1
|
Naik AV, Sellappan K. Quantification and histochemical localization of secondary metabolites during development in Annona muricata L. (Annonaceae). Sci Rep 2024; 14:27641. [PMID: 39532974 PMCID: PMC11557601 DOI: 10.1038/s41598-024-79413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Histolocalization and quantification of secondary metabolites established the occurrence of alkaloids, phenols and acetogenins in various plant organs of A. muricata at different stages of plant growth. Annona muricata L. possesses broad assemblage of ethno-pharmaceutical and therapeutic upsides ascribed to biosynthesis of secondary metabolites. Currently, the bioactivity is characterized by the production of acetogenins (ACGs), and also by the biosynthesis of alkaloids, primarily benzylisoquinolines derived from tyrosine and phenolic compounds. As a result of high variability of metabolite production in A. muricata, the present study evaluated the histochemical analysis of various plant parts at different developmental stages of growth. Presences of phytometabolites were determined using in-situ histochemical localization of alkaloids, phenolic compounds and acetogenins, while its estimation employing spectroscopic quantification techniques to understand structure, development, time-course deposition, content and distribution of secondary phytoconstituents. Study revealed distinct presence of secondary metabolites in cells and tissues of all plant organs in various intensities and patterns. Alkaloids and acetogenins occurred mostly in secretory cavities or idioblast cells while sparsely associated with other cells or tissues. Phenolic compounds emerged widely, with no confined distribution patterns occurring in storage cells and tissues. Quantitative analysis revealed highest accumulation of alkaloids, phenols and acetogenins in mature root-barks, mature unripe fruit rind and mature leaf respectively. Secondary metabolites generally occurred in young stages at low concentrations as compared to matured growth stages of plant parts. Such in-situ histochemical and biochemical approach will help in identifying the cells and tissues responsible for synthesis, storage and biological effects of potential secondary metabolites which could be further used for culturing and enhancing its production with biotechnological aids.
Collapse
Affiliation(s)
- Aditi Venkatesh Naik
- Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa-403206, India.
| | - Krishnan Sellappan
- Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa-403206, India.
| |
Collapse
|
2
|
Chen Y, Lin Y, Qiu Y, Li W, Shen Y, Huang L. Identification and functional characterization of the diterpene synthase family in Pogostemon cablin (Blanco) Benth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109190. [PMID: 39426153 DOI: 10.1016/j.plaphy.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Pogostemon cablin (Blanco) Benth (Patchouli) is an aromatic herb extensively used in pharmaceutical and cosmetic industries. Sesquiterpenes are the characteristic constitutes in patchouli which are synthesized in the glandular trichomes on leaves and stems. Gibberellic acid (GA), a tetracyclic diterpenoid, plays a crucial role in the formation of glandular trichome. However, the diterpene biosynthesis remains largely unknown in patchouli. Here we identified a small diterpene synthases (diTPSs) family comprising three class II diTPSs (PatCPS1-3) and three class I diTPSs (PatKSL1 and PatGLS1-2). These diTPSs are functionally characterized using a yeast heterologous expression system. PatCPS1 was identified as an ent-copalyl diphosphate synthase (ent-CPS), in combination with PatKSL1, yield ent-kaurene, the precursor of GA, indicating their involvement in primary metabolism. PatCPS2 converted GGPP into (+)-8, 13-copalyl diphosphate (CPP). No activity was detected for PatCPS3, PatGLS1 and PatGLS2. Three ohnologs of PatCPS1 were further characterized to explore the possible functional differentiation of ent-CPS during the evolution of tetraploid hybrid patchouli genome. GC-MS analysis showed all ohnologs are functional ent-CPSs, demonstrating the functional conservation of PatCPS1 during evolution. Expression profiling by qRT-PCR showed PatCPS1 and PatKSL1 are ubiquitously expressed in all tissues, consistent with their involvement in primary metabolism. Conversely, PatCPS2 and PatCPS3 were predominantly expressed in the above ground parts, indicating a role in specialized metabolism. In summary, these findings clarify the early stages of GA biosynthesis in patchouli and provide gene elements for further metabolic engineering of sesquiterpenes via diterpenoids.
