1
|
Valdivia A, Isac AM, Cardenas H, Zhao G, Zhang Y, Huang H, Wei JJ, Cuello-Fredes M, Kato S, Gómez-Valenzuela F, Gourronc F, Klingelhutz A, Matei D. Complement activation at the interface between adipocytes and cancer cells drives tumor progression. JCI Insight 2025; 10:e184935. [PMID: 39964754 PMCID: PMC11949041 DOI: 10.1172/jci.insight.184935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The omentum is the primary site of metastasis for ovarian cancer (OC). Interactions between cancer cells and adipocytes drive an invasive and prometastatic phenotype. Here we studied cancer cell-adipocyte crosstalk by using a direct coculture model with immortalized human visceral nondiabetic pre-adipocytes (VNPADs) and OC cells. We demonstrated increased proliferation, invasiveness, and resistance to cisplatin of cocultured compared with monocultured OC cells. RNA sequencing of OC cells from coculture versus monoculture revealed significant transcriptomic changes, identifying over 200 differentially expressed genes common to OVCAR5 and OVCAR8 cell lines. Enriched pathways included PI3K/AKT and complement activation. Lipid transfer into OC cells from adipocytes induced upregulation of complement C3 and C5 proteins. Inhibiting C3 or C5 reversed the invasive phenotype and C3 knockdown reduced tumor progression in vivo. Increased C3 expression was observed in omental implants compared with primary ovarian tumors and C3 secretion was higher in OC ascites from high-BMI versus low-BMI patients. C3 upregulation in OC cells involved activation of the ATF4-mediated integrated stress response (ISR). Overall, adipocyte-cancer cell interactions promoted invasiveness and tumorigenesis via lipid transfer, activating the ISR, and upregulating complement proteins C3 and C5.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Huang
- Department of Obstetrics and Gynecology
| | - Jian-Jun Wei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, and
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mauricio Cuello-Fredes
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sumie Kato
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Gómez-Valenzuela
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francoise Gourronc
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, and
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Gourronc FA, Bullert AJ, Helm-Kwasny BK, Adamcakova-Dodd A, Wang H, Jing X, Li X, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Exposure to PCB52 (2,2',5,5'-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104612. [PMID: 39674530 PMCID: PMC11717591 DOI: 10.1016/j.etap.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are linked to cancer, learning disabilities, liver and cardiovascular disease, and diabetes. Older schools often contain high levels of PCBs, and inhalation is a major source of exposure. Technical PCB mixtures, called Aroclors, and individual dioxin-like PCBs impair adipocyte function, which can lead to type II diabetes. To determine how PCB52, a non-dioxin like PCB congener found in school air, affects adipose, adolescent male and female rats were exposed to PCB52 by nose-only inhibition for 4 h per day for 28 consecutive days. Transcriptomic analysis of white adipose revealed sex-specific differences in gene expression between PCB52- and sham-exposed males and females. Exposed females showed mitochondrial gene changes, including downregulation of the thermogenic uncoupling gene, Ucp1. Human preadipocytes/adipocytes exposed to PCB52 or its main metabolite, 4-OH-PCB52, also showed reduced norepinephrine-induced UCP1 expression. These findings suggest that PCB52 inhalation disrupts thermogenesis in adipose tissue, potentially contributing to metabolic syndrome.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Amanda J Bullert
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | | | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
3
|
Liszewski J, Klingelhutz A, Sander EA, Ankrum J. Development and analysis of scaffold-free adipose spheroids. Adipocyte 2024; 13:2347215. [PMID: 38864486 PMCID: PMC11174133 DOI: 10.1080/21623945.2024.2347215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Adipose tissue plays a crucial role in metabolic syndrome, autoimmune diseases, and many cancers. Because of adipose's role in so many aspects of human health, there is a critical need for in vitro models that replicate adipose architecture and function. Traditional monolayer models, despite their convenience, are limited, showing heterogeneity and functional differences compared to 3D models. While monolayer cultures struggle with detachment and inefficient differentiation, healthy adipocytes in 3D culture accumulate large lipid droplets, secrete adiponectin, and produce low levels of inflammatory cytokines. The shift from monolayer models to more complex 3D models aims to better replicate the physiology of healthy adipose tissue in culture. This study introduces a simple and accessible protocol for generating adipose organoids using a scaffold-free spheroid model. The method, utilizing either 96-well spheroid plates or agarose micromolds, demonstrates increased throughput, uniformity, and ease of handling compared to previous techniques. This protocol allows for diverse applications, including drug testing, toxin screening, tissue engineering, and co-culturing. The choice between the two methods depends on the experimental goals, with the 96-well plate providing individualized control and the micromold offering scale advantages. The outlined protocol covers isolation, expansion, and characterization of stromal vascular fraction cells, followed by detailed steps for spheroid formation and optional downstream analyses.
