1
|
Willems A, Oertel T, Roepe PD. Redox Homeostasis within the Drug-Resistant Malarial Parasite Digestive Vacuole. Biochemistry 2025; 64:2247-2261. [PMID: 40311147 PMCID: PMC12096432 DOI: 10.1021/acs.biochem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
We have developed a cost-effective strategy for the complete synthesis of azetidinyl coumarin fluorophore derivatives that report changes in physiologic levels of glutathione (GSH), which includes a more cost- effective synthesis of the probe precursor hydroxyl derivative and its subsequent derivatization to promote subcellular localization. We functionalize coumarin derivatives with a cyano side chain similar to a previous strategy (Jiang X. et al., Nature Communications 2017, 8; 16087) and validate the 7-azetidinyl conformation as an explanation for enhanced GSH-dependent coumarin fluorescence. We couple the azetidinyl probe to different mass dextrans using either no linker or a 6C linker and also synthesize a morpholino derivative. We titrate the fluorescence of the different functionalized probes vs [GSH] in vitro. We load one dextran-conjugated probe within the digestive vacuole (DV) of live intraerythrocytic P. falciparum malarial parasites and also measure cytosolic localization of the morpholino probe. Using significantly improved single-cell photometry (SCP) methods, we show that the morpholino probe faithfully reports [GSH] from the live parasite cytosol, while the 70 kDa dextran-conjugated probe reports DV redox homeostasis for control chloroquine-sensitive (CQS) and artemisinin-sensitive (ARTS) transfectant parasites vs their genetically matched chloroquine-resistant (CQR)/artemisinin-sensitive (CQR/ARTS) and CQR artemisinin-resistant (CQR/ARTR) strains, respectively. We quantify rapid changes in DV redox homeostasis for these parasites ± drug pulses under live-cell perfusion conditions. The results are important for understanding the pharmacology of antimalarial drugs and the molecular mechanisms underlying CQR and ARTR phenomena.
Collapse
Affiliation(s)
- Andreas Willems
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| | - Therese Oertel
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| | - Paul D. Roepe
- Depts. of Chemistry and of
Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia20057, United States
| |
Collapse
|
2
|
Kiboi D, Sá JM, Nayak A, Micchelli CE, Amin SN, Burbelo AG, Abielmona SA, Xi B, Mulei LA, Onchieku NM, Percopo CM, Mu J, Wellems TE. Isolation and characterization of Plasmodium falciparum blood-stage persisters by improved selection protocols using dihydroartemisinin alone. Antimicrob Agents Chemother 2025; 69:e0005324. [PMID: 39927767 PMCID: PMC11881564 DOI: 10.1128/aac.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Artemisinin-based combination therapies (ACTs) are vital for malaria treatment, but these are threatened by blood-stage persisters-dormant forms of Plasmodium parasites that can survive drug exposure and cause recrudescent infections. Here, we present improved protocols for efficient preparation of pure Plasmodium falciparum persister populations without the need for magnetically activated columns, sorbitol exposure, or prolonged manipulations. Our protocols transformed actively replicating parasites into persister populations by exposing mixed blood-stage parasites to three or four consecutive daily 6 h pulses of 700 nM or 200 nM dihydroartemisinin (DHA). In micrographs of Giemsa-stained cells, we observed different persister morphologies: Type I persisters containing a rounded magenta-stained nucleus accompanied by a local region of blue-stained cytoplasm; and the more-prevalent Type II persisters characterized by a dark round or irregular-appearing nucleus and faded or no detectable cytoplasm. We also observed cells with disorganized nuclear and cytoplasmic structure, suggesting possible autophagic processes of destruction and remodeling. Recrudescence of actively replicating parasites to starting parasitemia or higher occurred around 17-22 days after initial DHA exposure. Differential expression patterns of the acetyl CoA carboxylase (acc) and skeleton binding protein 1 (sbp1) genes during DHA treatment, dormancy, and recrudescence highlighted the evolution of physiologic states and metabolic changes underlying persister formation and recovery. Our findings suggest hypotheses and questions for further research to understand the cellular pathways of dormancy and uncover strategies to thwart parasite survival after drug exposure.