Collapse
Affiliation(s)
- Yiqiong Chen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yumin Lin
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingying Qiu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanying Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanting Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lili Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Konarska A. New insight in secretory structures and secretion composition in Rhus typhina L. - Anatomical, histochemical, and ultrastructural studies. Micron 2024; 186:103692. [PMID: 39111185 DOI: 10.1016/j.micron.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Rhus typhina is a valuable plant used in the pharmaceutical, cosmetic, and food industries due to the presence of biologically active substances accumulated in its organs, especially in secretory structures, i.e. trichomes and secretory ducts. Light microscopy, scanning electron microscopy, and transmission electron microscopy were used to examine the structure of glandular and non-glandular trichomes, as well as secretory ducts present in inflorescence peduncles of R. typhina. The chemical composition of the secretion produced by trichomes and ducts was assessed using histochemical techniques, including observations under brightfield and fluorescence microscopes. Two types of capitate glandular trichomes producing secretions with a similar composition and non-glandular trichomes exhibiting secretory activity were identified. The secretion of glandular trichomes was dominated by acidic and neutral lipids, essential oil, sesquiterpenes, and steroid-containing terpenes. The schizogenic secretory ducts located in the phloem produced a viscous milky substance with acidic polysaccharides, acidic lipids, phenolic compounds, and proteins. The secretion was released into the duct lumen through notches in the walls of the secretory epithelial cell facing the duct lumen. The location, type, and traits of the non-glandular trichomes and secretory structures, as well as the composition of the secreted products are considered important taxonomic features in the family Anacardiaceae and the Rhus genus. Additionally, these characters are important diagnostic markers for the pharmacobotanical identification of the species in medicinal and cosmetic raw materials. The various compounds present in the secretory structures of R. typhina may contribute to plant protection against pathogens or herbivory and probably play a role as attractants for pollinators and seed dispersers.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, Lublin 20-950, Poland.
| |
Collapse
|
4
|
Li J, Hu H, Fu H, Li J, Zeng T, Li J, Wang M, Jongsma MA, Wang C. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. PLANTA 2024; 259:41. [PMID: 38270671 DOI: 10.1007/s00425-023-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hansen Fu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Fatima S, Farzeen I, Ashraf A, Aslam B, Ijaz MU, Hayat S, Sarfraz MH, Zafar S, Zafar N, Unuofin JO, Lebelo SL, Muzammil S. A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth. Molecules 2023; 28:molecules28083469. [PMID: 37110702 PMCID: PMC10141922 DOI: 10.3390/molecules28083469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.
Collapse
Affiliation(s)
- Sehrish Fatima
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Farzeen
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | | | - Saima Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Nimrah Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Jeremiah Oshiomame Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Private Bag X06, Florida 1710, South Africa
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Wang X, Zhong L, Zou X, Gong L, Zhuang J, Zhang D, Zheng H, Wang X, Wu D, Zhan R, Chen L. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2023; 14:1098280. [PMID: 36923120 PMCID: PMC10009150 DOI: 10.3389/fpls.2023.1098280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lizhen Gong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Jiexuan Zhuang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Danhua Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hai Zheng
- School of Pharmaceutical Sciences, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xiaomin Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|
7
|
Naidoo D, Naidoo Y, Naidoo G, Kianersi F, Dewir YH. Histochemical Analysis and Ultrastructure of Trichomes and Laticifers of Croton gratissimus Burch. var. gratissimus (Euphorbiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:772. [PMID: 36840119 PMCID: PMC9964807 DOI: 10.3390/plants12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Croton gratissimus (Lavender croton) possesses three distinct secretory structures. These include lepidote and glandular trichomes and non-articulated unbranched laticifers. The lepidote trichomes form a dense indumentum on the abaxial surface of the leaves and canopy the glandular trichomes. Although assumed to be non-glandular, transmission electron microscopy (TEM) indicated high metabolic activity within the stalk and radial cells. Glandular trichomes are embedded in the epidermal layer and consist of a single cell which forms a prominent stalk and dilated head. Laticifers occur on the mid-vein of leaves and are predominantly associated with vascular tissue. In the stems, laticifers are associated with the phloem and pith. Both trichome types and laticifers stained positive for alkaloids, phenolic compounds, and lipids. Positive staining for these compounds in lepidote trichomes suggests their involvement in the production and accumulation of secondary metabolites. These metabolites could provide chemical defense for the plant and potentially be useful for traditional medicine.
