1
|
Kanellopoulos P, Lundmark F, Abouzayed A, Balestri LJI, Håkansson EO, Obeid K, Odell LR, Tolmachev V, Rosenström U, Eriksson J, Orlova A. Synthesis and preclinical evaluation of gastrin releasing peptide receptor antagonist [ 18F]MeTz-PEG 2-RM26 for positron emission tomography. EJNMMI Radiopharm Chem 2025; 10:14. [PMID: 40138074 PMCID: PMC11947346 DOI: 10.1186/s41181-025-00336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) is overexpressed in the majority of primary prostate cancer lesions, with persistent expression in lymph nodes and bone metastases, making it a legitimate molecular target for diagnostic imaging and staging. This study presents the synthesis and preclinical evaluation of [18F]MeTz-PEG2-RM26, a GRPR antagonist which utilises the Inverse Electron Demand Diels-Alder (IEDDA) reaction for 18F-labelling. This click-chemistry approach allows for site-specific incorporation of fluorine-18 under mild conditions, preserving the peptide's structural integrity and biological activity. Receptor specificity and affinity of [18F]MeTz-PEG2-RM26 were evaluated in vitro using GRPR-expressing PC-3 cells. Furthermore, the biodistribution profile of [18F]MeTz-PEG2-RM26 was assessed in NMRI mice and its tumour-targeting capability was investigated in mice bearing PC-3 xenografts. RESULTS The labelling of TCO-PEG2-RM26 precursor involved three steps: (1) synthesis of an 18F-labelled activated ester on a quaternary methyl ammonium (QMA) cartridge, (2) conjugation of the labelled ester to a tetrazine amine, and (3) attachment to TCO-PEG2-RM26 via an IEDDA click reaction. This production method of [18F]MeTz-PEG2-RM26 afforded a high apparent molar activity of 3.5-4.3 GBq/µmol and radiochemical purity exceeding 98%, with 43-70 MBq activity incorporation, while the entire synthesis was completed within 75 min. Both in vitro and in vivo studies confirmed the specific binding of [18F]MeTz-PEG2-RM26 to GRPR, with a significant reduction in activity uptake observed upon receptor saturation. The radioligand exhibited rapid blood clearance and minimal bone uptake, confirming the stability of the fluorine-carbon bond. However, high hepatic uptake (12-13% IA/g at 1 h post-injection) indicated predominant hepatobiliary excretion. Receptor-mediated uptake was observed in the tumours and pancreatic tissue, although the overall activity uptake in tumours was low, likely due to the rapid hepatobiliary clearance of [18F]MeTz-PEG2-RM26. CONCLUSIONS These findings demonstrate the effectiveness of the IEDDA click reaction for fluorine-18 labelling of GRPR-targeting PET tracers. Future studies should focus on increasing the hydrophilicity of the imaging probe to improve the targeting properties and biodistribution profile of the radioligand.
Collapse
Affiliation(s)
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, 752 37, Sweden.
| |
Collapse
|
2
|
Zou Y, Huang M, Hu M, Wang H, Chen W, Tian R. Radiopharmaceuticals Targeting Gastrin-Releasing Peptide Receptor for Diagnosis and Therapy of Prostate Cancer. Mol Pharm 2024; 21:4199-4216. [PMID: 39219355 DOI: 10.1021/acs.molpharmaceut.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC. Radiopharmaceuticals derived from the natural ligands of GRPR have been developed. These radiopharmaceuticals enable the visualization and quantification of GRPR within the body, which can be used for disease assessment and therapeutic guidance. Recently developed radiopharmaceuticals exhibit improved pharmacokinetic parameters without deterioration in affinity. Several heterodimers targeting GRPR have been constructed as alternatives because of their potential to detect tumor lesions with a low diagnostic efficiency of single target detection. Moreover, some GRPR-targeted radiopharmaceuticals have entered clinical trials for the initial staging or biochemical recurrence detection of PC to guide disease stratification and therapy, indicating considerable potential in PC disease management. Herein, we comprehensively summarize the progress of radiopharmaceuticals targeting GRPR. In particular, we discuss the impact of ligands, chelators, and linkers on the distribution of radiopharmaceuticals. Furthermore, we summarize a potential design scheme to facilitate the advancement of radiopharmaceuticals and, thus, prompt clinical translation.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Hu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Abstract
Molecular imaging is advancing rapidly with promising new molecular targets emerging for theragnostic, ie, imaging and treatment with the same compound, to provide targeted, personalized medicine. Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer. Gallium-68 (68Ga) RM2 is a GRPR antagonist and shows high sensitivity and specificity for the detection of primary prostate cancer and recurrent disease. However, compared with the widely used 68Ga-PSMA11 and 18F-DCFPyL, a discordance in uptake pattern is seen reflecting the heterogeneity in tumor biology of prostate cancer. In this review, we present the background, current status, and future perspectives of PET imaging using 68Ga-RM2.