Collapse
Affiliation(s)
- Daniel Kiboi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Akshaykumar Nayak
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alexander G. Burbelo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sasha A. Abielmona
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Xi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lucia A. Mulei
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Noah M. Onchieku
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Caroline M. Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Kannan D, Joshi N, Gupta S, Pati S, Bhattacharjee S, Langsley G, Singh S. Cytoprotective autophagy as a pro-survival strategy in ART-resistant malaria parasites. Cell Death Discov 2023; 9:160. [PMID: 37173329 PMCID: PMC10182036 DOI: 10.1038/s41420-023-01401-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 05/15/2023] Open
Abstract
Despite several initiatives to subside the global malaria burden, the spread of artemisinin-resistant parasites poses a big threat to malaria elimination. Mutations in PfKelch13 are predictive of ART resistance, whose underpinning molecular mechanism remains obscure. Recently, endocytosis and stress response pathways such as the ubiquitin-proteasome machinery have been linked to artemisinin resistance. With Plasmodium, however, ambiguity persists regarding a role in ART resistance for another cellular stress defence mechanism called autophagy. Therefore, we investigated whether, in the absence of ART treatment, basal autophagy is augmented in PfK13-R539T mutant ART-resistant parasites and analyzed whether PfK13-R539T endowed mutant parasites with an ability to utilize autophagy as a pro-survival strategy. We report that in the absence of any ART treatment, PfK13-R539T mutant parasites exhibit increased basal autophagy compared to PfK13-WT parasites and respond aggressively through changes in autophagic flux. A clear cytoprotective role of autophagy in parasite resistance mechanism is evident by the observation that a suppression of PI3-Kinase (PI3K) activity (a master autophagy regulator) rendered difficulty in the survival of PfK13-R539T ART-resistant parasites. In conclusion, we now show that higher PI3P levels reported for mutant PfKelch13 backgrounds led to increased basal autophagy that acts as a pro-survival response to ART treatment. Our results highlight PfPI3K as a druggable target with the potential to re-sensitize ART-resistant parasites and identify autophagy as a pro-survival function that modulates ART-resistant parasite growth.
Collapse
Affiliation(s)
- Deepika Kannan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Nishant Joshi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Willems A, Kalaw A, Ecer A, Kotwal A, Roepe LD, Roepe PD. Structures of Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) Isoforms and Their Interactions with Chloroquine. Biochemistry 2023; 62:1093-1110. [PMID: 36800498 PMCID: PMC10950298 DOI: 10.1021/acs.biochem.2c00669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Using a recently elucidated atomic-resolution cryogenic electron microscopy (cryo-EM) structure for the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein 7G8 isoform as template [Kim, J.; Nature 2019, 576, 315-320], we use Monte Carlo molecular dynamics (MC/MD) simulations of PfCRT embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane to solve energy-minimized structures for 7G8 PfCRT and two additional PfCRT isoforms that harbor 5 or 7 amino acid substitutions relative to 7G8 PfCRT. Guided by drug binding previously defined using chloroquine (CQ) photoaffinity probe labeling, we also use MC/MD energy minimization to elucidate likely CQ binding geometries for the three membrane-embedded isoforms. We inventory salt bridges and hydrogen bonds in these structures and summarize how the limited changes in primary sequence subtly perturb local PfCRT isoform structure. In addition, we use the "AlphaFold" artificial intelligence AlphaFold2 (AF2) algorithm to solve for domain structure that was not resolved in the previously reported 7G8 PfCRT cryo-EM structure, and perform MC/MD energy minimization for the membrane-embedded AF2 structures of all three PfCRT isoforms. We compare energy-minimized structures generated using cryo-EM vs AF2 templates. The results suggest how amino acid substitutions in drug resistance-associated isoforms of PfCRT influence PfCRT structure and CQ transport.
Collapse
Affiliation(s)
| | | | - Ayse Ecer
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Amitesh Kotwal
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | | | - Paul D. Roepe
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
5
|
An Alternative Autophagy-Related Mechanism of Chloroquine Drug Resistance in the Malaria Parasite. Antimicrob Agents Chemother 2022; 66:e0026922. [PMID: 36342168 PMCID: PMC9764996 DOI: 10.1128/aac.00269-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We generated highly chloroquine (CQ)-resistant (ResCQ) Plasmodium yoelii parasites by stepwise exposure to increasing concentrations of CQ and CQ-sensitive parasites (SenCQ) by parallel mock treatments. No mutations in genes that are associated with drug resistance were detected in ResCQ clones. Autophagy-related genes were highly upregulated in SenCQ compared to ResCQ parasites during CQ treatment. This indicates that CQ resistance can be developed in the malaria parasite by the inhibition of autophagy as an alternative drug resistance mechanism.
