1
|
Soedarsono N, Hanafi MGS, Hartomo BT, Auerkari EI. ELOVL2, PRKG2, and EDARADD DNA Methylation Strongly Estimate Indonesian Adolescents. Diagnostics (Basel) 2024; 14:1767. [PMID: 39202255 PMCID: PMC11353275 DOI: 10.3390/diagnostics14161767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Recently, there has been a growing interest in using DNA methylation analysis for age estimation. Despite this growing interest, there is a scarcity of research on the potential of DNA methylation as a biomarker for age estimation in Indonesia. This study aims to investigate the applicability of ELOVL2, PRKG2, and EDARADD genes for forensic identification in the 11-20 age group among Indonesians. This research utilizes 43 archived blood samples from healthy individuals who underwent blood tests at the Gatot Soebroto Army Hospital (RSPAD) in Central Jakarta, Indonesia. The methylation-specific PCR (MSP) technique assessed the DNA methylation level. The key findings of this study include (1) a strong positive correlation between methylation levels in the ELOVL2 gene and age; (2) a strong negative correlation between methylation levels in PRKG2 and EDARADD genes with age; (3) the development of three linear regression formulas for age prediction; and (4) mean absolute error (MAE) values derived from this research, which are ±0.48 for ELOVL2 gene regression formula, ±0.58 for PRKG2 gene regression formula, and ±0.72 for EDARADD gene regression formula. In summary, this study explores the potential of DNA methylation analysis for age estimation in Indonesia, focusing on ELOVL2, PRKG2, and EDARADD genes in the 11-20 age group. The findings underscore the applicability of DNA methylation analysis in forensic identification and age estimation, paving the way for future research in this field.
Collapse
Affiliation(s)
- Nurtami Soedarsono
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| | - Muhammad Garry Syahrizal Hanafi
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| | - Bambang Tri Hartomo
- Department of Dental Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto 53122, Indonesia;
| | - Elza Ibrahim Auerkari
- Division of Forensic Odontology, Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Kota Depok, DKI, Jakarta 10430, Indonesia; (M.G.S.H.); (E.I.A.)
| |
Collapse
|
2
|
Laurentino S, Heckmann L, Di Persio S, Li X, Meyer Zu Hörste G, Wistuba J, Cremers JF, Gromoll J, Kliesch S, Schlatt S, Neuhaus N. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin Epigenetics 2019; 11:127. [PMID: 31462300 PMCID: PMC6714305 DOI: 10.1186/s13148-019-0720-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background The most common sex chromosomal aneuploidy in males is Klinefelter syndrome, which is characterized by at least one supernumerary X chromosome. While these men have long been considered infertile, focal spermatogenesis can be observed in some patients, and sperm can be surgically retrieved and used for artificial reproductive techniques. Although these gametes can be used for fertility treatments, little is known about the molecular biology of the germline in Klinefelter men. Specifically, it is unclear if germ cells in Klinefelter syndrome correctly establish the androgenetic DNA methylation profile and transcriptome. This is due to the low number of germ cells in the Klinefelter testes available for analysis. Results Here, we overcame these difficulties and successfully investigated the epigenetic and transcriptional profiles of germ cells in Klinefelter patients employing deep bisulfite sequencing and single-cell RNA sequencing. On the transcriptional level, the germ cells from Klinefelter men clustered together with the differentiation stages of normal spermatogenesis. Klinefelter germ cells showed a normal DNA methylation profile of selected germ cell-specific markers compared with spermatogonia and sperm from men with normal spermatogenesis. However, germ cells from Klinefelter patients showed variations in the DNA methylation of imprinted regions. Conclusions These data indicate that Klinefelter germ cells have a normal transcriptome but might present aberrant imprinting, showing impairment in germ cell development that goes beyond mere germ cell loss. Electronic supplementary material The online version of this article (10.1186/s13148-019-0720-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Laura Heckmann
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Xiaolin Li
- Department of Neurology, Institute of Translational Neurology, University Hospital of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology, Institute of Translational Neurology, University Hospital of Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Jann-Frederik Cremers
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, 48149, Münster, Germany.