Collapse
Affiliation(s)
- Danesha Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Gonasageran Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Farzad Kianersi
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Caperta AD, Róis AS, Teixeira G, Garcia-Caparros P, Flowers TJ. Secretory structures in plants: Lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance. PLANT, CELL & ENVIRONMENT 2020; 43:2912-2931. [PMID: 32542760 DOI: 10.1111/pce.13825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The Plumbaginaceae (non-core Caryophyllales) is a family well known for species adapted to a wide range of arid and saline habitats. Of its salt-tolerant species, at least 45 are in the genus Limonium; two in each of Aegialitis, Limoniastrum and Myriolimon, and one each in Psylliostachys, Armeria, Ceratostigma, Goniolimon and Plumbago. All the halophytic members of the family have salt glands and salt glands are also common in the closely related Tamaricaceae and Frankeniaceae. The halophytic species of the three families can secrete a range of ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , HCO3- , SO42- ) and other elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Salt glands are, however, absent in salt-tolerant members of the sister family Polygonaceae. We describe the structure of the salt glands in the three families and consider whether glands might have arisen as a means to avoid the toxicity of Na+ and/or Cl- or to regulate Ca2+ concentrations with the leaves. We conclude that the establishment of lineages with salt glands took place after the split between the Polygonaceae and its sister group the Plumbaginaceae.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Lisboa, Portugal
| | - Generosa Teixeira
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Garcia-Caparros
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Agrifood Campus of International Excellence ceiA3, Almería, Spain
| | | |
Collapse
|
9
|
Goodger JQD, Senaratne SL, Nicolle D, Woodrow IE. Differential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae). TREE PHYSIOLOGY 2018; 38:1451-1460. [PMID: 30032311 DOI: 10.1093/treephys/tpy077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Trees and shrubs from the genus Eucalyptus are characterized by the presence of numerous foliar oil glands that generally house mono- and sesquiterpenes. In some species, glands are also known to house substantial quantities of unrelated secondary metabolites such as volatile, aromatic β-triketones. It is not known if these compounds are co-housed with terpenes or if they are produced in distinct, metabolically specialized glands. We showed that Eucalyptus brevistylis-a species with appreciable foliar quantities of both β-triketones and terpenes-contains two visually distinct gland types in leaves, one that is translucent and the other golden-brown. Gas chromatographic analyses of solvent extracts of the two gland types showed that the translucent glands contain sesquiterpene alcohol cubenols and cubebols (termed 'sesquiterpene glands'), whereas the golden-brown glands contain predominantly the β-triketone conglomerone with lesser amounts of sesquiterpene hydrocarbon caryophyllenes (termed 'triketone glands'). Analysis of leaves from trees of different ages, from young saplings through to advanced age trees, showed a gradual increase in the abundance of sesquiterpene glands relative to triketone glands as plants aged. Such ontogenetic regulation of foliar secondary metabolite concentration appears to be a common feature of Eucalyptus species, albeit at different temporal scales. A similar ontogenetic pattern was observed in ageing leaves, with mature leaves having a higher proportion of sesquiterpene glands than young leaf tips. It is concluded that regulation of the relative abundances of the two gland types with ontogeny likely reflects the different herbivores present at the different life stages of leaves and whole plants. In particular, leaf tips and young plants may be advantaged by deploying higher amounts of insecticidal β-triketones. The concurrent deployment of two metabolically distinct gland types in leaves is a rare phenomenon and a novel finding for myrtaceous trees.
Collapse
Affiliation(s)
- Jason Q D Goodger
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samiddhi L Senaratne
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dean Nicolle
- Currency Creek Arboretum, Melrose Park, Currency Creek, SA, Australia
| | - Ian E Woodrow
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Niinemets Ü. Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets. TREE PHYSIOLOGY 2018; 38:1445-1450. [PMID: 30307578 DOI: 10.1093/treephys/tpy115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia
| |
Collapse
|
11
|
Machado SR, Gregório EA, Rodrigues TM. Structural associations between organelle membranes in nectary parenchyma cells. PLANTA 2018; 247:1067-1076. [PMID: 29344723 DOI: 10.1007/s00425-018-2844-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Elisa A Gregório
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tatiane M Rodrigues
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
12
|
Li C, Wang P, Lombi E, Cheng M, Tang C, Howard DL, Menzies NW, Kopittke PM. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2717-2729. [PMID: 29514247 PMCID: PMC5920297 DOI: 10.1093/jxb/ery085] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 05/04/2023]
Abstract
The present study investigated the role of trichomes in absorption of foliar-applied zinc fertilizers in soybean and tomato. Using synchrotron-based X-ray fluorescence microscopy for in situ analyses of hydrated leaves, we found that upon foliar application of ZnSO4, Zn accumulated within 15 min in some non-glandular trichomes in soybean, but not in tomato. However, analyses of cross-sections of soybean leaves did not show any marked accumulation of Zn in tissues surrounding trichomes. Furthermore, when near-isogenic lines of soybean differing 10-fold in trichome density were used to compare Zn absorption, it was found that foliar Zn absorption was not related to trichome density. Therefore, it is suggested that trichomes are not part of the primary pathway through which foliar-applied Zn moves across the leaf surface in soybean and tomato. However, this does not preclude trichomes being important in other plant species, as they are known to be highly diverse. We also compared the absorption of Zn when supplied as either ZnSO4, nano-ZnO, or bulk-ZnO, and found that absorption from ZnSO4 was about 10-fold higher than from nano- and bulk-ZnO, suggesting that it was mainly absorbed as soluble Zn. This study improves our understanding of the absorption of foliar-applied nutrients.