Collapse
|
6
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
7
|
Artemisinin-Based Drugs Target the Plasmodium falciparum Heme Detoxification Pathway. Antimicrob Agents Chemother 2021; 65:AAC.02137-20. [PMID: 33495226 DOI: 10.1128/aac.02137-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisinin (ART)-based antimalarial drugs are believed to exert lethal effects on malarial parasites by alkylating a variety of intracellular molecular targets. Recent work with live parasites has shown that one of the alkylated targets is free heme within the parasite digestive vacuole, which is liberated upon hemoglobin catabolism by the intraerythrocytic parasite, and that reduced levels of heme alkylation occur in artemisinin-resistant parasites. One implication of heme alkylation is that these drugs may inhibit parasite detoxification of free heme via inhibition of heme-to-hemozoin crystallization; however, previous reports that have investigated this hypothesis present conflicting data. By controlling reducing conditions and, hence, the availability of ferrous versus ferric forms of free heme, we modify a previously reported hemozoin inhibition assay to quantify the ability of ART-based drugs to target the heme detoxification pathway under reduced versus oxidizing conditions. Contrary to some previous reports, we find that artemisinins are potent inhibitors of hemozoin crystallization, with effective half-maximal concentrations approximately an order of magnitude lower than those for most quinoline-based antimalarial drugs. We also examine hemozoin and in vitro parasite growth inhibition for drug pairs found in the most commonly used ART-based combination therapies (ACTs). All ACTs examined inhibit hemozoin crystallization in an additive fashion, and all but one inhibit parasite growth in an additive fashion.
Collapse
|
8
|
Ghartey-Kwansah G, Adu-Nti F, Aboagye B, Ankobil A, Essuman EE, Opoku YK, Abokyi S, Abu EK, Boampong JN. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci 2020; 10:101. [PMID: 32944216 PMCID: PMC7487832 DOI: 10.1186/s13578-020-00464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy has a crucial role in the defense against parasites. The interplay existing between host autophagy and parasites has varied outcomes due to the kind of host cell and microorganism. The presence of autophagic compartments disrupt a significant number of pathogens and are further cleared by xenophagy in an autolysosome. Another section of pathogens have the capacity to outwit the autophagic pathway to their own advantage. Result To comprehend the interaction between pathogens and the host cells, it is significant to distinguish between starvation-induced autophagy and other autophagic pathways. Subversion of host autophagy by parasites is likely due to differences in cellular pathways from those of ‘classical’ autophagy and that they are controlled by parasites in a peculiar way. In xenophagy clearance at the intracellular level, the pathogens are first ubiquitinated before autophagy receptors acknowledgement, followed by labeling with light chain 3 (LC3) protein. The LC3 in LC3-associated phagocytosis (LAP) is added directly into vacuole membrane and functions regardless of the ULK, an initiation complex. The activation of the ULK complex composed of ATG13, FIP200 and ATG101causes the initiation of host autophagic response. Again, the recognition of PAMPs by conserved PRRs marks the first line of defense against pathogens, involving Toll-like receptors (TLRs). These all important immune-related receptors have been reported recently to regulate autophagy. Conclusion In this review, we sum up recent advances in autophagy to acknowledge and understand the interplay between host and parasites, focusing on target proteins for the design of therapeutic drugs. The target host proteins on the initiation of the ULK complex and PRRs-mediated recognition of PAMPs may provide strong potential for the design of therapeutic drugs against parasitic infections.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Adu-Nti
- Department of Medical Laboratory Science, Radford University College, Accra, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Amandus Ankobil
- School of Nursing and Midwifery, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Epidemiology and Biostatistics, State University of New York at Albany, New York, USA
| | - Edward Eyipe Essuman
- US Food and Drugs Administration CBER, OBRR, DETTD 10903 New Hampshire Avenue, White Oak, USA
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science, University of Education, Winneba, Ghana
| | - Samuel Abokyi
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Emmanuel Kwasi Abu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Sternberg AR, Roepe PD. Heterologous Expression, Purification, and Functional Analysis of the Plasmodium falciparum Phosphatidylinositol 4-Kinase IIIβ. Biochemistry 2020; 59:2494-2506. [PMID: 32543181 DOI: 10.1021/acs.biochem.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recently, we heterologously expressed, purified, and analyzed the function of the sole Plasmodium falciparum phosphatidylinositol 3-kinase (PI3K), found that the enzyme is a "class III" or "Vps34" PI3K, and found that it is irreversibly inhibited by Fe2+-mediated covalent, nonspecific interactions with the leading antimalarial drug, dihydroartemisinin [Hassett, M. R., et al. (2017) Biochemistry 56, 4335-4345]. One of several P. falciparum phosphatidylinositol 4-kinases [putative IIIβ isoform (PfPI4KIIIβ)] has generated similar interest as a druggable target; however, no validation of the mechanism of action for putative PfPI4K inhibitors has yet been possible due to the lack of purified PfPI4KIIIβ. We therefore codon optimized the pfpi4kIIIβ gene, successfully expressed the protein in yeast, and purified an N-lobe catalytic domain PfPI4KIIIβ protein. Using an enzyme-linked immunosorbent assay strategy previously perfected for analysis of PfPI3K (PfVps34), we measured the apparent initial rate, Km,app(ATP), and other enzyme characteristics and found full activity for the construct and that PfPI4KIIIβ activity is most consistent with the class IIIβ designation. Because several novel antimalarial drug candidates with different chemical scaffolds have been proposed to target PfPI4KIIIβ, we titrated enzyme inhibition for these candidates versus purified PfPI4KIIIβ and PfVps34. We also analyzed the activity versus purified PfPI4KIIIβ mutants previously expressed in P. falciparum selected for resistance to these drugs. Interestingly, we found that a putative PfPI4KIIIβ inhibitor currently in advanced trials (MMV390048; MMV '0048) is a potent inhibitor of both PfVps34 and PfPI4KIIIβ. These data are helpful for further preclinical optimization of an exciting new class of P. falciparum PI kinase inhibitor ("PfPIKi") antimalarial drugs.