| |
Collapse
|
3
|
Next generation sequencing and imprinting disorders: Current applications and future perspectives: Lessons from Silver-Russell syndrome. Mol Cell Probes 2019; 44:1-7. [DOI: 10.1016/j.mcp.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 12/28/2022]
|
4
|
Soellner L, Kopp KM, Mütze S, Meyer R, Begemann M, Rudnik S, Rath W, Eggermann T, Zerres K. NLRP genes and their role in preeclampsia and multi-locus imprinting disorders. J Perinat Med 2018; 46:169-173. [PMID: 28753543 DOI: 10.1515/jpm-2016-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/19/2017] [Indexed: 12/25/2022]
Abstract
Preeclampsia (PE) affects 2-5% of all pregnancies. It is a multifactorial disease, but it has been estimated that 35% of the variance in liability of PE are attributable to maternal genetic effects and 20% to fetal genetic effects. PE has also been reported in women delivering children with Beckwith-Wiedemann syndrome (BWS, OMIM 130650), a disorder associated with aberrant methylation at genomically imprinted loci. Among others, members of the NLRP gene family are involved in the etiology of imprinting defects. Thus, a functional link between PE, NLRP gene mutations and aberrant imprinting can be assumed. Therefore we analyzed a cohort of 47 PE patients for NLRP gene mutations by next generation sequencing. In 25 fetuses where DNA was available we determined the methylation status at the imprinted locus. With the exception of one woman heterozygous for a missense variant in the NLRP7 gene (NM_001127255.1(NLRP7):c.542G>C) we could not identify further carriers, in the fetal DNA normal methylation patterns were observed. Thus, our negative screening results in a well-defined cohort indicate that NLRP mutations are not a relevant cause of PE, though strong evidence for a functional link between NLRP mutations, PE and aberrant methylation exist.
Collapse
Affiliation(s)
- Lukas Soellner
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Kathrin Maria Kopp
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | | | - Robert Meyer
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Sabine Rudnik
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Werner Rath
- Department of Gynecology, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Klaus Zerres
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
5
|
Eggermann T, Oehl-Jaschkowitz B, Dicks S, Thomas W, Kanber D, Albrecht B, Begemann M, Kurth I, Beygo J, Buiting K. The maternal uniparental disomy of chromosome 6 (upd(6)mat) "phenotype": result of placental trisomy 6 mosaicism? Mol Genet Genomic Med 2017; 5:668-677. [PMID: 29178649 PMCID: PMC5702562 DOI: 10.1002/mgg3.324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Maternal uniparental disomy of chromosome 6 (upd(6)mat) is a rare finding and its clinical relevance is currently unclear. Based on clinical data from two new cases and patients from the literature, the pathogenetic significance of upd(6)mat is delineated. METHODS Own cases were molecularly characterized for isodisomic uniparental regions on chromosome 6. For further cases with upd(6)mat, a literature search was conducted and genetic and clinical data were ascertained. RESULTS Comparison of isodisomic regions between the new upd(6)mat cases and those from four reports did not reveal any common isodisomic region. Among the patients with available cytogenetic data, five had a normal karyotype in lymphocytes, whereas a trisomy 6 (mosaicism) was detected prenatally in four cases. A common clinical picture was not obvious in upd(6)mat, but intrauterine growth restriction (IUGR) and preterm delivery were frequent. CONCLUSION A common upd(6)mat phenotype is not obvious, but placental dysfunction due to trisomy 6 mosaicism probably contributes to IUGR and preterm delivery. In fact, other clinical features observed in upd(6)mat patients might be caused by homozygosity of recessive mutations or by an undetected trisomy 6 cell line. Upd(6)mat itself is not associated with clinical features, and can rather be regarded as a biomarker. In case upd(6)mat is detected, the cause for the phenotype is identified indirectly, but the UPD is not the basic cause.