Collapse
Affiliation(s)
- Jesse Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - James Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Murphy AR, Asif H, Cingoz H, Gourronc FA, Ankrum JA, Klingelhutz AJ, Kim JJ. The Impact of High Adiposity on Endometrial Progesterone Response and Metallothionein Regulation. J Clin Endocrinol Metab 2024; 109:2920-2936. [PMID: 38597153 PMCID: PMC11479696 DOI: 10.1210/clinem/dgae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
CONTEXT Obesity is a disease with deleterious effects on the female reproductive tract, including the endometrium. OBJECTIVE We sought to understand the effects of excess adipose on the benign endometrium. METHODS A physiologic in vitro coculture system was developed, consisting of multicellular human endometrial organoids, adipose spheroids, and menstrual cycle hormones. Native human endometrial tissue samples from women with and without obesity were also analyzed. Benign endometrial tissues from premenopausal women ages 33 to 53 undergoing hysterectomy were obtained following written consent at Northwestern University Prentice Women's Hospital, Chicago, Illinois. Gene expression, protein expression, chromatin binding, and expression of DNA damage and oxidative damage markers were measured. RESULTS Under high adiposity conditions, endometrial organoids downregulated endometrial secretory phase genes, suggestive of an altered progesterone response. Progesterone specifically upregulated the metallothionein (MT) gene family in the epithelial cells of endometrial organoids, while high adiposity significantly downregulated the MT genes. Silencing MT genes in endometrial epithelial cells resulted in increased DNA damage, illustrating the protective role of MTs. Native endometrium from women with obesity displayed increased MT expression and oxidative damage in the stroma and not in the epithelium, indicating the cell-specific impact of obesity on MT genes. CONCLUSION Taken together, the in vitro and in vivo systems used here revealed that high adiposity or obesity can alter MT expression by decreasing progesterone response in the epithelial cells and increasing oxidative stress in the stroma.
Collapse
Affiliation(s)
- Alina R Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Huma Asif
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harun Cingoz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Françoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Howell GE, Young D. Effects of an environmentally relevant mixture of organochlorine pesticide compounds on adipogenesis and adipocyte function in an immortalized human adipocyte model. Toxicol In Vitro 2024; 98:105831. [PMID: 38648980 DOI: 10.1016/j.tiv.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Exposure to persistent organic pollutants (POPs), including organochlorine (OC) pesticide POPs, has been associated with the increased prevalence of obesity and type 2 diabetes. However, the underlying mechanisms through which exposure to these compounds may promote obesity and metabolic dysfunction remain an area of active investigation. To this end, the concentration dependent effects of an environmentally relevant mixture of OC pesticide POPs on adipocyte function was explored utilizing a translationally relevant immortalized human subcutaneous preadipocyte/adipocyte model. Briefly, immortalized human preadipocytes/adipocytes were exposed to a mixture of dichlorodiphenyldichloroethylene (DDE), trans-nonachlor, and oxychlordane (DTO) then key indices of preadipocyte/adipocyte function were assessed. Exposure to DTO did not alter adipogenesis. However, in mature adipocytes, exposure to DTO slightly increased fatty acid uptake whereas isoproterenol stimulated lipolysis, basal and insulin stimulated glucose uptake, mitochondrial membrane potential, and cellular ATP levels were all significantly decreased. DTO significantly increased Staphylococcus aureus infection induced increases in expression of pro-inflammatory cytokines IL-6, IL-1β, and Mcp-1 as well as the adipokine resistin. Taken together, the present data demonstrated exposure to an environmentally relevant mixture of OC pesticide compounds can alter mature adipocyte function in a translationally relevant human adipocyte model which further supports the adipose tissue as an effector site of OC pesticide POPs action.
Collapse
Affiliation(s)
- George E Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA.
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
6
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Updating "Dataset of transcriptomic changes that occur in human preadipocytes over a 3-day course of exposure to 3,3',4,4',5-Pentachlorobiphenyl (PCB126)" with additional data on exposure to 2,2',5,5'-tetrachlorobiphenyl (PCB52) or its 4-hydroxy metabolite (4-OH-PCB52). Data Brief 2023; 49:109415. [PMID: 37520642 PMCID: PMC10375549 DOI: 10.1016/j.dib.2023.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) were used extensively in building materials, including those used in schools. PCBs accumulate in fat, and exposure to PCBs is associated with the development of cancer, neurodevelopmental disorders, cardiovascular disease, obesity, and diabetes. The non-dioxin-like PCB congener, PCB52 (2,2',5,5'-tetrachlorobiphenyl), is found at one of the highest levels of any congener in school air. PCB52 is oxidized in the liver to hydroxylated forms, mainly 4-OH-PCB52 (2,2',5,5'-tetrachlorobiphenyl-4-ol). In a previous study, we reported on RNAseq data generated from exposure of human preadipocytes to the dioxin-like PCB congener, PCB126. In this new dataset, we used identical techniques to examine alterations in gene transcript levels in human preadipocytes exposed to PCB52 or 4-OH-PCB52 over a time course. This updated set of data provides a comprehensive transcriptional profile of changes that occur in preadipocytes exposed to PCB52 or 4-OH-PCB52 over time and allows for comparison of these changes between the parent compound and its hydroxy metabolite. The datasets will allow others to explore how PCB52 and 4-OH-PCB52 impact biological pathways in preadipocytes. Further studies can be performed to determine how these changes might lead to disease.