Collapse
Affiliation(s)
- Anna R Sternberg
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th & O Street Northwest, Washington, D.C. 20057, United States
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th & O Street Northwest, Washington, D.C. 20057, United States
| |
Collapse
|
10
|
Riegel B, Roepe PD. Altered Drug Transport by Plasmodium falciparum Chloroquine Resistance Transporter Isoforms Harboring Mutations Associated with Piperaquine Resistance. Biochemistry 2020; 59:2484-2493. [DOI: 10.1021/acs.biochem.0c00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bryce Riegel
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
11
|
Ghartey-Kwansah G, Aboagye B, Adu-Nti F, Opoku YK, Abu EK. Clearing or subverting the enemy: Role of autophagy in protozoan infections. Life Sci 2020; 247:117453. [PMID: 32088215 DOI: 10.1016/j.lfs.2020.117453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The protozoan parasites are evolutionarily divergent, unicellular eukaryotic pathogens representing one of the essential sources of parasitic diseases. These parasites significantly affect the economy and cause public health burdens globally. Protozoan parasites share many cellular features and pathways with their respective host cells. This includes autophagy, a process responsible for self-degradation of the cell's components. There is conservation of the central structural and functional machinery for autophagy in most of the eukaryotic phyla, however, Plasmodium and Toxoplasma possess a decreased number of recognizable autophagy-related proteins (ATG). Plasmodium noticeably lacks clear orthologs of the initiating kinase ATG1/ULK1/2, and both Plasmodium and Toxoplasma lack proteins involved in the nucleation of autophagosomes. These organisms have essential apicoplast, a plastid-like non-photosynthetic organelle, which is an adaptation that is used in penetrating the host cell. Furthermore, available evidence suggests that Leishmania, an intracellular protozoan parasite, induces autophagy in macrophages. The autophagic pathway in Trypanosoma cruzi is activated during metacyclogenesis, a process responsible for the infective forms of parasites. Therefore, numerous pathogens have developed strategies to impair the autophagic mechanism in phagocytes. Regulating autophagy is essential to maintain cellular health as adjustments in the autophagy pathway have been linked to the progression of several physiological and pathological conditions in humans. In this review, we report current advances in autophagy in parasites and their host cells, focusing on the ramifications of these studies in the design of potential anti-protozoan therapeutics.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Benjamin Aboagye
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Adu-Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science, University of Education, Winneba, Ghana
| | - Emmanuel Kwasi Abu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Agrawal P, Manjithaya R, Surolia N. Autophagy‐related protein
Pf
ATG18 participates in food vacuole dynamics and autophagy‐like pathway in
Plasmodium falciparum. Mol Microbiol 2019; 113:766-782. [DOI: 10.1111/mmi.14441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Palak Agrawal
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Namita Surolia
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| |
Collapse
|
13
|
Mamidi AS, Ray A, Surolia N. Structural Analysis of PfSec62-Autophagy Interacting Motifs (AIM) and PfAtg8 Interactions for Its Implications in RecovER-phagy in Plasmodium falciparum. Front Bioeng Biotechnol 2019; 7:240. [PMID: 31608276 PMCID: PMC6773812 DOI: 10.3389/fbioe.2019.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 11/27/2022] Open
Abstract
Autophagy is a degradative pathway associated with many pathological and physiological processes crucial for cell survival. During ER stress, while selective autophagy occurs via ER-phagy, the re-establishment of physiologic ER homeostasis upon resolution of a transient ER stress is mediated by recovER-phagy. Recent studies demonstrated that recovER-phagy is governed via association of Sec62 as an ER-resident autophagy receptor through its autophagy interacting motifs (AIM)/LC3-interacting region (LIR) toAtg8/LC3. Atg8 is an autophagy protein, which is central to autophagosome formation and maturation. Plasmodium falciparum Atg8 (PfAtg8) has both autophagic and non-autophagic functions critical for parasite survival. Since Plasmodium also has Sec62 in the ER membrane and is prone to ER stress due to drastic transformation during their complex intraerythrocytic cycle; hence, we initiated the studies to check whether recovER-phagy occurs in the parasite. To achieve this, a comprehensive study based on the computational approaches was carried out. This study embarks upon identification of AIM sequences in PfSec62 by carrying out peptide-protein docking simulations and comparing the interactions of these AIMs with PfAtg8, based on the molecular dynamic simulations. Detailed analysis is based on electrostatic surface complementarity, peptide-protein interaction strength, mapping of non-covalent bond interactions and rupture force calculated from steered MD simulations. Potential mean forces and unbinding free energies (ΔGdissociation) using Jarzynski's equality were also computed for the AIM/LIR motif complexes with PfAtg8/HsLC3 autophagy proteins to understand their dissociation free energy profiles and thereby their binding affinities and stability of the peptide-protein complexes. Through this study, we predict Sec62 mediated recovER-phagy in Plasmodium falciparum, which might open new avenues to explore novel drug targets for antimalarial drug discovery.
