1
|
Maigoro AY, Lee JH, Yun Y, Lee S, Kwon HW. In the battle of survival: transcriptome analysis of hypopharyngeal gland of the Apis mellifera under temperature-stress. BMC Genomics 2025; 26:151. [PMID: 39962388 PMCID: PMC11834505 DOI: 10.1186/s12864-025-11322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Temperature is one of the essential abiotic factors required for honey bee survival and pollination. Apart from its role as a major contributor to colony collapse disorder (CCD), it also affects honey bee physiology and behavior. Temperature-stress induces differential expression of genes related to protein synthesis and metabolic regulation, correlating with impaired gland function. This phenomenon has been confirmed in mandibular glands (MGs), but not in Hypopharyngeal glands (HGs), potentially affecting larval nutrition. RNA-seq analysis was performed using HGs tissue at low (23 °C), regular (26 °C), and high (29 °C) ambient temperatures. This study aims to decode molecular signatures and the pathways of the HGs tissue in response to temperature-stress and the rapid genetic changes that impact not only royal jelly (RJ) production potential but also other biological functions related to HGs and beyond. RESULTS From the analyzed RNA-seq data, 1,465 significantly differentially expressed genes (DEGs) were identified across all the temperature groups. Eight genes (APD-1, LOC100577569, LOC100577883, LOC113218757, LOC408769, LOC409318, LOC412162, OBP18) were commonly expressed in all groups, while 415 (28.3%) of the total genes were exclusively expressed under temperature-stress. The DEGs were categorized into 14 functional groups and significantly enriched in response to external stimuli, response to abiotic stimuli, and protein processing in the endoplasmic reticulum (ER). Pathway analysis of exclusively temperature-stressed DEGs revealed that these genes promote ECM-receptor interaction and fatty acid metabolism while reducing protein processing in the ER, which is related to royal jelly (RJ) production and overall nutrition. Although heat-shock protein 90 and gustatory receptor 10 serve as markers for stress and hypopharyngeal glands (HGs) development respectively, their expression varies under temperature-stress conditions. CONCLUSIONS We conclude that with the recent effects of climate change and its contributing factors, honey bee pollination, and reproduction activity is on the verge of halting or experiencing a detrimental decline. Considering the impact of temperature-stress on the expression of the nutritional marker gene (GR10), silencing GR10 in HGs tissue could provide valuable insights into its significance in nutritional performance, survival, and beyond. Finally, a broader temperature range in future experiments could help derive more definitive conclusion.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Jeong Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Yumi Yun
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sujin Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hyung Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Nazemi-Rafie J, Fatehi F, Hasrak S. A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees ( Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:253-270. [PMID: 36511774 DOI: 10.1017/s0007485322000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The role of bees in the environment, economic, biodiversity and pharmaceutical industries is due to its social behavior, which is oriented from the brain and hypopharyngeal gland that is the center of royal jelly (RJ) production. Limited studies have been performed on the head gene expression profile at the RJ production stage. The aim of this study was to compare the gene expressions in 9 and 1-day-old (DO) honeybee workers in order to achieve better understanding about head gene expression pattern. After sequencing of RNAs, transcriptome and their networks were compared. The head expression profile undergoes various changes. 1662 gene transcripts had differential expressions which 1125 and 537 were up and down regulated, respectively, in 9_DO compared with 1_DO honey bees. The day 1th had more significant role in the expression of genes related to RJ production as major RJ protein 1, 2, 3, 5, 6 and 9 encoding genes, but their maximum secretion occurred at day 9th. All process related to hypopharyngeal glands activities as CYP450 gene, fatty acid synthase gene, vitamin B6 metabolism and some of genes involved in fatty acid elongation and degradation process had an upward trend from 1_DO and were age-dependent. By increasing the age, the activity of pathways related to immune system increased for keeping the health of bees against the chemical compound. The expression of aromatic amino acid genes involved in Phenylalanine, tyrosine and tryptophan biosynthesis pathway are essential for early stage of life. In 9_DO honeybees, the energy supplying, reducing stress, protein production and export pathways have a crucial role for support the body development and the social duties. It can be stated that the activity of honeybee head is focused on energy supply instead of storage, while actively trying to improve the level of cell dynamics for increasing the immunity and reducing stress. Results of current study identified key genes of certain behaviors of honeybee workers. Deeper considering of some pathways will be evaluated in future studies.