Collapse
Affiliation(s)
- Thomas Eggermann
- Medical Faculty, Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | | - Severin Dicks
- Medical Faculty, Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | | - Deniz Kanber
- Institute of Human Genetics, University of Essen, Essen, Germany
| | - Beate Albrecht
- Institute of Human Genetics, University of Essen, Essen, Germany
| | - Matthias Begemann
- Medical Faculty, Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Jasmin Beygo
- Institute of Human Genetics, University of Essen, Essen, Germany
| | - Karin Buiting
- Institute of Human Genetics, University of Essen, Essen, Germany
| |
Collapse
|
6
|
Haertle L, Maierhofer A, Böck J, Lehnen H, Böttcher Y, Blüher M, Schorsch M, Potabattula R, El Hajj N, Appenzeller S, Haaf T. Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. PLoS One 2017; 12:e0184030. [PMID: 28854270 PMCID: PMC5576652 DOI: 10.1371/journal.pone.0184030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.
Collapse
Affiliation(s)
- Larissa Haertle
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Mönchengladbach, Germany
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
- Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig, Germany
| | | | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, Julius Maximilians University, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Schröder C, Leitão E, Wallner S, Schmitz G, Klein-Hitpass L, Sinha A, Jöckel KH, Heilmann-Heimbach S, Hoffmann P, Nöthen MM, Steffens M, Ebert P, Rahmann S, Horsthemke B. Regions of common inter-individual DNA methylation differences in human monocytes: genetic basis and potential function. Epigenetics Chromatin 2017; 10:37. [PMID: 28747224 PMCID: PMC5530492 DOI: 10.1186/s13072-017-0144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/20/2017] [Indexed: 01/23/2023] Open
Abstract
Background There is increasing evidence for inter-individual methylation differences at CpG dinucleotides in the human genome, but the regional extent and function of these differences have not yet been studied in detail. For identifying regions of common methylation differences, we used whole genome bisulfite sequencing data of monocytes from five donors and a novel bioinformatic strategy. Results We identified 157 differentially methylated regions (DMRs) with four or more CpGs, almost none of which has been described before. The DMRs fall into different chromatin states, where methylation is inversely correlated with active, but not repressive histone marks. However, methylation is not correlated with the expression of associated genes. High-resolution single nucleotide polymorphism (SNP) genotyping of the five donors revealed evidence for a role of cis-acting genetic variation in establishing methylation patterns. To validate this finding in a larger cohort, we performed genome-wide association studies (GWAS) using SNP genotypes and 450k array methylation data from blood samples of 1128 individuals. Only 30/157 (19%) DMRs include at least one 450k CpG, which shows that these arrays miss a large proportion of DNA methylation variation. In most cases, the GWAS peak overlapped the CpG position, and these regions are enriched for CREB group, NF-1, Sp100 and CTCF binding motifs. In two cases, there was tentative evidence for a trans-effect by KRAB zinc finger proteins. Conclusions Allele-specific DNA methylation occurs in discrete chromosomal regions and is driven by genetic variation in cis and trans, but in general has little effect on gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0144-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Anupam Sinha
- Institute of Clinical Molecular Biology, Kiel University, University Hospital, Kiel, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Peter Ebert
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
8
|
Soellner L, Begemann M, Degenhardt F, Geipel A, Eggermann T, Mangold E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet 2017; 25:924-929. [PMID: 28561018 DOI: 10.1038/ejhg.2017.94] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
It has been shown previously that homozygous and compound-heterozygous variants affecting protein function in the human NLRP genes impact reproduction and/or fetal imprinting patterns. These variants represent so-called 'maternal effect mutations', that is, although female variant carriers are healthy, they are at risk of reproductive failure, and their offspring may develop aberrant methylation and imprinting disorders. In contrast, the relevance to reproductive failure of maternal heterozygous NLRP7 variants remains unclear. The present report describes the identification of a heterozygous NLRP7 variant in a healthy 28-year-old woman with a history of recurrent reproductive failure, and the molecular findings in two of the deceased offspring. Next-generation sequencing (NGS) for NLRP variants was performed. In the tissues of two offspring (one fetus; one deceased premature neonate) methylation of imprinted loci was tested using methylation-specific assays. Both pregnancies had been characterized by the presence of elevated human chorionic gonadotropin (hCG) levels and ovarian cysts. In the mother, a heterozygous nonsense 2-bp deletion in exon 5 of the NLRP7 gene was identified (NM_001127255.1:c.2010_2011del, p.(Phe671Glnfs*18)). In the two investigated offspring, heterogeneous aberrant methylation patterns were detected at imprinted loci. The present data support the hypothesis that heterozygous NLRP7 variants contribute to reproductive wastage, and that these variants represent autosomal dominant maternal effect variants which lead to aberrant imprinting marks in the offspring. Specific screening and close prenatal monitoring of NLRP7 variant carriers is proposed. Egg donation might facilitate successful pregnancy in heterozygous NLRP7 variant carriers.