Collapse
Affiliation(s)
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa
| | | | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, University of Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa
| |
Collapse
|
7
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
8
|
El-Hattab MY, Sinclair N, Liszewski JN, Schrodt MV, Herrmann J, Klingelhutz AJ, Sander EA, Ankrum JA. Native adiponectin plays a role in the adipocyte-mediated conversion of fibroblasts to myofibroblasts. J R Soc Interface 2023; 20:20230004. [PMID: 37132228 PMCID: PMC10154927 DOI: 10.1098/rsif.2023.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Adipocytes regulate tissues through production of adipokines that can act both locally and systemically. Adipocytes also have been found to play a critical role in regulating the healing process. To better understand this role, we developed a three-dimensional human adipocyte spheroid system that has an adipokine profile similar to in vivo adipose tissues. Previously, we found that conditioned medium from these spheroids induces human dermal fibroblast conversion into highly contractile, collagen-producing myofibroblasts through a transforming growth factor beta-1 (TGF-β1) independent pathway. Here, we sought to identify how mature adipocytes signal to dermal fibroblasts through adipokines to induce myofibroblast conversion. By using molecular weight fractionation, heat inactivation and lipid depletion, we determined mature adipocytes secrete a factor that is 30-100 kDa, heat labile and lipid associated that induces myofibroblast conversion. We also show that the depletion of the adipokine adiponectin, which fits those physico-chemical parameters, eliminates the ability of adipocyte-conditioned media to induce fibroblast to myofibroblast conversion. Interestingly, native adiponectin secreted by cultured adipocytes consistently elicited a stronger level of α-smooth muscle actin expression than exogenously added adiponectin. Thus, adiponectin secreted by mature adipocytes induces fibroblast to myofibroblast conversion and may lead to a phenotype of myofibroblasts distinct from TGF-β1-induced myofibroblasts.
Collapse
Affiliation(s)
- Mariam Y. El-Hattab
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Noah Sinclair
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Jesse N. Liszewski
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Michael V. Schrodt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, Iowa City 52242, IA, USA
| |
Collapse
|
9
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
10
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
11
|
Gourronc FA, Helm BK, Robertson LW, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Dataset of transcriptomic changes that occur in human preadipocytes over a 3-day course of exposure to 3,3',4,4',5-Pentachlorobiphenyl (PCB126). Data Brief 2022; 45:108571. [PMID: 36131953 PMCID: PMC9483567 DOI: 10.1016/j.dib.2022.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/28/2023] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with the development of metabolic syndrome, a cluster of diseases that includes obesity, diabetes, liver steatosis, and cardiovascular problems. PCBs accumulate and fat and are known to act on adipocytes and their precursors, termed preadipocytes. The PCB congener, PCB126, has been shown to activate the aryl hydrocarbon receptor (AhR) as well as proinflammatory genes. Here, we used RNAseq to assess gene transcript changes that occur in PCB126-exposed human preadipocytes over a time course. RNA was collected from 4 replicates of PCB126-exposed and control-treated preadipocytes at 9 h, 24 h, and 72 h post-exposure. RNA was processed for RNAseq analysis using a NovaSeq 6000 with an obtained minimum of 25 million paired-end 50 bp reads per sample. Reads were aligned using the salmon aligner and transcript expression values were summarized to the gene level using tximport. Gene transcript level counts comparing treated- versus control-treated cells were used for differential expression analysis using DESeq2. Differential expression Excel tables (one for each time point) were generated displaying average differential expression (log2 fold change) of the 4 replicates of treated versus control samples with cutoffs of 0.3 log2 fold change (increase or decrease) and p-values of less than 0.05. FastQ, raw, and differential expression tables were uploaded to GEO. A heat map of genes that were changed in common across all time points was generated using GraphPrism. The data generated from this analysis provides a full transcriptional profile of changes that occur over time in preadipocytes that have been exposed to PCB126. The rich datasets can be mined by other researchers to understand how PCB126 and other dioxin-like compounds, including other PCB congeners such as PCB77 and PCB118, affect biological pathways in preadipocytes and other cell types to cause disease.
Collapse
Affiliation(s)
- Francoise A. Gourronc
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA 52242, United States
| | - Brynn K. Helm
- Program in Molecular Medicine, University of Iowa, United States
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, United States
- Corresponding authors at: University of Iowa, Fraternal Order of Eagles Diabetes Research Center, United States. @JamesAnkrum
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, United States
- Corresponding authors at: University of Iowa, Fraternal Order of Eagles Diabetes Research Center, United States. @JamesAnkrum
| |
Collapse
|
12
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
13
|
Gourronc FA, Rebagliati M, Kramer-Riesberg B, Fleck AM, Patten JJ, Geohegan-Barek K, Messingham KN, Davey RA, Maury W, Klingelhutz AJ. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573:12-22. [DOI: 10.1016/j.virol.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
14
|
Galaris A, Fanidis D, Stylianaki EA, Harokopos V, Kalantzi AS, Moulos P, Dimas AS, Hatzis P, Aidinis V. Obesity Reshapes the Microbial Population Structure along the Gut-Liver-Lung Axis in Mice. Biomedicines 2022; 10:biomedicines10020494. [PMID: 35203702 PMCID: PMC8962327 DOI: 10.3390/biomedicines10020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The microbiome is emerging as a major player in tissue homeostasis in health and disease. Gut microbiome dysbiosis correlates with several autoimmune and metabolic diseases, while high-fat diets and ensuing obesity are known to affect the complexity and diversity of the microbiome, thus modulating pathophysiology. Moreover, the existence of a gut-liver microbial axis has been proposed, which may extend to the lung. In this context, we systematically compared the microbiomes of the gut, liver, and lung of mice fed a high-fat diet to those of littermates fed a matched control diet. We carried out deep sequencing of seven hypervariable regions of the 16S rRNA microbial gene to examine microbial diversity in the tissues of interest. Comparison of the local microbiomes indicated that lung tissue has the least diverse microbiome under healthy conditions, while microbial diversity in the healthy liver clustered closer to the gut. Obesity increased microbial complexity in all three tissues, with lung microbial diversity being the most modified. Obesity promoted the expansion of Firmicutes along the gut-liver-lung axis, highlighting staphylococcus as a possible pathologic link between obesity and systemic pathophysiology, especially in the lungs.