Collapse
Affiliation(s)
- Javad Nazemi-Rafie
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
3
|
The trophocytes and oenocytes of worker and queen honey bees (Apis mellifera) exhibit distinct age-associated transcriptome profiles. GeroScience 2021; 43:1863-1875. [PMID: 33826033 DOI: 10.1007/s11357-021-00360-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
Despite the identical genomic context, trophocytes and oenocytes in worker bees exhibit aging-related phenotypes, in contrast to the longevity phenotypes in queen bees. To explore this phenomenon at the molecular level, we evaluated the age-associated transcriptomes of trophocytes and oenocytes in worker bees and queen bees using high-throughput RNA-sequencing technology (RNA-seq). The results showed that (i) while gene expression profiles were different between worker and queen bees, they remained similar between young and old counterparts; (ii) worker bees express a high proportion of low-abundance genes, whereas queen bee transcriptomes display a high proportion of moderate-expression genes; (iii) genes were upregulated to a greater extent in queen bees vs. worker bees; and (iv) distinct aging-related and longevity-related candidate genes were found in worker and queen bees. These results provide new insights into the cellular aging and longevity of trophocytes and oenocytes in honey bees. Identification of aging-associated biomarker genes also constitutes a basis for translational research of aging in higher organisms.
Collapse
|
4
|
Bong J, Middleditch M, Loomes KM, Stephens JM. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chem 2020; 350:128442. [PMID: 33388180 DOI: 10.1016/j.foodchem.2020.128442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Proteomics is an emerging tool in food authentication that has not been optimised for honey analysis. In this study, we present a qualitative proteomic analysis of New Zealand mānuka (Leptospermum scoparium) honey. A total of fifty bee-derived proteins were identified in the honey, the most predominant being major royal jelly proteins (MRJPs). We also demonstrate for the first time the presence of unique nectar-derived proteins in mānuka honey. A total of 17 mānuka plant proteins were identified, a-third of which were putative pathogenesis-related proteins. Two proteins involved in drought tolerance were also identified. Twelve candidate peptides were selected as potential authentication markers based on their uniqueness to mānuka honey. Nectar analyses confirmed the origin and specificity of these peptides to L. scoparium nectar, thus presenting peptide profiling as a viable and novel approach for mānuka honey authentication. Raw data are available via ProteomeXchange with identifier PXD021730.
Collapse
Affiliation(s)
- Jessie Bong
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand
| | - Martin Middleditch
- Mass Spectrometry Centre, Auckland Science Analytical Service, School of Biological Sciences, University of Auckland, PB92019 Auckland, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, PB92019 Auckland, New Zealand.
| | - Jonathan M Stephens
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand.
| |
Collapse
|
5
|
Dobritzsch D, Aumer D, Fuszard M, Erler S, Buttstedt A. The rise and fall of major royal jelly proteins during a honeybee ( Apis mellifera) workers' life. Ecol Evol 2019; 9:8771-8782. [PMID: 31410279 PMCID: PMC6686338 DOI: 10.1002/ece3.5429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
The genome of the western honeybee (Apis mellifera) harbors nine transcribed major royal jelly protein genes (mrjp1-9) which originate from a single-copy precursor via gene duplication. The first MRJP was identified in royal jelly, a secretion of the bees' hypopharyngeal glands that is used by young worker bees, called nurses, to feed developing larvae. Thus, MRJPs are frequently assumed to mainly have functions for developing bee larvae and to be expressed in the food glands of nurse bees. In-depth knowledge on caste- and age-specific role and abundance of MRJPs is missing. We here show, using combined quantitative real-time PCR with quantitative mass spectrometry, that expression and protein amount of mrjp1-5 and mrjp7 show an age-dependent pattern in worker's hypopharyngeal glands as well as in brains, albeit lower relative abundance in brains than in glands. Expression increases after hatching until the nurse bee period and is followed by a decrease in older workers that forage for plant products. Mrjp6 expression deviates considerably from the expression profiles of the other mrjps, does not significantly vary in the brain, and shows its highest expression in the hypopharyngeal glands during the forager period. Furthermore, it is the only mrjp of which transcript abundance does not correlate with protein amount. Mrjp8 and mrjp9 show, compared to the other mrjps, a very low expression in both tissues. Albeit mrjp8 mRNA was detected via qPCR, the protein was not quantified in any of the tissues. Due to the occurrence of MRJP8 and MRJP9 in other body parts of the bees, for example, the venom gland, they might not have a hypopharyngeal gland- or brain-specific function but rather functions in other tissues. Thus, mrjp1-7 but not mrjp8 and mrjp9 might be involved in the regulation of phenotypic plasticity and age polyethism in worker honeybees.