Collapse
Affiliation(s)
- Ashalatha Sreshty Mamidi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Division of Biological Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, India
| | - Ananya Ray
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Namita Surolia
- Molecular Biology and Genetics Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
14
|
Heller LE, Roepe PD. Artemisinin-Based Antimalarial Drug Therapy: Molecular Pharmacology and Evolving Resistance. Trop Med Infect Dis 2019; 4:tropicalmed4020089. [PMID: 31167396 PMCID: PMC6631165 DOI: 10.3390/tropicalmed4020089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
The molecular pharmacology of artemisinin (ART)-based antimalarial drugs is incompletely understood. Clinically, these drugs are used in combination with longer lasting partner drugs in several different artemisinin combination therapies (ACTs). ACTs are currently the standard of care against Plasmodium falciparum malaria across much of the world. A harbinger of emerging artemisinin resistance (ARTR), known as the delayed clearance phenotype (DCP), has been well documented in South East Asia (SEA) and is beginning to affect the efficacy of some ACTs. Though several genetic mutations have been associated with ARTR/DCP, a molecular mechanism remains elusive. This paper summarizes our current understanding of ART molecular pharmacology and hypotheses for ARTR/DCP.
Collapse
Affiliation(s)
- Laura E Heller
- Departments of Chemistry and of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA.
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA.
| |
Collapse
|
15
|
Reiling SJ, Krohne G, Friedrich O, Geary TG, Rohrbach P. Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites. Sci Rep 2018; 8:11137. [PMID: 30042399 PMCID: PMC6057915 DOI: 10.1038/s41598-018-29422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022] Open
Abstract
Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ]ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ]ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ]ex. In striking contrast, brief exposure (1 h) to lethal [CQ]ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure.
Collapse
Affiliation(s)
- Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada
| | - Georg Krohne
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada.
| |
Collapse
|
16
|
Hassett MR, Roepe PD. PIK-ing New Malaria Chemotherapy. Trends Parasitol 2018; 34:925-927. [PMID: 29934102 DOI: 10.1016/j.pt.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol (PI) kinases (PIKs) regulate cell proliferation, survival, membrane trafficking, and other processes. PIK classes are distinguished by substrate preference and their distinct phosphorylated PI products. Recently two Plasmodium falciparum PIKs (PfPIKs) have been recognized as attractive new drug targets. Here we briefly summarize PIK biochemistry and recent progress with PfPIKs.
Collapse
Affiliation(s)
- Matthew R Hassett
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington DC 20057, USA
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington DC 20057, USA.