Collapse
Affiliation(s)
- Apostolos Galaris
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Dionysios Fanidis
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Elli-Anna Stylianaki
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Alexandra-Styliani Kalantzi
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Antigone S. Dimas
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Vassilis Aidinis
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
- Correspondence:
| |
Collapse
|
15
|
O’Neill AM, Liggins MC, Seidman JS, Do TH, Li F, Cavagnero KJ, Dokoshi T, Cheng JY, Shafiq F, Hata TR, Gudjonsson JE, Modlin RL, Gallo RL. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med 2022; 14:eabh1478. [PMID: 35171653 PMCID: PMC9885891 DOI: 10.1126/scitranslmed.abh1478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc C. Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tran H. Do
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joyce Y. Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tissa R. Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.,Corresponding author.
| |
Collapse
|
16
|
El-Hattab MY, Nagumo Y, Gourronc FA, Klingelhutz AJ, Ankrum JA, Sander EA. Human Adipocyte Conditioned Medium Promotes In Vitro Fibroblast Conversion to Myofibroblasts. Sci Rep 2020; 10:10286. [PMID: 32581231 PMCID: PMC7314785 DOI: 10.1038/s41598-020-67175-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Adipocytes and adipose tissue derived cells have been investigated for their potential to contribute to the wound healing process. However, the details of how these cells interact with other essential cell types, such as myofibroblasts/fibroblasts, remain unclear. Using a novel in-vitro 3D human adipocyte/pre-adipocyte spheroid model, we investigated whether adipocytes and their precursors (pre-adipocytes) secrete factors that affect human dermal fibroblast behavior. We found that both adipocyte and pre-adipocyte conditioned medium induced the migration of fibroblasts, but only adipocyte conditioned medium induced fibroblast differentiation into a highly contractile, collagen producing myofibroblast phenotype. Furthermore, adipocyte mediated myofibroblast induction occurred through a TGF-β independent mechanism. Our findings contribute to a better understanding on the involvement of adipose tissue in wound healing, and may help to uncover and develop fat-related wound healing treatments.
Collapse
Affiliation(s)
- Mariam Y El-Hattab
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Yoshiaki Nagumo
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
- Department of Plastic Surgery, Kindai University, Faculty of Medicine, Higashiosaka, Osaka, Japan
| | - Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Gourronc FA, Perdew GH, Robertson LW, Klingelhutz AJ. PCB126 blocks the thermogenic beiging response of adipocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8897-8904. [PMID: 31721030 PMCID: PMC7098842 DOI: 10.1007/s11356-019-06663-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/01/2019] [Indexed: 05/16/2023]
Abstract
Subcutaneous white adipose tissue is capable of becoming thermogenic in a process that is referred to as "beiging." Beiging is associated with activation of the uncoupling protein, UCP1, and is known to be important for preventing adipose hypertrophy and development of insulin resistance. Polychlorinated biphenyls (PCBs) accumulate in fat, and it is hypothesized that disruption of adipogenesis and adipocyte function by PCBs may be causative in the development of obesity and diabetes. We developed immortal human subcutaneous preadipocytes that, when differentiated, are capable of beiging. Preadipocytes that were treated with polychlorinated biphenyl congener 126 (PCB126), followed by differentiation, were suppressed for their ability to activate UCP1 upon β-adrenergic stimulation with norepinephrine (NE), demonstrating a block in the beiging response. Treatment of preadipocytes with another known endogenous AhR agonist, indoxyl sulfate (IS), followed by differentiation also blocked the NE-stimulated upregulation of UCP1. Knockdown of the aryl hydrocarbon receptor (AhR) caused the preadipocytes to be refractory to PCB126 and IS effects. The chemical AhR antagonist, CH223191, was effective at preventing the effects of PCB126 but not IS, indicating AhR ligand specificity of CH223191. Repression of NE-induced UCP1 upregulation was also observed when already-differentiated mature adipocytes were treated with PCB126 but not IS. These results indicate that exposure of preadipocytes to endogenous (IS) or exogenous (PCB126) AhR agonists is effective at blocking them from becoming functional adipocytes that are capable of the beiging response. Mature adipocytes may have differential responses. This finding suggests a mechanism by which dioxin-like PCBs such as PCB126 could lead to disruption in energy homeostasis, potentially leading to obesity and diabetes.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Gary H Perdew
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Larry W Robertson
- Department of Occupational & Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, 3-612 BSB, 51 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
18
|
Liggins MC, Li F, Zhang LJ, Dokoshi T, Gallo RL. Retinoids Enhance the Expression of Cathelicidin Antimicrobial Peptide during Reactive Dermal Adipogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1589-1597. [PMID: 31420464 PMCID: PMC9233297 DOI: 10.4049/jimmunol.1900520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2023]
Abstract
A subset of dermal fibroblasts undergo rapid differentiation into adipocytes in response to infection and acutely produce the cathelicidin antimicrobial peptide gene Camp Vitamin A and other retinoids inhibit adipogenesis yet can show benefit to skin disorders, such as cystic acne, that are exacerbated by bacteria. We observed that retinoids potently increase and sustain the expression of Camp in preadipocytes undergoing adipogenesis despite inhibition of markers of adipogenesis, such as Adipoq, Fabp4, and Rstn Retinoids increase cathelicidin in both mouse and human preadipocytes, but this enhancement of antimicrobial peptide expression did not occur in keratinocytes or a sebocyte cell line. Preadipocytes undergoing adipogenesis more effectively inhibited growth of Staphylococcus aureus when exposed to retinoic acid. Whole transcriptome analysis identified hypoxia-inducible factor 1-α (HIF-1α) as a mechanism through which retinoids mediate this response. These observations uncouple the lipid accumulation element of adipogenesis from the innate immune response and uncover a mechanism, to our knowledge previously unsuspected, that may explain therapeutic benefits of retinoids in some skin disorders.