Collapse
Affiliation(s)
- Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, China
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia, Australia
| | - Miaomiao Cheng
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Caixian Tang
- La Trobe University, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Daryl L Howard
- ANSTO, Australian Synchrotron, Clayton, Victoria, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
13
|
Hanano A, Alkara M, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ. The Peroxygenase Activity of the Aspergillus flavus Caleosin, AfPXG, Modulates the Biosynthesis of Aflatoxins and Their Trafficking and Extracellular Secretion via Lipid Droplets. Front Microbiol 2018; 9:158. [PMID: 29467750 PMCID: PMC5808235 DOI: 10.3389/fmicb.2018.00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 11/29/2022] Open
Abstract
Aflatoxins (AF) are highly detrimental to human and animal health. We recently demonstrated that the Aspergillus flavus caleosin, AfPXG, had peroxygenase activity and mediated fungal development and AF accumulation. We now report the characterization of an AfPXG-deficient line using reference strain NRRL3357. The resulting fungal phenotype included a severe decrease in mycelium growth, failure to sporulate, and reduced AF production. Increasing cellular oxidative status by administration of hydrogen peroxide and cumene hydroperoxide did not restore the AfPXG-deficient phenotype, which suggests that AfPXG-deficiency is not directly related to oxidative stress. To investigate possible alternative roles of AfPXG, a gain of function approach was used to overexpress AfPXG, with the reporter gene Gfp, in an AfPXG-deficient line, termed AfPXG+ . The resulting phenotype included elevated numbers of stable lipid droplets (LDs) plus enhanced AF production. Highly purified LDs from AfPXG+ cultures sequestered AF and this ability was positively correlated with overall LD number. Site-specific mutagenesis of AfPXG to delete Histidine 85 (AfPXGHis85), a residue essential for its catalytic activity, or deletion of the putative LD targeting domain (AfPXGD126-140), showed that AfPXG-peroxygenase activity was required for AF biosynthesis and that integration of AF into LDs was required for their export via a LD-dependent pathway. Ectopic expression in fungal cells of the plant LD-associated protein, oleosin, also resulted in both additional LD accumulation and enhanced AF secretion. These results suggest that both fungal LDs and their associated caleosin proteins are intimately involved in the biosynthesis, trafficking, and secretion of AF.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Mari Alkara
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Farzana Rahman
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Mehedi Hassan
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|
14
|
THE SECRETORY STRUCTURE OF ESSENTIAL OILS IN SOME SPECIES OF LAMIACEAE FOR TRADITIONAL COSMETICS OF BESEMAH TRIBES LAHAT’S DISTRICT. BIOVALENTIA: BIOLOGICAL RESEARCH JOURNAL 2017. [DOI: 10.24233/biov.3.2.2017.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Besemah tribe uses plants in addition to the treatment is also used for beauty treatments traditionally. Based on Agustina's (2015) study, 109 species of plants were used for traditional medicine by the Tribe of Besemah. Some species of Lamiaceae for traditional medicine such as patchouli (Pogostemon cablin (Blanco) Benth.), wild mint (Mentha arvensis L.), hoary basil (Ocimum americanum L.), mexican mint (Plectranthus amboinicus (Lour.) Spreng.), and sweet basil (Ocimum basilicum L.) contains essential oils that can be used for traditional cosmetic ingredients. Essential oils are stored in the secretory structure of plants in leaf and stem organs. This study aims to determine the type and location of the secretory structure of essential oils in some species of lamiaceae used for traditional cosmetics of Besemah Tribes Lahat’s District. The research was conducted in November 2016 until February 2017. The results showed that patchouli plants was found in the presence of glandular trichomes, oil cells, and idioblast cells. The wild mint plants have glandular trichomes. The hoary basil plants have glandular trichomes and oil cells. The mexican mint plants have glandular trichomes and idioblast cells. The sweet basil plants have glandulartrichomes.Keywords: essential oils, lamiaceae, traditional cosmetics, Besemah tribes, glandular trichomes, oil cells, idioblast cells
Collapse
|
15
|
Majdi M, Malekzadeh-Mashhady A, Maroufi A, Crocoll C. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:152-162. [PMID: 28365519 DOI: 10.1016/j.plaphy.2017.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 05/29/2023]