Collapse
Affiliation(s)
- Lukas Soellner
- Institute of Human Genetics, RWTH Aachen, Aachen, Germany
| | | | | | - Annegret Geipel
- Division of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
9
|
Scala G, Affinito O, Palumbo D, Florio E, Monticelli A, Miele G, Chiariotti L, Cocozza S. ampliMethProfiler: a pipeline for the analysis of CpG methylation profiles of targeted deep bisulfite sequenced amplicons. BMC Bioinformatics 2016; 17:484. [PMID: 27884103 PMCID: PMC5123276 DOI: 10.1186/s12859-016-1380-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Background CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Results Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. Conclusions ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1380-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanni Scala
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy.
| | - Ornella Affinito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) "Gaetano Salvatore", Consiglio Nazionale delle Ricerche CNR, Naples, Italy
| | - Domenico Palumbo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Ermanno Florio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) "Gaetano Salvatore", Consiglio Nazionale delle Ricerche CNR, Naples, Italy
| | - Antonella Monticelli
- Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) "Gaetano Salvatore", Consiglio Nazionale delle Ricerche CNR, Naples, Italy
| | - Gennaro Miele
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Lorenzo Chiariotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) "Gaetano Salvatore", Consiglio Nazionale delle Ricerche CNR, Naples, Italy
| | - Sergio Cocozza
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) "Gaetano Salvatore", Consiglio Nazionale delle Ricerche CNR, Naples, Italy
| |
Collapse
|
10
|
Wallner S, Schröder C, Leitão E, Berulava T, Haak C, Beißer D, Rahmann S, Richter AS, Manke T, Bönisch U, Arrigoni L, Fröhler S, Klironomos F, Chen W, Rajewsky N, Müller F, Ebert P, Lengauer T, Barann M, Rosenstiel P, Gasparoni G, Nordström K, Walter J, Brors B, Zipprich G, Felder B, Klein-Hitpass L, Attenberger C, Schmitz G, Horsthemke B. Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenetics Chromatin 2016; 9:33. [PMID: 27478504 PMCID: PMC4967341 DOI: 10.1186/s13072-016-0079-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium. Results Numerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis and innate immune response. Conclusions In summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in monocytes and rapidly de-repressed after the onset of macrophage differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tea Berulava
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Claudia Haak
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Daniela Beißer
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Andreas S Richter
- Bioinformatics and Deep Sequencing Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Bioinformatics and Deep Sequencing Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ulrike Bönisch
- Bioinformatics and Deep Sequencing Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Laura Arrigoni
- Bioinformatics and Deep Sequencing Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Wei Chen
- Max Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Fabian Müller
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Peter Ebert
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | | | - Matthias Barann
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Gilles Gasparoni
- Institute of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Institute of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Institute of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | | | | | - Bärbel Felder
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ludger Klein-Hitpass
- Biochip Lab, Institute of Cell Biology, University Duisburg-Essen, Essen, Germany
| | | | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
11
|
Bak M, Boonen SE, Dahl C, Hahnemann JMD, Mackay DJDG, Tümer Z, Grønskov K, Temple IK, Guldberg P, Tommerup N. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC MEDICAL GENETICS 2016; 17:29. [PMID: 27075368 PMCID: PMC4831126 DOI: 10.1186/s12881-016-0292-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Background Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers. Methods Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing. Results We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif. Conclusions We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional studies of the locus might provide further insight into the etiology of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0292-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Susanne E Boonen
