1
|
Padmakumar JP, Sun JJ, Cho W, Zhou Y, Krenz C, Han WZ, Densmore D, Sontag ED, Voigt CA. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 2025; 21:268-279. [PMID: 39317847 DOI: 10.1038/s41589-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.
Collapse
Affiliation(s)
- Jai P Padmakumar
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica J Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Cho
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yangruirui Zhou
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Christopher Krenz
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Woo Zhong Han
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Christopher A Voigt
- MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Solé R, Conde-Pueyo N, Pla-Mauri J, Garcia-Ojalvo J, Montserrat N, Levin M. Open problems in synthetic multicellularity. NPJ Syst Biol Appl 2024; 10:151. [PMID: 39741147 DOI: 10.1038/s41540-024-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Multicellularity is one of the major evolutionary transitions, and its rise provided the ingredients for the emergence of a biosphere inhabited by complex organisms. Over the last decades, the potential for bioengineering multicellular systems has been instrumental in interrogating nature and exploring novel paths to regeneration, disease, cognition, and behaviour. Here, we provide a list of open problems that encapsulate many of the ongoing and future challenges in the field and suggest conceptual approaches that may facilitate progress.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003, Barcelona, Spain.
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003, Barcelona, Spain.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| | - Núria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003, Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003, Barcelona, Spain
| | - Jordi Pla-Mauri
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003, Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003, Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Universitat Pompeu Fabra, Medicine and Life Sciences Department (MELIS), Barcelona, Spain
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Fedorec AJH, Treloar NJ, Wen KY, Dekker L, Ong QH, Jurkeviciute G, Lyu E, Rutter JW, Zhang KJY, Rosa L, Zaikin A, Barnes CP. Emergent digital bio-computation through spatial diffusion and engineered bacteria. Nat Commun 2024; 15:4896. [PMID: 38851790 PMCID: PMC11162413 DOI: 10.1038/s41467-024-49264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Biological computing is a promising field with potential applications in biosafety, environmental monitoring, and personalized medicine. Here we present work on the design of bacterial computers using spatial patterning to process information in the form of diffusible morphogen-like signals. We demonstrate, mathematically and experimentally, that single, modular, colonies can perform simple digital logic, and that complex functions can be built by combining multiple colonies, removing the need for further genetic engineering. We extend our experimental system to incorporate sender colonies as morphogen sources, demonstrating how one might integrate different biochemical inputs. Our approach will open up ways to perform biological computation, with applications in bioengineering, biomaterials and biosensing. Ultimately, these computational bacterial communities will help us explore information processing in natural biological systems.
Collapse
Affiliation(s)
- Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| | - Neythen J Treloar
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Ke Yan Wen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Linda Dekker
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Qing Hsuan Ong
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Gabija Jurkeviciute
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Enbo Lyu
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jack W Rutter
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Kathleen J Y Zhang
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Luca Rosa
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Alexey Zaikin
- Department of Mathematics, University College London, London, WC1E 6BT, UK
- Institute for Women's Health, University College London, London, WC1E 6BT, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Computing within bacteria: Programming of bacterial behavior by means of a plasmid encoding a perceptron neural network. Biosystems 2022; 213:104608. [DOI: 10.1016/j.biosystems.2022.104608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
|
5
|
Moškon M, Komac R, Zimic N, Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Karkaria BD, Treloar NJ, Barnes CP, Fedorec AJH. From Microbial Communities to Distributed Computing Systems. Front Bioeng Biotechnol 2020; 8:834. [PMID: 32793576 PMCID: PMC7387671 DOI: 10.3389/fbioe.2020.00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools.
Collapse
Affiliation(s)
- Behzad D. Karkaria
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Neythen J. Treloar
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chris P. Barnes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Alex J. H. Fedorec
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Abstract
Synthetic biology uses living cells as the substrate for performing human-defined computations. Many current implementations of cellular computing are based on the “genetic circuit” metaphor, an approximation of the operation of silicon-based computers. Although this conceptual mapping has been relatively successful, we argue that it fundamentally limits the types of computation that may be engineered inside the cell, and fails to exploit the rich and diverse functionality available in natural living systems. We propose the notion of “cellular supremacy” to focus attention on domains in which biocomputing might offer superior performance over traditional computers. We consider potential pathways toward cellular supremacy, and suggest application areas in which it may be found. Synthetic biology uses cells as its computing substrate, often based on the genetic circuit concept. In this Perspective, the authors argue that existing synthetic biology approaches based on classical models of computation limit the potential of biocomputing, and propose that living organisms have under-exploited capabilities.