Collapse
Affiliation(s)
- Dirk Dobritzsch
- Institut für Biochemie und Biotechnologie, PflanzenbiochemieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Denise Aumer
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Matthew Fuszard
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Silvio Erler
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Anja Buttstedt
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
6
|
Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, Meng L, Fang Y, Han B, Ma C, Li J. In-depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Mol Cell Proteomics 2019; 18:606-621. [PMID: 30617159 PMCID: PMC6442370 DOI: 10.1074/mcp.ra118.001257] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Royal jelly (RJ) is a secretion of the hypopharyngeal glands (HGs) of honeybee workers. High royal jelly producing bees (RJBs), a stock of honeybees selected from Italian bees (ITBs), have developed a stronger ability to produce RJ than ITBs. However, the mechanism underpinning the high RJ-producing performance in RJBs is still poorly understood. We have comprehensively characterized and compared the proteome across the life span of worker bees between the ITBs and RJBs. Our data uncover distinct molecular landscapes that regulate the gland ontogeny and activity corresponding with age-specific tasks. Nurse bees (NBs) have a well-developed acini morphology and cytoskeleton of secretory cells in HGs to prime the gland activities of RJ secretion. In RJB NBs, pathways involved in protein synthesis and energy metabolism are functionally induced to cement the enhanced RJ secretion compared with ITBs. In behavior-manipulated RJB NBs, the strongly expressed proteins implicated in protein synthesis and energy metabolism further demonstrate their critical roles in the regulation of RJ secretion. Our findings provide a novel understanding of the mechanism consolidating the high RJ-output in RJBs.
Collapse
Affiliation(s)
- Han Hu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Gebreamlak Bezabih
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Mao Feng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qiaohong Wei
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Xufeng Zhang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Fan Wu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Lifeng Meng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Yu Fang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Bin Han
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Chuan Ma
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Jianke Li
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China.
| |
Collapse
|
7
|
Yin L, Wang K, Niu L, Zhang H, Chen Y, Ji T, Chen G. Uncovering the Changing Gene Expression Profile of Honeybee ( Apis mellifera) Worker Larvae Transplanted to Queen Cells. Front Genet 2018; 9:416. [PMID: 30405683 PMCID: PMC6207841 DOI: 10.3389/fgene.2018.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
The reproductive division of labor, based on caste differentiation in social insects, is of great significance in evolution. Generally, a healthy bee colony consists of a queen and numerous workers and drones. Despite being genetically identical, the queen and workers exhibit striking differences in morphology, behavior, and lifespan. The fertilized eggs and larvae selectively develop into queen and worker bees depending on the local nutrition and environment. Bee worker larvae that are transplanted within 3 days of age to queen cells of a bee colony can develop into queens with mature ovaries. This phenomenon is important to understand the regulatory mechanisms of caste differentiation. In this study, we transplanted worker larvae (Apis mellifera) at the age of 1 (L1), 2 (L2), and 3 days (L3) into queen cells until the age of 4 days. Subsequently, genetic changes in these larvae were evaluated. The results revealed that the number of differentially expressed genes (DEGs) in L1 vs. L3 was more than that in L1 vs. L2. Furthermore, many of the genes that were downregulated are mostly involved in metabolism, body development, reproductive ability, and longevity, indicating that these functions decreased with the age of transplantation of the larvae. Moreover, these functions may be critical for worker larvae to undergo the developmental path to become queens. We also found that the DEGs of L1 vs. L2 and L1 vs. L3 were enriched in the MAPK, FoxO, mTOR, Wnt, TGF-beta Hedgehog Toll and Imd, and Hippo signaling pathways. Gene ontology analysis indicated that some genes are simultaneously involved in different biological pathways; through these genes, the pathways formed a mutual regulatory network. Casein kinase 1 (CK 1) was predicted to participate in the FoxO, Wnt, Hedgehog, and Hippo signaling pathways. The results suggest that these pathways cross talked through the network to modify the development of larvae and that CK 1 is an important liaison. The results provide valuable information regarding the regulatory mechanism of environmental factors affecting queen development, thus, amplifying the understanding of caste differentiation in bees.