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - Christina Dahl
- Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen Ø, Denmark
| | - Johanne M D Hahnemann
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - Deborah J D G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury NHS Foundation Trust, SP2 8BJ, Salisbury, UK
| | - Zeynep Tümer
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark.,Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200N, Copenhagen, Denmark
| | - Karen Grønskov
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Wessex Clinical Genetics Service, Southampton University Hospitals Trust, Southampton, SO16 5YA, UK
| | - Per Guldberg
- Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen Ø, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
12
|
Grothaus K, Kanber D, Gellhaus A, Mikat B, Kolarova J, Siebert R, Wieczorek D, Horsthemke B. Genome-wide methylation analysis of retrocopy-associated CpG islands and their genomic environment. Epigenetics 2016; 11:216-26. [PMID: 26890210 DOI: 10.1080/15592294.2016.1145330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Gene duplication by retrotransposition, i.e., the reverse transcription of an mRNA and integration of the cDNA into the genome, is an important mechanism in evolution. Based on whole-genome bisulfite sequencing of monocyte DNA, we have investigated the methylation state of all CpG islands (CGIs) associated with a retrocopy (n = 1,319), their genomic environment, as well as the CGIs associated with the ancestral genes. Approximately 10% of retrocopies are associated with a CGI. Whereas almost all CGIs of the human genome are unmethylated, 68% of the CGIs associated with a retrocopy are methylated. In retrocopies resulting from multiple retrotranspositions of the same ancestral gene, the methylation state of the CGI often differs. There is a strong positive correlation between the methylation state of the CGI/retrocopy and their genomic environment, suggesting that the methylation state of the integration site determined the methylation state of the CGI/retrocopy, or that methylation of the retrocopy by a host defense mechanism has spread into the adjacent regions. Only a minor fraction of CGI/retrocopies (n = 195) has intermediate methylation levels. Among these, the previously reported CGI/retrocopy in intron 2 of the RB1 gene (PPP1R26P1) as well as the CGI associated with the retrocopy RPS2P32 identified in this study carry a maternal methylation imprint. In conclusion, these findings shed light on the evolutionary dynamics and constraints of DNA methylation.
Collapse
Affiliation(s)
- Katrin Grothaus
- a Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Deniz Kanber
- a Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Alexandra Gellhaus
- b Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen , Essen , Germany
| | - Barbara Mikat
- a Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Julia Kolarova
- c Institut für Humangenetik, Christian-Albrechts-Universität Kiel & Universitätsklinikum Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | - Reiner Siebert
- c Institut für Humangenetik, Christian-Albrechts-Universität Kiel & Universitätsklinikum Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | - Dagmar Wieczorek
- a Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| | - Bernhard Horsthemke
- a Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen , Essen , Germany
| |
Collapse
|
13
|
Laurentino S, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity. Reproduction 2016; 151:R71-8. [PMID: 26884419 DOI: 10.1530/rep-15-0436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023]
Abstract
The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jennifer Borgmann
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| |
Collapse
|
14
|