Collapse
|
8
|
Seoane LF. Evolutionary aspects of reservoir computing. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180377. [PMID: 31006369 PMCID: PMC6553587 DOI: 10.1098/rstb.2018.0377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/31/2023] Open
Abstract
Reservoir computing (RC) is a powerful computational paradigm that allows high versatility with cheap learning. While other artificial intelligence approaches need exhaustive resources to specify their inner workings, RC is based on a reservoir with highly nonlinear dynamics that does not require a fine tuning of its parts. These dynamics project input signals into high-dimensional spaces, where training linear readouts to extract input features is vastly simplified. Thus, inexpensive learning provides very powerful tools for decision-making, controlling dynamical systems, classification, etc. RC also facilitates solving multiple tasks in parallel, resulting in a high throughput. Existing literature focuses on applications in artificial intelligence and neuroscience. We review this literature from an evolutionary perspective. RC's versatility makes it a great candidate to solve outstanding problems in biology, which raises relevant questions. Is RC as abundant in nature as its advantages should imply? Has it evolved? Once evolved, can it be easily sustained? Under what circumstances? (In other words, is RC an evolutionarily stable computing paradigm?) To tackle these issues, we introduce a conceptual morphospace that would map computational selective pressures that could select for or against RC and other computing paradigms. This guides a speculative discussion about the questions above and allows us to propose a solid research line that brings together computation and evolution with RC as test model of the proposed hypotheses. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Luís F. Seoane
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona 08003, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona 08003, Spain
| |
Collapse
|
9
|
Hierarchical composition of reliable recombinase logic devices. Nat Commun 2019; 10:456. [PMID: 30692530 PMCID: PMC6349923 DOI: 10.1038/s41467-019-08391-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
A major goal of synthetic biology is to reprogram living organisms to solve pressing challenges in manufacturing, environmental remediation, and healthcare. Recombinase devices can efficiently encode complex logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we provide a systematic framework for engineering reliable recombinase logic devices by hierarchical composition of well-characterized, optimized recombinase switches. We apply this framework to build a recombinase logic device family supporting up to 4-input Boolean logic within a multicellular system. This work enables straightforward implementation of multicellular recombinase logic and will support the predictable engineering of several classes of recombinase devices to reliably control cellular behavior. Genetic logic devices allow the host cell to incorporate multiple inputs to determine output behaviour. Here the authors provide a framework for engineering reliable recombinase-based devices and demonstrate 4-input logic in a multicellular system.
Collapse
|
10
|
Guiziou S, Ulliana F, Moreau V, Leclere M, Bonnet J. An Automated Design Framework for Multicellular Recombinase Logic. ACS Synth Biol 2018; 7:1406-1412. [PMID: 29641183 PMCID: PMC5962929 DOI: 10.1021/acssynbio.8b00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Tools
to systematically reprogram cellular behavior are crucial
to address pressing challenges in manufacturing, environment, or healthcare.
Recombinases can very efficiently encode Boolean and history-dependent
logic in many species, yet current designs are performed on a case-by-case
basis, limiting their scalability and requiring time-consuming optimization.
Here we present an automated workflow for designing recombinase logic
devices executing Boolean functions. Our theoretical framework uses
a reduced library of computational devices distributed into different
cellular subpopulations, which are then composed in various manners
to implement all desired logic functions at the multicellular level.
Our design platform called CALIN (Composable Asynchronous Logic using
Integrase Networks) is broadly accessible via a web
server, taking truth tables as inputs and providing corresponding
DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin). We anticipate that this automated design workflow will streamline
the implementation of Boolean functions in many organisms and for
various applications.
Collapse
Affiliation(s)
- Sarah Guiziou
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Federico Ulliana
- Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), CNRS UMR 5506, University of Montpellier, 34090 Montpellier, France
| | - Violaine Moreau
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Michel Leclere
- Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), CNRS UMR 5506, University of Montpellier, 34090 Montpellier, France
| | - Jerome Bonnet
- Centre de Biochimie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
11
|
Macia J, Vidiella B, Solé RV. Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 2017; 14:rsif.2017.0158. [PMID: 28404872 DOI: 10.1098/rsif.2017.0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Associative learning (AL) is one of the key mechanisms displayed by living organisms in order to adapt to their changing environments. It was recognized early as a general trait of complex multicellular organisms but is also found in 'simpler' ones. It has also been explored within synthetic biology using molecular circuits that are directly inspired in neural network models of conditioning. These designs involve complex wiring diagrams to be implemented within one single cell, and the presence of diverse molecular wires become a challenge that might be very difficult to overcome. Here we present three alternative circuit designs based on two-cell microbial consortia able to properly display AL responses to two classes of stimuli and displaying long- and short-term memory (i.e. the association can be lost with time). These designs might be a helpful approach for engineering the human gut microbiome or even synthetic organoids, defining a new class of decision-making biological circuits capable of memory and adaptation to changing conditions. The potential implications and extensions are outlined.