Collapse
Affiliation(s)
- Marc C Liggins
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
19
|
Abstract
Menstrual toxic shock syndrome (TSS) is a serious infectious disease associated with vaginal colonization by Staphylococcus aureus producing the exotoxin TSS toxin 1 (TSST-1). We show that menstrual TSS occurs after TSST-1 interaction with an immune costimulatory molecule called CD40 on the surface of vaginal epithelial cells. Other related toxins, where the entire family is called the superantigen family, bind to CD40, but not with a high-enough apparent affinity to cause TSS; thus, TSST-1 is the only exotoxin superantigen associated. Once the epithelial cells become activated by TSST-1, they produce soluble molecules referred to as chemokines, which in turn facilitate TSST-1 activation of T lymphocytes and macrophages to cause the symptoms of TSS. Identification of small-molecule inhibitors of the interaction of TSST-1 with CD40 may be useful so that they may serve as additives to medical devices, such as tampons and menstrual cups, to reduce the incidence of menstrual TSS. Mucosal and skin tissues form barriers to infection by most bacterial pathogens. Staphylococcus aureus causes diseases across these barriers in part dependent on the proinflammatory properties of superantigens. We showed, through use of a CRISPR-Cas9 CD40 knockout, that the superantigens toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins (SEs) B and C stimulated chemokine production from human vaginal epithelial cells (HVECs) through human CD40. This response was enhanced by addition of antibodies against CD40 through an unknown mechanism. TSST-1 was better able to stimulate chemokine (IL-8 and MIP-3α) production by HVECs than SEB and SEC, suggesting this is the reason for TSST-1’s exclusive association with menstrual TSS. A mutant of TSST-1, K121A, caused TSS in a rabbit model when administered vaginally but not intravenously, emphasizing the importance of the local vaginal environment. Collectively, our data suggested that superantigens facilitate infections by disruption of mucosal barriers through their binding to CD40, with subsequent expression of chemokines. The chemokines facilitate TSS and possibly other epithelial conditions after attraction of the adaptive immune system to the local environment.
Collapse
|
20
|
Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene 2018; 38:2351-2363. [PMID: 30518876 PMCID: PMC6440811 DOI: 10.1038/s41388-018-0592-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Obesity is a risk factor for breast cancer and also predicts poor clinical outcomes regardless of menopausal status. Contributing to the poor clinical outcomes is the suboptimal efficacy of standard therapies due to dose limiting toxicities and obesity-related complications, highlighting the need to develop novel therapeutic approaches for treating obese patients. We recently found that obesity leads to an increase in tumor-infiltrating macrophages with activated NLRC4 inflammasome and increased interleukin (IL)-1β production. IL-1β, in turn, leads to increased angiogenesis and cancer progression. Using Next Generation RNA sequencing, we identified an NLRC4/IL-1β-dependent upregulation of angiopoietin-like 4 (ANGPTL4), a known angiogenic factor in cancer, in tumors from obese mice. ANGPTL4-deficiency by genetic knockout or treatment with a neutralizing antibody led to a significant reduction in obesity-induced angiogenesis and tumor growth. At a mechanistic level, ANGPTL4 expression is induced by IL-1β from primary adipocytes in a manner dependent on NF-κB- and MAP kinase-activation, which is further enhanced by hypoxia. This report shows that adipocyte-derived ANGPTL4 drives disease progression under obese conditions and is a potential therapeutic target for treating obese breast cancer patients.