Collapse
Affiliation(s)
- Ling Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lin Niu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Huanxin Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yuyong Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Moon K, Lee SH, Kim YH. Validation of quantitative real-time PCR reference genes for the determination of seasonal and labor-specific gene expression profiles in the head of Western honey bee, Apis mellifera. PLoS One 2018; 13:e0200369. [PMID: 29985960 PMCID: PMC6037379 DOI: 10.1371/journal.pone.0200369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 11/30/2022] Open
Abstract
Honey bee is not only considered an important pollinator in agriculture, but is also widely used as a model insect in biological sciences, thanks to its highly evolved sociality, specialization of labor division, and flexibility of colony management. For an intensive investigation of the seasonal and labor-dependent expression patterns of its genes, accurate quantification of the target gene transcription level is a fundamental step. To date, quantitative real-time PCR (qRT-PCR) has been widely used for rapid quantification of gene transcripts, with reliable reference gene(s) for normalization. To this end, in an attempt to search for reliable reference genes, the amplification efficiencies of six candidate reference genes (rp49, rpL32, rpS18, tbp, tub, and gapdh) were determined. Subsequently, four genes (rpL32, rpS18, tbp, and gapdh) with PCR efficiencies of 90% to 110% were evaluated for their expression stabilities with three programs (geNorm, NormFinder, and BestKeeper) and used for normalization of seasonal expression patterns of target genes in the forager and nurse heads. Although the three programs revealed slightly different results, two genes, rpS18 and gapdh, were suggested to be the optimal reference genes for qRT-PCR-based determination of seasonal and labor-specific gene expression profiles. Furthermore, the combined use of these two genes yielded a more accurate normalization, compared with the use of a single gene in the head of honey bee. The validated reference genes can be widely used for quantification of target gene expression in honey bee head although it is still remained to be elucidated the expression levels of the selected reference genes in specific tissues in head.
Collapse
Affiliation(s)
- KyungHwan Moon
- Department of Applied Biology, College of Ecology & Environmental Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YHK); (SHL)
| | - Young Ho Kim
- Department of Applied Biology, College of Ecology & Environmental Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
- * E-mail: (YHK); (SHL)
| |
Collapse
|
9
|
Wang X, Wang F, Chen H, Liang X, Huang Y, Yi J. Comparative genomic hybridization and transcriptome sequencing reveal that two genes, OsI_14279 ( LOC_Os03g62620) and OsI_10794 ( LOC_Os03g14950) regulate the mutation in the γ- rl rice mutant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:745-754. [PMID: 29158625 PMCID: PMC5671442 DOI: 10.1007/s12298-017-0460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 05/27/2023]
Abstract
We previously established the genetic locus of the rolled-leaf mutant, γ-rl, to chromosome 3. In this study, we performed a comparative genomic hybridization (CGH) analysis to identify the genes responsible for the γ-rl mutant phenotype. This was combined with RNA transcriptome sequencing (RNA-seq) to analyze differences in the mRNA expression in seeds 12 h after germination. Using the reference genome of the "indica type" rice from GenBank, we created a chip with 386,000 high density DNA probes designed to target chromosome 3. The genomic DNA from γ-rl and Qinghuazhan (the wild-type) was used for hybridization against the chip to compare signal differences. We uncovered 49 regions with significant differences in hybridization signals including deletions and insertions. RNA-seq analysis between γ-rl and QHZ identified 1060 differentially expressed genes, which potentially regulate numerous biological activities. Moreover, we identified 72 annotated genes in the 49 regions discovered in CGH. Among these, 44 genes showed differential expression in RNA-seq. qRT-PCR validation of the candidate genes confirmed that seven of the 44 genes showed a significant change in their expression levels. Among these, four genes [OsI_10125 (LOC_Os03g06654), OsI_14045 (LOC_Os03g62490), OsI_14279 (LOC_Os03g62620) and OsI_14326 (LOC_Os03g63250)] were down regulated and three genes [(OsI_10794 (LOC_Os03g14950), OsI_11412 (LOC_Os03g21250) and OsI_14152 (LOC_Os03g61360)] were up regulated with a fold change ≥2.0 and a P value ≤ 0.01. Finally, we constructed transgenic plants to study the in vivo functions of these genes. RNAi knock down of LOC_Os03g62620 resulted in rolled-leaf, lower seed-setting and decreased seed growth phenotypes. Transgenic plants with LOC_Os03g14950 over-expression showed dwarf plants with a shortened leaf phenotype. Our results, LOC_Os03g62620 and LOC_Os03g14950 as the essential genes responsible for creating the γ-rl mutant phenotypes suggested that these genes may play crucial roles in regulating rice leaf development and seed growth.