Collapse
Affiliation(s)
- Javier Macia
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta, 37, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta, 37, 08003 Barcelona, Spain
| | - Ricard V Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain .,Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta, 37, 08003 Barcelona, Spain.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
12
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
13
|
Nuñez IN, Matute TF, Del Valle ID, Kan A, Choksi A, Endy D, Haseloff J, Rudge TJ, Federici F. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies. ACS Synth Biol 2017; 6:256-265. [PMID: 27794593 DOI: 10.1021/acssynbio.6b00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.
Collapse
Affiliation(s)
- Isaac N. Nuñez
- Escuela
de Ingeniería, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
- Fondo
de Desarrollo de Areas Prioritarias Center for Genome Regulation,
Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Tamara F. Matute
- Escuela
de Ingeniería, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
- Fondo
de Desarrollo de Areas Prioritarias Center for Genome Regulation,
Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Ilenne D. Del Valle
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Anton Kan
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Atri Choksi
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States,
| | - Drew Endy
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States,
| | - Jim Haseloff
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Timothy J. Rudge
- Escuela
de Ingeniería, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Fernan Federici
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
- Fondo
de Desarrollo de Areas Prioritarias Center for Genome Regulation,
Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| |
Collapse
|
14
|
Liu Y, Tsao C, Kim E, Tschirhart T, Terrell JL, Bentley WE, Payne GF. Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogel-Based Chemo-Electro Signal Transduction for Molecular Communication. Adv Healthc Mater 2017; 6. [PMID: 27863177 DOI: 10.1002/adhm.201600908] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/15/2016] [Indexed: 01/08/2023]
Abstract
A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD 20742 USA
- Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
15
|
Ollé-Vila A, Duran-Nebreda S, Conde-Pueyo N, Montañez R, Solé R. A morphospace for synthetic organs and organoids: the possible and the actual. Integr Biol (Camb) 2016; 8:485-503. [PMID: 27032985 DOI: 10.1039/c5ib00324e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efforts in evolutionary developmental biology have shed light on how organs are developed and why evolution has selected some structures instead of others. These advances in the understanding of organogenesis along with the most recent techniques of organotypic cultures, tissue bioprinting and synthetic biology provide the tools to hack the physical and genetic constraints in organ development, thus opening new avenues for research in the form of completely designed or merely altered settings. Here we propose a unifying framework that connects the concept of morphospace (i.e. the space of possible structures) with synthetic biology and tissue engineering. We aim for a synthesis that incorporates our understanding of both evolutionary and architectural constraints and can be used as a guide for exploring alternative design principles to build artificial organs and organoids. We present a three-dimensional morphospace incorporating three key features associated to organ and organoid complexity. The axes of this space include the degree of complexity introduced by developmental mechanisms required to build the structure, its potential to store and react to information and the underlying physical state. We suggest that a large fraction of this space is empty, and that the void might offer clues for alternative ways of designing and even inventing new organs.
Collapse
Affiliation(s)
- Aina Ollé-Vila
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
16
|
Sardanyés J, Bonforti A, Conde N, Solé R, Macia J. Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front Physiol 2015; 6:281. [PMID: 26500559 PMCID: PMC4598587 DOI: 10.3389/fphys.2015.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022] Open
Abstract
Cells are complex machines capable of processing information by means of an entangled network of molecular interactions. A crucial component of these decision-making systems is the presence of memory and this is also a specially relevant target of engineered synthetic systems. A classic example of memory devices is a 1-bit memory element known as the flip-flop. Such system can be in principle designed using a single-cell implementation, but a direct mapping between standard circuit design and a living circuit can be cumbersome. Here we present a novel computational implementation of a 1-bit memory device using a reliable multicellular design able to behave as a set-reset flip-flop that could be implemented in yeast cells. The dynamics of the proposed synthetic circuit is investigated with a mathematical model using biologically-meaningful parameters. The circuit is shown to behave as a flip-flop in a wide range of parameter values. The repression strength for the NOT logics is shown to be crucial to obtain a good flip-flop signal. Our model also shows that the circuit can be externally tuned to achieve different memory states and dynamics, such as persistent and transient memory. We have characterized the parameter domains for robust memory storage and retrieval as well as the corresponding time response dynamics.