Collapse
|
21
|
Gourronc FA, Robertson LW, Klingelhutz AJ. A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16481-16492. [PMID: 28699004 PMCID: PMC5764822 DOI: 10.1007/s11356-017-9676-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/27/2017] [Indexed: 05/10/2023]
Abstract
Inflammation in adipose tissue is recognized as a causative factor in the development of type II diabetes. Adipocyte hypertrophy as well as bacterial and environmental factors have been implicated in causing inflammation in mature adipocytes. Exposure to persistent organic pollutants such as polychlorinated biphenyls (PCBs) has been associated with the development of type II diabetes. We show here that PCB126, a dioxin-like PCB, activates a robust proinflammatory state in fat cell precursors (preadipocytes). The response was found to be dependent on aryl hydrocarbon receptor (AhR) activation, although induction of the response was delayed compared to upregulation of CYP1A1, a classic AhR-responsive gene. Treatment of preadipocytes with a nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) inhibitor partially attenuated the PCB126-induced inflammatory response and partly, but not completely, ameliorated disruption of adipogenesis caused by PCB126. Our results indicate a role for PCB126 in mediating an inflammatory response through AhR in preadipocytes that interferes with adipogenesis.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, 2202 MERF, 375 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Klingelhutz AJ, Gourronc FA, Chaly A, Wadkins DA, Burand AJ, Markan KR, Idiga SO, Wu M, Potthoff MJ, Ankrum JA. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci Rep 2018; 8:523. [PMID: 29323267 PMCID: PMC5765134 DOI: 10.1038/s41598-017-19024-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.
Collapse
Affiliation(s)
- Aloysius J Klingelhutz
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Francoise A Gourronc
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna Chaly
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David A Wadkins
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Kathleen R Markan
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sharon O Idiga
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA.,High Throughput Screening Core Facility at University of Iowa (UIHTS), University of Iowa, 115 S. Grand Ave, Iowa City, IA, 52242, USA
| | - Matthew J Potthoff
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA.,Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, 169 Newton Rd, Iowa City, IA, 52242, USA. .,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
23
|
Chen Y, Huang Y, Liang B, Dong H, Yao S, Xie Y, Long Y, Zhong H, Yang Y, Zhu B, Gong S, Zhou Z. Inverse relationship between toxic shock syndrome toxin-1 antibodies and interferon-γ and interleukin-6 in peripheral blood mononuclear cells from patients with pediatric tonsillitis caused by Staphylococcus aureus. Int J Pediatr Otorhinolaryngol 2017; 97:211-217. [PMID: 28483238 DOI: 10.1016/j.ijporl.2017.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Pediatric tonsillitis is frequently caused by Staphylococcus aureus, which is the most common pathogen that causes serious pyogenic infections in humans and endangers human health. S. aureus produces numerous potent virulence factors that play a critical role in the pathogenesis of the infection caused by this bacterium, and one of the most important toxins produced by S. aureus is toxic shock syndrome toxin-1 (TSST-1). The aim of this study is to investigate the first time the levels of IFN-γ and interleukin IL-6 in TSST-1-stimulated PBMCs from pediatric tonsillitis patients and the correlation of these cytokine levels with TSST-1-specific IgG in serum. METHODS TSST-1 gene of S. aureus was cloned and expressed in a prokaryotic expression system, and purified recombinant TSST-1 protein was used for measuring TSST-1-specific antibodies in the serum of patients with pediatric tonsillitis caused by S. aureus. Moreover, the levels of interferon (IFN)-γ and interleukin (IL)-6 in TSST-1-stimulated peripheral blood mononuclear cells (PBMCs) from pediatric tonsillitis patients were investigated. RESULTS In patients with pediatric tonsillitis caused by S. aureus, significantly higher levels of serum TSST-1-specific IgG (P < 0.05) and IgG1 (P < 0.05) were detected than in healthy children. Moreover, PBMCs from the patients exhibited higher IFN-γ (P < 0.05) production in response to TSST-1 than did PBMCs from healthy children. In patients with pediatric tonsillitis caused by S. aureus, the positive rate of TSST-1-specific IgG was 70%, and the patients who tested negative for TSST-1-specific IgG exhibited significantly higher levels of IFN-γ (P < 0.05) and IL-6 (P < 0.05) than did the IgG-positive patients, in accord, the levels of TSST-1-specific IgG correlated inversely with the levels of IFN-γ and IL-6 in patients PBMCs stimulated with TSST-1. CONCLUSIONS TSST-1 induces humoral and cellular immunity in pediatric tonsillitis caused by S. aureus, which suggests that TSST-1 may play an important role in the pathogenesis of pediatric tonsillitis.
Collapse
Affiliation(s)
- Yinshuang Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China; The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Huamin Zhong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yiyu Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Bing Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
24
|
Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS One 2017; 12:e0177348. [PMID: 28486516 PMCID: PMC5423695 DOI: 10.1371/journal.pone.0177348] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types.