Collapse
Affiliation(s)
- Heying Duan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
6
|
Mitran B, Tolmachev V, Orlova A. Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Curr Med Chem 2021; 27:7090-7111. [PMID: 32164503 DOI: 10.2174/0929867327666200312114902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radionuclide molecular imaging of Gastrin-Releasing Peptide Receptor (GRPR) expression promises unparalleled opportunities for visualizing subtle prostate tumors, which due to small size, adjacent benign tissue, or a challenging location would otherwise remain undetected by conventional imaging. Achieving high imaging contrast is essential for this purpose and the molecular design of any probe for molecular imaging of prostate cancer should be aimed at obtaining as high tumor-to-organ ratios as possible. OBJECTIVE This short review summarizes the key imaging modalities currently used in prostate cancer, with a special focus on radionuclide molecular imaging. Emphasis is laid mainly on the issue of radiometals labeling chemistry and its influence on the targeting properties and biodistribution of radiolabeled GRPR antagonists for imaging of disseminated prostate cancer. METHODS A comprehensive literature search of the PubMed/MEDLINE, and Scopus library databases was conducted to find relevant articles. RESULTS The combination of radionuclide, chelator and required labeling chemistry was shown to have a significant influence on the stability, binding affinity and internalization rate, off-target interaction with normal tissues and blood proteins, interaction with enzymes, activity uptake and retention in excretory organs and activity uptake in tumors of radiolabeled bombesin antagonistic analogues. CONCLUSION Labeling chemistry has a very strong impact on the biodistribution profile of GRPRtargeting peptide based imaging probes and needs to be considered when designing a targeting probe for high contrast molecular imaging. Taking into account the complexity of in vivo interactions, it is not currently possible to accurately predict the optimal labeling approach. Therefore, a detailed in vivo characterization and optimization is essential for the rational design of imaging agents.
Collapse
Affiliation(s)
- Bogdan Mitran
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicianl Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Li X, Cai H, Wu X, Li L, Wu H, Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem 2020; 8:583309. [PMID: 33335885 PMCID: PMC7736158 DOI: 10.3389/fchem.2020.583309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The high incidence of prostate cancer (PCa) increases the need for progress in its diagnosis, staging, and precise treatment. The overexpression of tumor-specific receptors for peptides in human cancer cells, such as gastrin-releasing peptide receptor, natriuretic peptide receptor, and somatostatin receptor, has indicated the ideal molecular basis for targeted imaging and therapy. Targeting these receptors using radiolabeled peptides and analogs have been an essential topic on the current forefront of PCa studies. Radiolabeled peptides have been used to target receptors for molecular imaging in human PCa with high affinity and specificity. The radiolabeled peptides enable optimal quick elimination from blood and normal tissues, producing high contrast for positron emission computed tomography and single-photon emission computed tomography imaging with high tumor-to-normal tissue uptake ratios. Owing to their successful application in visualization, peptide derivatives with therapeutic radionuclides for peptide receptor radionuclide therapy in PCa have been explored in recent years. These developments offer the promise of personalized, molecular medicine for individual patients. Hence, we review the preclinical and clinical literature in the past 20 years and focus on the newer developments of peptide-based radiopharmaceuticals for the imaging and therapy of PCa.