Abstract
Thyme (Thymus vulgaris L.) is known to produce a variety of phenolic monoterpenes such as thymol and carvacrol. Thymol and carvacrol are health-promoting, biocide and antitoxin compounds and have been considered as the main constituents of essential oils in T. vulgaris. To improve our understanding of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare leaves and transcript levels of early (DXR) and late (TvTPS1, CYP71D178 and CYP71D180) biosynthetic genes of thymol and carvacrol were measured. The results showed that early step and late step genes in thymol/carvacrol biosynthesis are differentially regulated. DXR was not found to be exclusively expressed in glandular trichomes; in contrast, biosynthetic genes including γ-terpinene synthase (TvTPS1) and two cytochrome P450s, CYP71D178 and CYP71D180, were preferentially expressed in glandular secretory trichomes. The high expression of late biosynthetic genes in glandular trichomes, which also contain the highest concentration of thymol and carvacrol, suggests that glandular trichomes are the structure in which thymol/carvacrol biosynthesis and accumulation occur. Our results indicate that in addition to abiotic elicitors, developmental and spatial factors also play a key role in the biosynthesis of thymol and carvacrol, most likely relating to glandular trichome density and/or activity. Hence optimization of these factors could be considered as a useful strategy to achieve high yield of valuable compounds in T. vulgare or other closely related plant species.
Collapse
Affiliation(s)
- Mohammad Majdi
- Department of Agricultural Biotechnology, University of Kurdistan, Sanandaj, Iran; Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran.
| | | | - Asad Maroufi
- Department of Agricultural Biotechnology, University of Kurdistan, Sanandaj, Iran
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017; 22:molecules22010070. [PMID: 28045446 PMCID: PMC6155610 DOI: 10.3390/molecules22010070] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/25/2016] [Indexed: 02/06/2023] Open
Abstract
Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.
Collapse
|
17
|
Transcriptome sequencing provides insights into the metabolic pathways of patchouli alcohol and pogostone in Pogostemon cablin (Blanco) Benth. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0447-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Phylogenetic relationships, character evolution and biogeographic diversification of Pogostemon s.l. (Lamiaceae). Mol Phylogenet Evol 2016; 98:184-200. [PMID: 26923493 DOI: 10.1016/j.ympev.2016.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 01/19/2016] [Accepted: 01/29/2016] [Indexed: 11/22/2022]
Abstract
Pogostemon (Lamiaceae; Lamioideae) sensu lato is a large genus consisting of about 80 species with a disjunct African/Asian distribution. The infrageneric taxonomy of the genus has historically been troublesome due to morphological variability and putative convergent evolution within the genus. Notably, some species of Pogostemon are obligately aquatic, perhaps the only Lamiaceae taxa which exhibit this trait. Phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) and five plastid regions (matK, rbcL, rps16, trnH-psbA, trnL-F), confirmed the monophyly of Pogostemon and its sister relationship with the genus Anisomeles. Pogostemon was resolved into two major clades, and none of the three morphologically defined subgenera of Pogostemon were supported as monophyletic. Inflorescence type (spikes with more than two lateral branches vs. a single terminal spike, or rarely with two lateral branches) is phylogenetically informative and consistent with the two main clades we recovered. Accordingly, a new infrageneric classification of Pogostemon consisting of two subgenera is proposed. Molecular dating and biogeographic diversification analyses suggest that Pogostemon split from its sister genus in southern and southeast Asia in the early Miocene. The early strengthening of the Asia monsoon system that was triggered by the uplifting of the Qinghai-Tibetan Plateau may have played an important role in the subsequent diversification of the genus. In addition, our results suggest that transoceanic long-distance dispersal of Pogostemon from Asia to Africa occurred at least twice, once in the late Miocene and again during the late-Miocene/early-Pliocene.
Collapse
|
19
|
Swamy MK, Sinniah UR. A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance. Molecules 2015; 20:8521-47. [PMID: 25985355 PMCID: PMC6272783 DOI: 10.3390/molecules20058521] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| |
Collapse
|