider the use of existing stockpiles and seed strains of phylogenetically related subtypes, alternate vaccination regimes and vaccine forms that induce cross-reactive immunity.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
17
|
Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88:7016-23. [PMID: 24719414 DOI: 10.1128/jvi.00100-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Live attenuated H7N9 influenza vaccine viruses that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the newly emerged wild-type (wt) A/Anhui/1/2013 (H7N9) and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (AA ca) were generated by reverse genetics. The reassortant virus containing the original wt A/Anhui/1/2013 HA and NA sequences replicated poorly in eggs. Multiple variants with amino acid substitutions in the HA head domain that improved viral growth were identified by viral passage in eggs and MDCK cells. The selected vaccine virus containing two amino acid changes (N133D/G198E) in the HA improved viral titer by more than 10-fold (reached a titer of 10(8.6) fluorescent focus units/ml) without affecting viral antigenicity. Introduction of these amino acid changes into an H7N9 PR8 reassortant virus also significantly improved viral titers and HA protein yield in eggs. The H7N9 ca vaccine virus was immunogenic in ferrets. A single dose of vaccine conferred complete protection of ferrets from homologous wt A/Anhui/1/2013 (H7N9) and nearly complete protection from heterologous wt A/Netherlands/219/2003 (H7N7) challenge infection. Therefore, this H7N9 live attenuated influenza vaccine (LAIV) candidate has been selected for vaccine manufacture and clinical evaluation to protect humans from wt H7N9 virus infection. IMPORTANCE In response to the recent avian H7N9 influenza virus infection in humans, we developed a live attenuated H7N9 influenza vaccine (LAIV) with two amino acid substitutions in the viral HA protein that improved vaccine yield by 10-fold in chicken embryonated eggs, the substrate for vaccine manufacture. The two amino acids also improved the antigen yield for inactivated H7N9 vaccines, demonstrating that this finding could great facilitate the efficiency of H7N9 vaccine manufacture. The candidate H7N9 LAIV was immunogenic and protected ferrets against homologous and heterologous wild-type H7 virus challenge, making it suitable for use in protecting humans from H7 infection.
Collapse
|
18
|
Liu J, Xiao H, Wu Y, Liu D, Qi X, Shi Y, Gao GF. H7N9: a low pathogenic avian influenza A virus infecting humans. Curr Opin Virol 2014; 5:91-7. [PMID: 24705093 PMCID: PMC7102866 DOI: 10.1016/j.coviro.2014.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/15/2022]
Abstract
Major reassortment and transmission features of H7N9 were summarized. Structural bases of interspecies transmission/drug resistance of H7N9 were proposed. We summarized the major immunological characteristics of H7N9 infection. The major strategies for vaccine development were proposed. The disease burden of H7N9 infection was calculated.
Human infections by the newly reassorted avian influenza A (H7N9) virus were reported for the first time in early 2013, and the virus was confirmed to be a low pathogenic avian influenza virus in poultry. Because continuously reported cases have been increasing since the summer of 2013, this novel virus poses a potential threat to public health in China and is attracting broad attention worldwide. In this review, we summarize and discuss the characteristics of the H7N9 virus revealed by the recent timely studies from the perspectives of epidemiology, host preference, clinical manifestations, immunopathogenesis, drug resistance, vaccine development, and burden of disease. This knowledge about the novel avian-origin H7N9 virus will provide a useful reference for clinical interventions of human infections and help to rapidly pave the way to develop an efficient and safe vaccine.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaopeng Qi
- National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Shi
- Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
19
|
Production of live attenuated influenza vaccines against seasonal and potential pandemic influenza viruses. Curr Opin Virol 2014; 6:34-9. [PMID: 24705137 DOI: 10.1016/j.coviro.2014.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023]
Abstract
Vaccination remains the most effective means to prevent morbidity and mortality caused by influenza epidemics and pandemics. Live attenuated influenza vaccine (LAIV) has been proven to be effective in preventing influenza with broad cross reactivity to drifted strains. Owing to the sophisticated nature of the influenza vaccine production process, the time needed to develop high yield LAIV strains for vaccine production and product release remains a constant challenge. This review summarizes LAIV production process with highlights on the experiences gained during the past decade generating seasonal and pandemic LAIV seeds by reverse genetics strategy.
Collapse
|
20
|
Krammer F, Albrecht RA, Tan GS, Margine I, Hai R, Schmolke M, Runstadler J, Andrews SF, Wilson PC, Cox RJ, Treanor JJ, García-Sastre A, Palese P. Divergent H7 immunogens offer protection from H7N9 virus challenge. J Virol 2014; 88:3976-85. [PMID: 24453375 PMCID: PMC3993735 DOI: 10.1128/jvi.03095-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The emergence of avian H7N9 viruses in humans in China has renewed concerns about influenza pandemics emerging from Asia. Vaccines are still the best countermeasure against emerging influenza virus infections, but the process from the identification of vaccine seed strains to the distribution of the final product can take several months. In the case of the 2009 H1N1 pandemic, a vaccine was not available before the first pandemic wave hit and therefore came too late to reduce influenza morbidity. H7 vaccines based on divergent isolates of the Eurasian and North American lineages have been tested in clinical trials, and seed strains and reagents are already available and can potentially be used initially to curtail influenza-induced disease until a more appropriately matched H7N9 vaccine is ready. In a challenge experiment in the mouse model, we assessed the efficacy of both inactivated virus and recombinant hemagglutinin vaccines made from seed strains that are divergent from H7N9 from each of the two major H7 lineages. Furthermore, we analyzed the cross-reactive responses of sera from human subjects vaccinated with heterologous North American and Eurasian lineage H7 vaccines to H7N9. Vaccinations with inactivated virus and recombinant hemagglutinin protein preparations from both lineages raised hemagglutination-inhibiting antibodies against H7N9 viruses and protected mice from stringent viral challenges. Similar cross-reactivity was observed in sera of human subjects from a clinical trial with a divergent H7 vaccine. Existing H7 vaccine candidates based on divergent strains could be used as a first line of defense against an H7N9 pandemic. In addition, this also suggests that H7N9 vaccines that are currently under development might be stockpiled and used for divergent avian H7 strains that emerge in the future. IMPORTANCE Sporadic human infections with H7N9 viruses started being reported in China in the early spring of 2013. Despite a significant drop in the number of infections during the summer months of 2013, an increased number of cases has already been reported for the 2013-2014 winter season. The high case fatality rate, the ability to bind to receptors in the human upper respiratory tract in combination with several family clusters, and the emergence of neuraminidase inhibitor-resistant variants that show no loss of pathogenicity and the ability to transmit in animal models have raised concerns about a potential pandemic and have spurred efforts to produce vaccine candidates. Here we show that antigen preparations from divergent H7 strains are able to induce protective immunity against H7N9 infection.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Vaccination
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S. Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irina Margine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rong Hai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mirco Schmolke
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Runstadler
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sarah F. Andrews
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, USA
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, USA
| | - Rebecca J. Cox
- Influenza Centre and Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway, and Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - John J. Treanor
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|