Kuhtz J, Schneider E, El Hajj N, Zimmermann L, Fust O, Linek B, Seufert R, Hahn T, Schorsch M, Haaf T. Epigenetic heterogeneity of developmentally important genes in human sperm: implications for assisted reproduction outcome. Epigenetics 2015; 9:1648-58. [PMID: 25625849 PMCID: PMC4622742 DOI: 10.4161/15592294.2014.988063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular basis of male infertility is poorly understood, the majority of cases remaining unsolved. The association of aberrant sperm DNA methylation patterns and compromised semen parameters suggests that disturbances in male germline epigenetic reprogramming contribute to this problem. So far there are only few data on the epigenetic heterogeneity of sperm within a given sample and how to select the best sperm for successful infertility treatment. Limiting dilution bisulfite sequencing of small pools of sperm from fertile donors did not reveal significant differences in the occurrence of abnormal methylation imprints between sperm with and without morphological abnormalities. Intracytoplasmic morphologically selected sperm injection was not associated with an improved epigenetic quality, compared to standard intracytoplasmatic sperm injection. Deep bisulfite sequencing (DBS) of 2 imprinted and 2 pluripotency genes in sperm from men attending a fertility center showed that in both samples with normozoospermia and oligoasthenoteratozoospermia (OAT) the vast majority of sperm alleles was normally (de)methylated and the percentage of epimutations (allele methylation errors) was generally low (<1%). However, DBS allowed one to identify and quantify these rare epimutations with high accuracy. Sperm samples not leading to a pregnancy, in particular in the OAT group, had significantly more epimutations in the paternally methylated GTL2 gene than samples leading to a live birth. All 13 normozoospermic and 13 OAT samples leading to a child had <1% GTL2 epimutations, whereas one (7%) of 14 normozoospermic and 7 (50%) of 14 OAT samples without pregnancy displayed 1–14% GTL2 epimutations.
Collapse
Affiliation(s)
- Juliane Kuhtz
- a Institute of Human Genetics ; Julius Maximilians University ; Würzburg , Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singer H, Biswas A, Nuesgen N, Oldenburg J, El-Maarri O. NLRP7, Involved in Hydatidiform Molar Pregnancy (HYDM1), Interacts with the Transcriptional Repressor ZBTB16. PLoS One 2015; 10:e0130416. [PMID: 26121690 PMCID: PMC4488268 DOI: 10.1371/journal.pone.0130416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the maternal effect gene NLRP7 cause biparental hydatidiform mole (HYDM1). HYDM1 is characterized by abnormal growth of placenta and lack of proper embryonic development. The molar tissues are characterized by abnormal methylation patterns at differentially methylated regions (DMRs) of imprinted genes. It is not known whether this occurs before or after fertilization, but the high specificity of this defect to the maternal allele indicates a possible maternal germ line-specific effect. To better understand the unknown molecular mechanism leading to HYDM1, we performed a yeast two-hybrid screen against an ovarian library using NLRP7 as bait. We identified the transcriptional repressor ZBTB16 as an interacting protein of NLRP7 and verified this interaction in mammalian cells by immunoprecipitation and confocal microscopy. Native protein analysis detected NLRP7 and ZBTB16 in a 480kD protein complex and both proteins co-localize in the cytoplasm in juxtanuclear aggregates. HYDM1-causing mutations in NLRP7 did not show altered patterns of interaction with ZBTB16. Hence, the biological significance of the NLRP7-ZBTB16 interaction remains to be revealed. However, a clear effect of harvesting ZBTB16 to the cytoplasm when the NLRP7 protein is overexpressed may be linked to the pathology of the molar pregnancy disease.
Collapse
Affiliation(s)
- Heike Singer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
16
|
Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, Begemann M, Soellner L. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 2015; 92:769-77. [PMID: 24658748 DOI: 10.1007/s00109-014-1141-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs. KEY MESSAGE Molecular disturbances in patients with imprinting disorders are often not restricted to the disease-specific locus but also affect other chromosomal regions. These additional disturbances include methylation defects, uniparental disomies as well as chromosomal imbalances. The identification of these additional alterations is mandatory for a well-directed genetic counseling. Furthermore, these findings help to decipher the complex regulation of imprinting.