Collapse
Affiliation(s)
- Josep Sardanyés
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; Institut de Biologia Evolutiva, CSIC-UPF Barcelona, Spain
| | - Adriano Bonforti
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; Institut de Biologia Evolutiva, CSIC-UPF Barcelona, Spain
| | - Nuria Conde
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; Institut de Biologia Evolutiva, CSIC-UPF Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; Institut de Biologia Evolutiva, CSIC-UPF Barcelona, Spain ; Santa Fe Institute Santa Fe, NM, USA
| | - Javier Macia
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; Institut de Biologia Evolutiva, CSIC-UPF Barcelona, Spain
| |
Collapse
|
17
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|
18
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
19
|
Liu Y, Wu HC, Chhuan M, Terrell JL, Tsao CY, Bentley WE, Payne GF. Functionalizing Soft Matter for Molecular Communication. ACS Biomater Sci Eng 2015; 1:320-328. [PMID: 26501127 PMCID: PMC4603720 DOI: 10.1021/ab500160e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/26/2015] [Indexed: 11/28/2022]
Abstract
![]()
The
information age was enabled by advances in microfabrication
and communication theory that allowed information to be processed
by electrons and transmitted by electromagnetic radiation. Despite
immense capabilities, microelectronics has limited abilities to access
and participate in the molecular-based communication that characterizes
our biological world. Here, we use biological materials and methods
to create components and fabricate devices to perform simple molecular
communication functions based on bacterial quorum sensing (QS). Components
were created by protein engineering to generate a multidomain fusion
protein capable of sending a molecular QS signal, and by synthetic
biology to engineer E. coli to receive and report
this QS signal. The device matrix was formed using stimuli-responsive
hydrogel-forming biopolymers (alginate and gelatin). Assembly of the
components within the device matrix was achieved by physically entrapping
the cell-based components, and covalently conjugating the protein-based
components using the enzyme microbial transglutaminase. We demonstrate
simple devices that can send or receive a molecular QS signal to/from
the surrounding medium, and a two-component device in which one component
generates the signal (i.e., issues a command) that is acted upon by
the second component. These studies illustrate the broad potential
of biofabrication to generate molecular communication devices.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Hsuan-Chen Wu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Melanie Chhuan
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Jessica L Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Razavi S, Su S, Inoue T. Cellular signaling circuits interfaced with synthetic, post-translational, negating Boolean logic devices. ACS Synth Biol 2014; 3:676-85. [PMID: 25000210 PMCID: PMC4169742 DOI: 10.1021/sb500222z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 12/11/2022]
Abstract
A negating functionality is fundamental to information processing of logic circuits within cells and computers. Aiming to adapt unutilized electronic concepts to the interrogation of signaling circuits in cells, we first took a bottom-up strategy whereby we created protein-based devices that perform negating Boolean logic operations such as NOT, NOR, NAND, and N-IMPLY. These devices function in living cells within a minute by precisely commanding the localization of an activator molecule among three subcellular spaces. We networked these synthetic gates to an endogenous signaling circuit and devised a physiological output. In search of logic functions in signal transduction, we next took a top-down approach and computationally screened 108 signaling pathways to identify commonalities and differences between these biological pathways and electronic circuits. This combination of synthetic and systems approaches will guide us in developing foundations for deconstruction of intricate cell signaling, as well as construction of biomolecular computers.
Collapse
Affiliation(s)
- Shiva Razavi
- Department of Biomedical Engineering, Department of Cell Biology, and Center for Cell
Dynamics, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United
States
| | - Steven Su
- Department of Biomedical Engineering, Department of Cell Biology, and Center for Cell
Dynamics, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United
States
| | - Takanari Inoue
- Department of Biomedical Engineering, Department of Cell Biology, and Center for Cell
Dynamics, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United
States
- Japan
Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Singh V. Recent advances and opportunities in synthetic logic gates engineering in living cells. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:271-82. [PMID: 26396651 DOI: 10.1007/s11693-014-9154-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/09/2014] [Accepted: 08/23/2014] [Indexed: 01/03/2023]
Abstract
Recently, a number of synthetic biologic gates including AND, OR, NOR, NOT, XOR and NAND have been engineered and characterized in a wide range of hosts. The hope in the emerging synthetic biology community is to construct an inventory of well-characterized parts and install distinct gene and circuit behaviours that are externally controllable. Though the field is still growing and major successes are yet to emerge, the payoffs are predicted to be significant. In this review, we highlight specific examples of logic gates engineering with applications towards fundamental understanding of network complexity and generating a novel socially useful applications.
Collapse
Affiliation(s)
- Vijai Singh
- Department of Biotechnology, Invertis University, Bareilly- Lucknow National Highway-24, Bareilly, 243123 India ; Synthetic Biology Laboratory, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulju-gun, Ulsan, 689-798 Republic of Korea
| |
Collapse
|