| |
Collapse
|
17
|
Autophagy in apicomplexan parasites. Curr Opin Microbiol 2017; 40:14-20. [DOI: 10.1016/j.mib.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 01/26/2023]
|
18
|
Hassett MR, Riegel BE, Callaghan PS, Roepe PD. Analysis of Plasmodium vivax Chloroquine Resistance Transporter Mutant Isoforms. Biochemistry 2017; 56:5615-5622. [PMID: 28898049 DOI: 10.1021/acs.biochem.7b00749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CQ) resistance (CQR) in Plasmodium falciparum malaria is widespread and has limited the use of CQ in many regions of the globe. Malaria caused by the related human parasite P. vivax is as widespread as is P. falciparum malaria and has been treated with CQ as extensively as has P. falciparum, suggesting that P. vivax parasites have been selected with CQ as profoundly as have P. falciparum parasites. Indeed, a growing number of clinical reports have presented data suggesting increased P. vivax CQR. Cytostatic (growth inhibitory) CQR for P. falciparum is caused by Plasmodium falciparum chloroquine resistance transporter (PfCRT) mutations, and it has been proposed that mutations in the PvCRT orthologue may simliarly cause P. vivax CQR via increasing CQ transport from the P. vivax digestive vacuole. Here we report the first quantitative analysis of drug transport mediated by all known mutant isoforms of Plasmodium vivax chloroquine resistance transporter (PvCRT) in order to test the protein's potential link to growing P. vivax CQR phenomena. Small, but statistically significant, differences in the transport of CQ and other quinoline antimalarial drugs were found for multiple PvCRT isoforms, relative to wild type PvCRT, suggesting that mutations in PvCRT can contribute to P. vivax CQR and other examples of quinoline antimalarial drug resistance.
Collapse
Affiliation(s)
- Matthew R Hassett
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Bryce E Riegel
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul S Callaghan
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry & Cellular & Molecular Biology, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
19
|
Hassett MR, Sternberg AR, Riegel BE, Thomas CJ, Roepe PD. Heterologous Expression, Purification, and Functional Analysis of Plasmodium falciparum Phosphatidylinositol 3′-Kinase. Biochemistry 2017; 56:4335-4345. [DOI: 10.1021/acs.biochem.7b00416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew R. Hassett
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Anna R. Sternberg
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Bryce E. Riegel
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Craig J. Thomas
- Division
of Preclinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Paul D. Roepe
- Department of Chemistry and Department of Biochemistry & Cellular & Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
20
|
Latré de Laté P, Pineda M, Harnett M, Harnett W, Besteiro S, Langsley G. Apicomplexan autophagy and modulation of autophagy in parasite-infected host cells. Biomed J 2017; 40:23-30. [PMID: 28411879 PMCID: PMC6138587 DOI: 10.1016/j.bj.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Apicomplexan parasites are responsible for a number of important human pathologies. Obviously, as Eukaryotes they share a number of cellular features and pathways with their respective host cells. One of them is autophagy, a process involved in the degradation of the cell's own components. These intracellular parasites nonetheless seem to present a number of original features compared to their very evolutionarily distant host cells. In mammals and other metazoans, autophagy has been identified as an important contributor to the defence against microbial pathogens. Thus, host autophagy also likely plays a key role in the control of apicomplexan parasites, although its potential manipulation and subversion by intracellular parasites creates a complex interplay in the regulation of host and parasite autophagy. In this mini-review, we summarise current knowledge on autophagy in both parasites and their host cells, in the context of infection by three Apicomplexa: Plasmodium, Toxoplasma, and Theileria.
Collapse
Affiliation(s)
- Perle Latré de Laté
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France; Comparative Cellbiology of Apicomplexan Parasites, Faculty of Medicine, Paris-Descartes University, Paris, France
| | - Miguel Pineda
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Margaret Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France; Comparative Cellbiology of Apicomplexan Parasites, Faculty of Medicine, Paris-Descartes University, Paris, France.
| |
Collapse
|
21
|
Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. Sci Rep 2016; 6:33891. [PMID: 27694982 PMCID: PMC5046179 DOI: 10.1038/srep33891] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/05/2016] [Indexed: 12/02/2022] Open
Abstract
Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy.
Collapse
|
22
|
Lévêque MF, Nguyen HM, Besteiro S. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote. Commun Integr Biol 2016; 9:e1197447. [PMID: 27574540 PMCID: PMC4988460 DOI: 10.1080/19420889.2016.1197447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid called the apicoplast, which is essential for their survival. The localization of autophagy-related protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been described, and we have shown this protein is essential for proper inheritance of this complex plastid into daughter cells during cell division. Although the mechanism behind ATG8 association to the apicoplast in T. gondii is related to the canonical conjugation system leading to autophagosome formation, its singular role seems independent from the initial catabolic purpose of autophagy. Here we also discuss further the functional evolution and innovative adaptations of the autophagy machinery to maintain this organelle during parasite division.
Collapse
Affiliation(s)
- Maude F Lévêque
- DIMNP- UMR5235, CNRS, Université de Montpellier , Montpellier, France
| | - Hoa Mai Nguyen
- DIMNP- UMR5235, CNRS, Université de Montpellier , Montpellier, France
| | | |
Collapse
|
23
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
24
|
Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J 2016; 15:186. [PMID: 27036417 PMCID: PMC4815217 DOI: 10.1186/s12936-016-1238-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). METHODS The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. RESULTS During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. CONCLUSION These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.