Collapse
|
25
|
Zhang Y, Xie L, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang C, Fidler T, Marthaler B, Klingelhutz A, Abel ED, Samuel I, Smith JK, Cao L, Sah R. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 2017; 19:504-517. [PMID: 28436964 PMCID: PMC5415409 DOI: 10.1038/ncb3514] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Adipocytes undergo considerable volumetric expansion in the setting of obesity. It has been proposed that such marked increases in adipocyte size may be sensed via adipocyte-autonomous mechanisms to mediate size-dependent intracellular signalling. Here, we show that SWELL1 (LRRC8a), a member of the Leucine-Rich Repeat Containing protein family, is an essential component of a volume-sensitive ion channel (VRAC) in adipocytes. We find that SWELL1-mediated VRAC is augmented in hypertrophic murine and human adipocytes in the setting of obesity. SWELL1 regulates adipocyte insulin-PI3K-AKT2-GLUT4 signalling, glucose uptake and lipid content via SWELL1 C-terminal leucine-rich repeat domain interactions with GRB2/Cav1. Silencing GRB2 in SWELL1 KO adipocytes rescues insulin-pAKT2 signalling. In vivo, shRNA-mediated SWELL1 knockdown and adipose-targeted SWELL1 knockout reduce adiposity and adipocyte size in obese mice while impairing systemic glycaemia and insulin sensitivity. These studies identify SWELL1 as a cell-autonomous sensor of adipocyte size that regulates adipocyte growth, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Litao Xie
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Susheel K. Gunasekar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Dan Tong
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Anil Mishra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | | | - Chuansong Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Trevor Fidler
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Brodie Marthaler
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Aloysius Klingelhutz
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - E. Dale Abel
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| | - Isaac Samuel
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Jessica K. Smith
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Rajan Sah
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242
| |
Collapse
|
26
|
Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL. Suppression of Resting Metabolism by the Angiotensin AT2 Receptor. Cell Rep 2016; 16:1548-1560. [PMID: 27477281 DOI: 10.1016/j.celrep.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 11/15/2022] Open
Abstract
Activation of the brain renin-angiotensin system (RAS) stimulates energy expenditure through increasing of the resting metabolic rate (RMR), and this effect requires simultaneous suppression of the circulating and/or adipose RAS. To identify the mechanism by which the peripheral RAS opposes RMR control by the brain RAS, we examined mice with transgenic activation of the brain RAS (sRA mice). sRA mice exhibit increased RMR through increased energy flux in the inguinal adipose tissue, and this effect is attenuated by angiotensin II type 2 receptor (AT2) activation. AT2 activation in inguinal adipocytes opposes norepinephrine-induced uncoupling protein-1 (UCP1) production and aspects of cellular respiration, but not lipolysis. AT2 activation also opposes inguinal adipocyte function and differentiation responses to epidermal growth factor (EGF). These results highlight a major, multifaceted role for AT2 within inguinal adipocytes in the control of RMR. The AT2 receptor may therefore contribute to body fat distribution and adipose depot-specific effects upon cardio-metabolic health.
Collapse
Affiliation(s)
| | - Henry L Keen
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristin E Claflin
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin V Tobin
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Kathleen R Markan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sungmi Park
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Nicole A Pearson
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuebo Liu
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA
| | - Curt D Sigmund
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA.
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Stach CS, Vu BG, Merriman JA, Herrera A, Cahill MP, Schlievert PM, Salgado-Pabón W. Novel Tissue Level Effects of the Staphylococcus aureus Enterotoxin Gene Cluster Are Essential for Infective Endocarditis. PLoS One 2016; 11:e0154762. [PMID: 27124393 PMCID: PMC4849672 DOI: 10.1371/journal.pone.0154762] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Background Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. Methods We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. Results TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. Conclusions Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Bao G. Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Joseph A. Merriman
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Alfa Herrera
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Michael P. Cahill
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
- * E-mail:
| | - Wilmara Salgado-Pabón
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| |
Collapse
|
28
|
Majdoubi A, Kishta OA, Thibodeau J. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue. Cytokine 2016; 82:112-21. [PMID: 26854212 DOI: 10.1016/j.cyto.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.
Collapse
Affiliation(s)
- Abdelilah Majdoubi
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Osama A Kishta
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada.
| |
Collapse
|
29
|
Abstract
Superantigens secreted by Staphylococcus aureus and Streptococcus pyogenes interact with the T-cell receptor and major histocompatibility class II molecules on antigen-presenting cells to elicit a massive cytokine release and activation of T cells in higher numbers than that seen with ordinary antigens. Because of this unique ability, superantigens have been implicated as etiological agents for many different types of diseases, including toxic shock syndrome, infective endocarditis, pneumonia, and inflammatory skin diseases. This review covers the main animal models that have been developed in order to identify the roles of superantigens in human disease.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Science, Concordia University - Saint Paul, 1282 Concordia Ave., S-115, St. Paul, MN, 55104, USA.
| |
Collapse
|
30
|
Hall A, Leuwer M, Trayhurn P, Welters ID. Lipopolysaccharide induces a downregulation of adiponectin receptors in-vitro and in-vivo. PeerJ 2015; 3:e1428. [PMID: 26618091 PMCID: PMC4655095 DOI: 10.7717/peerj.1428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Background. Adipose tissue contributes to the inflammatory response through production of cytokines, recruitment of macrophages and modulation of the adiponectin system. Previous studies have identified a down-regulation of adiponectin in pathologies characterised by acute (sepsis and endotoxaemia) and chronic inflammation (obesity and type-II diabetes mellitus). In this study, we investigated the hypothesis that LPS would reduce adiponectin receptor expression in a murine model of endotoxaemia and in adipoocyte and myocyte cell cultures. Methods. 25 mg/kg LPS was injected intra-peritoneally into C57BL/6J mice, equivalent volumes of normal saline were used in control animals. Mice were killed at 4 or 24 h post injection and tissues harvested. Murine adipocytes (3T3-L1) and myocytes (C2C12) were grown in standard culture, treated with LPS (0.1 µg/ml–10 µg/ml) and harvested at 4 and 24 h. RNA was extracted and qPCR was conducted according to standard protocols and relative expression was calculated. Results. After LPS treatment there was a significant reduction after 4 h in gene expression of adipo R1 in muscle and peri-renal fat and of adipo R2 in liver, peri-renal fat and abdominal wall subcutaneous fat. After 24 h, significant reductions were limited to muscle. Cell culture extracts showed varied changes with reduction in adiponectin and adipo R2 gene expression only in adipocytes. Conclusions. LPS reduced adiponectin receptor gene expression in several tissues including adipocytes. This reflects a down-regulation of this anti-inflammatory and insulin-sensitising pathway in response to LPS. The trend towards base line after 24 h in tissue depots may reflect counter-regulatory mechanisms. Adiponectin receptor regulation differs in the tissues investigated.