Collapse
Affiliation(s)
- Xulong Wang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Fanhua Wang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Huiqiong Chen
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoyu Liang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yingmei Huang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jicai Yi
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
10
|
Brudzynski K, Miotto D, Kim L, Sjaarda C, Maldonado-Alvarez L, Fukś H. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Sci Rep 2017; 7:7637. [PMID: 28794506 PMCID: PMC5550472 DOI: 10.1038/s41598-017-08072-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/30/2017] [Indexed: 11/09/2022] Open
Abstract
Little is known about the global structure of honey and the arrangement of its main macromolecules. We hypothesized that the conditions in ripened honeys resemble macromolecular crowding in the cell and affect the concentration, reactivity, and conformation of honey macromolecules. Combined results from UV spectroscopy, DLS and SEM showed that the concentration of macromolecules was a determining factor in honey structure. The UV spectral scans in 200-400 nm visualized and allowed quantification of UV-absorbing compounds in the following order: dark > medium > light honeys (p < 0.0001). The high concentration of macromolecules promoted their self-assembly to micron-size superstructures, visible in SEM as two-phase system consisting of dense globules distributed in sugar solution. These particles showed increased conformational stability upon dilution. At the threshold concentration, the system underwent phase transition with concomitant fragmentation of large micron-size particles to nanoparticles in hierarchical order. Honey two-phase conformation was an essential requirement for antibacterial activity and hydrogen peroxide production. These activities disappeared beyond the phase transition point. The realization that active macromolecules of honey are arranged into compact, stable multicomponent assemblies with colloidal properties reframes our view on global structure of honey and emerges as a key property to be considered in investigating its biological activity.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada.
| | - Danielle Miotto
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Linda Kim
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Calvin Sjaarda
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Liset Maldonado-Alvarez
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Henryk Fukś
- Department of Mathematics & Statistics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| |
Collapse
|
11
|
Lago DC, Humann FC, Barchuk AR, Abraham KJ, Hartfelder K. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:1-12. [PMID: 27720811 DOI: 10.1016/j.ibmb.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Fernanda Carvalho Humann
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Matão, Rua Estéfano D'avassi, 625, 15991-502 Matão, SP, Brazil.
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, 37130-000 Alfenas, MG, Brazil.
| | - Kuruvilla Joseph Abraham
- Departamento de Puericultura e Pediatria Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Universidade Estácio-Uniseb, Rua Abrahão Issa Halach 980, 14096-160 Ribeirão Preto, SP, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Transcriptome differences in the hypopharyngeal gland between Western Honeybees (Apis mellifera) and Eastern Honeybees (Apis cerana). BMC Genomics 2014; 15:744. [PMID: 25174638 PMCID: PMC4158095 DOI: 10.1186/1471-2164-15-744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager). Results Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs. Conclusions In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-744) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Ji T, Liu Z, Shen J, Shen F, Liang Q, Wu L, Chen G, Corona M. Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann. BMC Genomics 2014; 15:665. [PMID: 25103401 PMCID: PMC4141115 DOI: 10.1186/1471-2164-15-665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/30/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Most of the proteins contained in royal jelly (RJ) are secreted from the hypopharyngeal glands (HG) of young bees. Although generic protein composition of RJ has been investigated, little is known about how age-dependent changes on HG secretion affect RJ composition and their biological consequences. In this study, we identified differentially expressed proteins (DEPs) during HG development by using the isobaric tag for relative and absolute quantification (iTRAQ) labeling technique. This proteomic method increases the potential for new protein discovery by improving the identification of low quantity proteins. RESULTS A total of 1282 proteins were identified from five age groups of worker bees, 284 of which were differentially expressed. 43 (15.1%) of the DEPs were identified for the first time. Comparison of samples at day 6, 9, 12, and 16 of development relative to day 3 led to the unambiguous identification of 112, 117, 127, and 127 DEPs, respectively. The majority of these DEPs were up-regulated in the older worker groups, indicating a substantial change in the pattern of proteins expressed after 3 days. DEPs were identified among all the age groups, suggesting that changes in protein expression during HG ontogeny are concomitant with different states of worker development. A total of 649 proteins were mapped to canonical signaling pathways found in the Kyoto Encyclopedia of Genes and Genomes (KEGG), which were preferentially associated with metabolism and biosynthesis of secondary metabolites. More than 10 key high-abundance proteins were involved in signaling pathways related to ribosome function and protein processing in the endoplasmic reticulum. The results were validated by qPCR. CONCLUSION Our approach demonstrates that HG experienced important changes in protein expression during its ontogenic development, which supports the secretion of proteins involved in diverse functions in adult workers beyond its traditional role in royal jelly production.
Collapse
Affiliation(s)
- Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|