Collapse
Affiliation(s)
- Paul S Callaghan
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Amila Siriwardana
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Matthew R Hassett
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA. .,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.
| |
Collapse
|
25
|
Mott BT, Eastman RT, Guha R, Sherlach KS, Siriwardana A, Shinn P, McKnight C, Michael S, Lacerda-Queiroz N, Patel PR, Khine P, Sun H, Kasbekar M, Aghdam N, Fontaine SD, Liu D, Mierzwa T, Mathews-Griner LA, Ferrer M, Renslo AR, Inglese J, Yuan J, Roepe PD, Su XZ, Thomas CJ. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci Rep 2015; 5:13891. [PMID: 26403635 PMCID: PMC4585899 DOI: 10.1038/srep13891] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy.
Collapse
Affiliation(s)
- Bryan T. Mott
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Richard T. Eastman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Katy S. Sherlach
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Amila Siriwardana
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Norinne Lacerda-Queiroz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paresma R. Patel
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Pwint Khine
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hongmao Sun
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Monica Kasbekar
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Nima Aghdam
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
| | - Shaun D. Fontaine
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA
| | - Dongbo Liu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Tim Mierzwa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Lesley A. Mathews-Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jing Yuan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, 37th and O St., NW, Washington, DC
- Department of Biochemistry, Cellular and Molecular Biology and Center for Infectious Diseases, Georgetown University, 37th and O St., NW, Washington, DC
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| |
Collapse
|
26
|
Callaghan PS, Hassett MR, Roepe PD. Functional Comparison of 45 Naturally Occurring Isoforms of the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT). Biochemistry 2015. [PMID: 26208441 DOI: 10.1021/acs.biochem.5b00412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least 53 distinct isoforms of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein are expressed in strains or isolates of P. falciparum malarial parasites from around the globe. These parasites exhibit a range of sensitivities to chloroquine (CQ) and other drugs. Mutant PfCRT is believed to confer cytostatic CQ resistance (CQR(CS)) by transporting CQ away from its DV target (free heme released upon hemoglobin digestion). One theory is that variable CQ transport catalyzed by these different PfCRT isoforms is responsible for the range of CQ sensitivities now found for P. falciparum. Alternatively, additional mutations in drug-selected parasites, or additional functions of PfCRT, might complement PfCRT-mediated CQ transport in conferring the range of observed resistance phenotypes. To distinguish between these possibilities, we recently optimized a convenient method for measuring PfCRT-mediated CQ transport, involving heterologous expression in Saccharomyces cerevisiae. Here, we use this method to quantify drug transport activity for 45 of 53 of the naturally occurring PfCRT isoforms. Data show that variable levels of CQR likely depend upon either additional PfCRT functions or additional genetic events, including perhaps changes that influence DV membrane potential. The data also suggest that the common K76T PfCRT mutation that is often used to distinguish a P. falciparum CQR phenotype is not, in and of itself, a fully reliable indicator of CQR status.
Collapse
|
27
|
Petersen I, Gabryszewski SJ, Johnston GL, Dhingra SK, Ecker A, Lewis RE, de Almeida MJ, Straimer J, Henrich PP, Palatulan E, Johnson DJ, Coburn-Flynn O, Sanchez C, Lehane AM, Lanzer M, Fidock DA. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol Microbiol 2015; 97:381-95. [PMID: 25898991 DOI: 10.1111/mmi.13035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.
Collapse
Affiliation(s)
- Ines Petersen
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - Stanislaw J Gabryszewski
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Geoffrey L Johnston
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,School of International and Public Affairs, Columbia University, New York, NY, 10027, USA
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Andrea Ecker
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rebecca E Lewis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eugene Palatulan
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - David J Johnson
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Cecilia Sanchez
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - Adele M Lehane
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael Lanzer
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, 69120, Heidelberg, Germany
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
28
|
Sherlach KS, Roepe PD. Determination of the cytostatic and cytocidal activities of antimalarial compounds and their combination interactions. ACTA ACUST UNITED AC 2014; 6:237-248. [PMID: 25445179 DOI: 10.1002/9780470559277.ch140125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Determining the antiplasmodial activity of candidate antimalarial drugs in vitro identifies new therapies for drug-resistant malaria. Importantly though, activity can be either growth-inhibitory (cytostatic) or parasite-kill (cytocidal), or both. The simple methods described here can allow for distinction between these activities, as well as definition of drug interactions between two or more compounds. The latter is important in the definition of novel drug combination therapy for malaria. These methods involve live malarial parasite red blood cell culture, routine pharmacology, high-throughput detection of parasite DNA with fluorescent reporters, and routine mathematical analysis of dose-response curves. The techniques and approaches are accessible to most laboratories and require minimal special equipment beyond a fluorescent plate reader and tissue culture facilities.