Collapse
Affiliation(s)
- Alison Hall
- Department of Critical Care, Royal Liverpool University Hospital, Liverpool, Obesity Biology Research Unit, University of Liverpool , Liverpool , United Kingdom
| | - Martin Leuwer
- Department of Molecular & Clinical Pharmacology, University of Liverpool , Liverpool , United Kingdom
| | - Paul Trayhurn
- Obesity Biology Research Unit, University of Liverpool , Liverpool , United Kingdom ; Clore Laboratory, University of Buckingham , Buckingham , United Kingdom ; College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Ingeborg D Welters
- Department of Ageing and Chronic Disease, University of Liverpool , Liverpool , United Kingdom ; Department of Critical Care, Royal Liverpool University Hospital , Liverpool , United Kingdom
| |
Collapse
|
31
|
Schlievert PM, Salgado-Pabón W, Klingelhutz AJ. Does Staphylococcus aureus have a role in the development of Type 2 diabetes mellitus? Future Microbiol 2015; 10:1549-52. [PMID: 26439811 DOI: 10.2217/fmb.15.95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patrick M Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Wilmara Salgado-Pabón
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. mBio 2015; 6:e02554. [PMID: 25714716 PMCID: PMC4358007 DOI: 10.1128/mbio.02554-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Excessive weight and obesity are associated with the development of diabetes mellitus type 2 (DMII) in humans. They also pose high risks of Staphylococcus aureus colonization and overt infections. S. aureus causes a wide range of severe illnesses in both healthy and immunocompromised individuals. Among S. aureus virulence factors, superantigens are essential for pathogenicity. In this study, we show that rabbits that are chronically exposed to S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1) experience impaired glucose tolerance, systemic inflammation, and elevated endotoxin levels in the bloodstream, all of which are common findings in DMII. Additionally, such DMII-associated findings are also seen through effects of TSST-1 on isolated adipocytes. Collectively, our findings suggest that chronic exposure to S. aureus superantigens facilitates the development of DMII, which may lead to therapeutic targeting of S. aureus and its superantigens. Obesity has a strong correlation with type 2 diabetes, in which fatty tissue, containing adipocytes, contributes to the development of the illness through altered metabolism and chronic inflammation. The human microbiome changes in persons with obesity and type 2 diabetes, including increases in Staphylococcus aureus colonization and overt infections. While the microbiome is essential for human wellness, there is little understanding of the role of microbes in obesity or the development of diabetes. Here, we demonstrate that the S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1), an essential exotoxin in pathogenesis, induces inflammation, lipolysis, and insulin resistance in adipocytes both in vitro and in vivo. Chronic stimulation of rabbits with TSST-1 results in impaired systemic glucose tolerance, the hallmark finding in type 2 diabetes in humans, suggesting a role of S. aureus and its superantigens in the progression to type 2 diabetes.
Collapse
|
33
|
Construction and characterization of VL–VH tail-parallel genetically engineered antibodies against staphylococcal enterotoxins. Immunol Res 2015; 61:281-93. [DOI: 10.1007/s12026-015-8623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ. PCB126 inhibits adipogenesis of human preadipocytes. Toxicol In Vitro 2014; 29:132-41. [PMID: 25304490 DOI: 10.1016/j.tiv.2014.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022]
Abstract
Emerging evidence indicates that persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), are involved in the development of diabetes. Dysfunctional adipocytes play a significant role in initiating insulin resistance. Preadipocytes make up a large portion of adipose tissue and are necessary for the generation of functional mature adipocytes through adipogenesis. PCB126 is a dioxin-like PCB and a potent aryl hydrocarbon receptor (AhR) agonist. We hypothesized that PCB126 may be involved in the development of diabetes through disruption of adipogenesis. Using a newly developed human preadipocyte cell line called NPAD (Normal PreADipocytes), we found that exposure of preadipocytes to PCB126 resulted in significant reduction in their subsequent ability to fully differentiate into adipocytes, more so than when the cells were exposed to PCB126 during differentiation. Reduction in differentiation by PCB126 was associated with downregulation of transcript levels of a key adipocyte transcription factor, PPARγ, and late adipocyte differentiation genes. An AhR antagonist, CH223191, blocked this effect. These studies indicate that preadipocytes are particularly sensitive to the effects of PCB126 and suggest that AhR activation inhibits PPARγ transcription and subsequent adipogenesis. Our results validate the NPAD cell line as a useful model for studying the effects of POPs on adipogenesis.
Collapse
Affiliation(s)
- Gopi Gadupudi
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, United States
| | - Francoise A Gourronc
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, United States
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|