Collapse
|
17
|
Pliushch G, Schneider E, Schneider T, El Hajj N, Rösner S, Strowitzki T, Haaf T. In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril 2015; 103:720-7.e1. [PMID: 25572872 DOI: 10.1016/j.fertnstert.2014.12.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study the possible transmission, to the next generation, of epigenetic defects associated with in vitro maturation (IVM) of human oocytes. DESIGN Case-control study using epigenetic data. SETTING Two collaborating university departments. PATIENT(S) Eleven IVM newborns and 19 controls, conceived by conventional assisted reproduction. INTERVENTION(S) Chorionic villus and cord-blood sampling. MAIN OUTCOME MEASURE(S) Using bisulfite pyrosequencing, we have measured average methylation levels of 6 imprinted (LIT1, MEG, MEST, NESPas, PEG3, and SNRPN), 5 tumor-suppressor (APC, ATM, BRCA1, RAD51C, and TP53), 2 pluripotency (NANOG and OCT4), and 2 metabolic (LEP and NR3C1) genes, as well as 2 repetitive elements (ALU and LINE1) in 2 tissues of IVM and control neonates. Using deep bisulfite sequencing, we have determined methylation patterns of many individual DNA molecules to detect rare RAD51C epimutations (allele methylation errors). RESULT(S) No statistically significant impact was found of IVM on chorionic villus and cord-blood DNA methylation at the studied developmentally important genes and interspersed repeats. The RAD51C epimutation rate was low (0.5% ± 0.1%) in all analyzed samples. CONCLUSION(S) IVM-induced epigenetic changes in offspring, if any, are relatively small in magnitude and/or infrequent.
Collapse
Affiliation(s)
- Galyna Pliushch
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - Tamara Schneider
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | - Sabine Rösner
- Department of Gynecological Endocrinology and Reproductive Medicine, Women's Hospital, Ruprecht Karls University, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Reproductive Medicine, Women's Hospital, Ruprecht Karls University, Heidelberg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany.
| |
Collapse
|
18
|
|
19
|
Nguyen NMP, Zhang L, Reddy R, Déry C, Arseneau J, Cheung A, Surti U, Hoffner L, Seoud M, Zaatari G, Bagga R, Srinivasan R, Coullin P, Ao A, Slim R. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet 2014; 51:623-34. [PMID: 25097207 DOI: 10.1136/jmedgenet-2014-102546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hydatidiform mole (HM) is a human pregnancy with excessive trophoblastic proliferation and abnormal embryonic development that may be sporadic or recurrent. In the sporadic form, the HM phenotype is driven by an abnormal ratio of paternal to maternal genomes, whereas in the recurrent form, the HM phenotype is caused by maternal-recessive mutations, mostly in NLRP7, despite the diploid biparental origin of the HM tissues. In this study, we characterised the expression of the imprinted, maternally expressed gene, CDKN1C (p57(KIP2)), the genotype, and the histopathology of 36 products of conception (POC) from patients with two defective alleles in NLRP7 and looked for potential correlations between the nature of the mutations in the patients and the various HM features. METHODS/RESULTS We found that all the 36 POCs are diploid biparental and have the same parental contribution to their genomes. However, some of them expressed variable levels of p57(KIP2) and this expression was strongly associated with the presence of embryonic tissues of inner cell mass origin and mild trophoblastic proliferation, which are features of triploid partial HMs, and were associated with missense mutations. Negative p57(KIP2) expression was associated with the absence of embryonic tissues and excessive trophoblastic proliferation, which are features of androgenetic complete HMs and were associated with protein-truncating mutations. CONCLUSIONS Our data suggest that NLRP7, depending on the severity of its mutations, regulates the imprinted expression of p57(KIP2) and consequently the balance between tissue differentiation and proliferation during early human development. This role is novel and could not have been revealed by any other approach on somatic cells.