Collapse
Affiliation(s)
- Katy S Sherlach
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, D.C
| |
Collapse
|
29
|
Abstract
The ATG genes are highly conserved in eukaryotes including yeasts, plants, and mammals. However, these genes appear to be only partially present in most protists. Recent studies demonstrated that, in the apicomplexan parasites Plasmodium (malaria parasites) and Toxoplasma, ATG8 localizes to the apicoplast, a unique nonphotosynthetic plastid with 4 limiting membranes. In contrast to this established localization, it remains unclear whether these parasites can induce canonical macroautophagy and if ATG8 localizes to autophagosomes. Furthermore, the molecular function of ATG8 in its novel workplace, the apicoplast, is totally unknown. Here, we review recent studies on ATG8 in Plasmodium and Toxoplasma, summarize both consensus and controversial findings, and discuss its potential role in these parasites.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; University of Tokyo; Tokyo, Japan
| | - Mayurbhai Himatbhai Sahani
- Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; University of Tokyo; Tokyo, Japan
| |
Collapse
|
30
|
Hain AUP, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya J, Meyers CF, Bosch J. Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. J Med Chem 2014; 57:4521-31. [PMID: 24786226 PMCID: PMC4059259 DOI: 10.1021/jm401675a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium. Although Atg8's function in the parasite is not well understood, it is essential for Plasmodium growth and survival and partially localizes to the apicoplast, an indispensable organelle in apicomplexans. Here, we describe the identification of inhibitors from the Malaria Medicine Venture Malaria Box against the interaction of PfAtg8 with its E2-conjugating enzyme, PfAtg3, by surface plasmon resonance. Inhibition of this protein-protein interaction prevents PfAtg8 lipidation with phosphatidylethanolamine. These small molecule inhibitors share a common scaffold and have activity against both blood and liver stages of infection by Plasmodium falciparum. We have derivatized this scaffold into a functional platform for further optimization.
Collapse
Affiliation(s)
- Adelaide U P Hain
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street, Baltimore, Maryland 21205 ( United States )
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sherlach KS, Roepe PD. "Drug resistance associated membrane proteins". Front Physiol 2014; 5:108. [PMID: 24688472 PMCID: PMC3960488 DOI: 10.3389/fphys.2014.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Katy S Sherlach
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University Washington, DC, USA
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology, Georgetown University Washington, DC, USA
| |
Collapse
|
32
|
Roepe PD. To kill or not to kill, that is the question: cytocidal antimalarial drug resistance. Trends Parasitol 2014; 30:130-5. [PMID: 24530127 DOI: 10.1016/j.pt.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 02/03/2023]
Abstract
Elucidating mechanisms of antimalarial drug resistance accelerates development of improved diagnostics and the design of new, effective malaria therapy. Recently, several studies have emphasized that chloroquine (CQ) resistance (CQR) can be quantified in two very distinct ways, depending on whether sensitivity to the growth inhibitory effects or parasite-kill effects of the drug are being measured. It is now clear that these cytostatic and cytocidal CQR phenotypes are not equivalent, and recent genetic, cell biological, and biophysical evidence suggests how the molecular mechanisms may overlap. These conclusions have important implications for elucidating other drug resistance phenomena and emphasize new concepts that are essential for the development of new drug therapy.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington DC 20057, USA; Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington DC 20057, USA.
| |
Collapse
|
33
|
Hain AUP, Bosch J. Autophagy in Plasmodium, a multifunctional pathway? Comput Struct Biotechnol J 2013; 8:e201308002. [PMID: 24688742 PMCID: PMC3962217 DOI: 10.5936/csbj.201308002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a catabolic process that normally utilizes the lysosome. The far-reaching implications of this system in disease are being increasingly understood. Studying autophagy is complicated by its role in cell survival and programmed cell death and the involvement of the canonical marker of autophagy, Atg8/LC3, in numerous non-autophagic roles. The malaria parasite, Plasmodium, has conserved certain aspects of the autophagic machinery but for what purpose has long remained a mystery. Major advances have recently been gained and suggest a role for Atg8 in apicoplast maintenance, degradation of heme inside the food vacuole, and possibly trafficking of proteins or organelles outside the parasite membrane. Autophagy may also participate in programmed cell death under drug treatment or as a selective tool to limit parasite load. We review the current findings and discuss discrepancies in the field of autophagy in the Plasmodium parasite.
Collapse
Affiliation(s)
- Adelaide U P Hain
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, United States
| |
Collapse
|