Collapse
Affiliation(s)
- Ngoc Minh Phuong Nguyen
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Li Zhang
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ramesh Reddy
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Christine Déry
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Annie Cheung
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Lori Hoffner
- Department of Pathology, University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Muhieddine Seoud
- Department of Obstetrics and Gynecology, American University of Beirut, Beirut, Lebanon
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Beirut, Lebanon
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Cytology & Gynecological Pathology, Post Graduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Philippe Coullin
- INSERM U782, Endocrinologie et Génétique de la Reproduction et du Développement, Clamart, France
| | - Asangla Ao
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
20
|
The specification of imprints in mammals. Heredity (Edinb) 2014; 113:176-83. [PMID: 24939713 PMCID: PMC4105455 DOI: 10.1038/hdy.2014.54] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Collapse
|
21
|
Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, Haake A, Jüttner E, Korn B, Mackay DJG, Martin-Subero JI, Nagel I, Sebire NJ, Seidmann L, Vater I, von Kaisenberg CS, Temple IK, Horsthemke B, Buiting K, Siebert R. A familial disorder of altered DNA-methylation. J Med Genet 2014; 51:407-12. [DOI: 10.1136/jmedgenet-2013-102149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51:229-38. [PMID: 24501229 PMCID: PMC3963529 DOI: 10.1136/jmedgenet-2013-102116] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder patients have hypomethylation of several imprinted loci (HIL) throughout the genome and may have atypically severe clinical features. Here we used array analysis in HIL patients to define patterns of aberrant methylation throughout the genome. DESIGN We developed a novel informatic pipeline capable of small sample number analysis, and profiled 10 HIL patients with two clinical presentations (Beckwith-Wiedemann syndrome and neonatal diabetes) using the Illumina Infinium Human Methylation450 BeadChip array to identify candidate imprinted regions. We used robust statistical criteria to quantify DNA methylation. RESULTS We detected hypomethylation at known imprinted loci, and 25 further candidate imprinted regions (nine shared between patient groups) including one in the Down syndrome critical region (WRB) and another previously associated with bipolar disorder (PPIEL). Targeted analysis of three candidate regions (NHP2L1, WRB and PPIEL) showed allelic expression, methylation patterns consistent with allelic maternal methylation and frequent hypomethylation among an additional cohort of HIL patients, including six with Silver-Russell syndrome presentations and one with pseudohypoparathyroidism 1B. CONCLUSIONS This study identified novel candidate imprinted genes, revealed remarkable epigenetic convergence among clinically divergent patients, and highlights the potential of epigenomic profiling to expand our understanding of the normal methylome and its disruption in human disease.
Collapse
|
23
|
Nguyen NMP, Slim R. Genetics and Epigenetics of Recurrent Hydatidiform Moles: Basic Science and Genetic Counselling. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014; 3:55-64. [PMID: 24533231 PMCID: PMC3920063 DOI: 10.1007/s13669-013-0076-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gestational trophoblastic disease (GTD) is a group of conditions that originate from the abnormal hyperproliferation of trophoblastic cells, which derive from the trophectoderm, the outer layer of the blastocyst that would normally develop into the placenta during pregnancy. GTDs encompass hydatidiform mole (HM) (complete and partial), invasive mole, gestational choriocarcinoma, placental-site trophoblastic tumor, and epithelioid trophoblastic tumor. Of these, the most common is HM, and it is the only one that has been reported to recur in the same patients from independent pregnancies, which indicates the patients' genetic predisposition. In addition, HM is the only GTD that segregates in families according to Mendel's laws of heredity, which made it possible to use rare familial cases of recurrent HMs (RHMs) to identify two maternal-effect genes, NLRP7 and KHDC3L, responsible for this condition. Here, we recapitulate current knowledge about RHMs and conclude with the role and benefits of testing patients for mutations in the known genes.
Collapse
Affiliation(s)
- Ngoc Minh Phuong Nguyen
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Quebec Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Quebec Canada ; Montreal General Hospital Research Institute, L3-121, 1650 Cedar Ave., Montreal, Quebec Canada H3G 1A4
| |
Collapse
|