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Farahani AM, Maleki F, Sadeghzadeh N. The Influence of Different Spacers on Biological Profile of Peptide Radiopharmaceuticals for Diagnosis and Therapy of Human Cancers. Anticancer Agents Med Chem 2020; 20:402-416. [PMID: 31889492 DOI: 10.2174/1871520620666191231161227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cancer is the leading cause of death worldwide. Early detection can reduce the disadvantageous effects of diseases and the mortality in cancer. Nuclear medicine is a powerful tool that has the ability to diagnose malignancy without harming normal tissues. In recent years, radiolabeled peptides have been investigated as potent agents for cancer detection. Therefore, it is necessary to modify radiopeptides in order to achieve more effective agents. OBJECTIVE This review describes modifications in the structure of radioconjugates with spacers who have improved the specificity and sensitivity of the peptides that are used in oncologic diagnosis and therapy. METHODS To improve the biological activity, researchers have conjugated these peptide analogs to different spacers and bifunctional chelators. Many spacers of different kinds, such as hydrocarbon chain, amino acid sequence, and poly (ethyleneglycol) were introduced in order to modify the pharmacokinetic properties of these biomolecules. RESULTS Different spacers have been applied to develop radiolabeled peptides as potential tracers in nuclear medicine. Spacers with different charge and hydrophilicity affect the characteristics of peptide conjugate. For example, the complex with uncharged and hydrophobic spacers leads to increased liver uptake, while the composition with positively charged spacers results in high kidney retention. Therefore, the pharmacokinetics of radio complexes correlates to the structure and total charge of the conjugates. CONCLUSION Radio imaging technology has been successfully applied to detect a tumor in the earliest stage. For this purpose, the assessment of useful agents to diagnose the lesion is necessary. Developing peptide radiopharmaceuticals using spacers can improve in vitro and in vivo behavior of radiotracers leading to better noninvasive detection and monitoring of tumor growth.
Collapse
Affiliation(s)
- Arezou M Farahani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fariba Maleki
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran, Sari, Iran
| |
Collapse
|
9
|
Stability Evaluation and Stabilization of a Gastrin-Releasing Peptide Receptor (GRPR) Targeting Imaging Pharmaceutical. Molecules 2019; 24:molecules24162878. [PMID: 31398865 PMCID: PMC6720803 DOI: 10.3390/molecules24162878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
The prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are identified as important targets on prostate cancer. Receptor-targeting radiolabeled imaging pharmaceuticals with high affinity and specificity are useful in studying and monitoring biological processes and responses. Two potential imaging pharmaceuticals, AMBA agonist (where AMBA = DO3A-CH2CO-G-[4-aminobenzyl]- Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) and RM1 antagonist (where RM1 = DO3A-CH2CO-G-[4-aminobenzyl]-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), have demonstrated high binding affinity (IC50) to GRP receptors and high tumor uptake. Antagonists, despite the poor tumor cell internalization properties, can show clearer images and pharmacokinetic profiles by virtue of their higher tumor uptake in animal models compared to agonists. For characterization, development, and translation of a potential imaging pharmaceutical into the clinic, it must be evaluated in a series of tests, including in vitro cell binding assays, in vitro buffer and serum stability studies, the biodistribution of the radiolabeled material, and finally imaging studies in preclinical animal models. Data related to acetate buffer, mouse, canine, and human sera stability of 177Lu-labeled RM1 are presented here and compared with the acetate buffer and sera stability data of AMBA agonist. The samples of 177Lu-labeled RM1 with a high radioconcentration degrade faster than low-radioconcentration samples upon storage at 2–8 °C. Addition of stabilizers, ascorbic acid and gentisic acid, improve the stability of 177Lu-labeled RM1 significantly with gentisic acid being more efficient than ascorbic acid as a stabilizer. The degradation kinetics of 177Lu-labeled AMBA and RM1 in sera follow the order (fastest to slowest): mouse > canine > human sera. Finally, 177Lu-labeled RM1 antagonist is slower to degrade in mouse, canine, and human sera than 177Lu-labeled AMBA agonist, further suggesting that an antagonist is a more promising candidate than agonist for the positron emission tomography (PET) imaging and therapy of prostate cancer patients.
Collapse
|
10
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
11
|
Oroujeni M, Abouzayed A, Lundmark F, Mitran B, Orlova A, Tolmachev V, Rosenström U. Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics 2019; 11:pharmaceutics11080380. [PMID: 31382362 PMCID: PMC6724035 DOI: 10.3390/pharmaceutics11080380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG2-RM26. [111In]In-DOTA-PEG2-RM26 was used as a control with a residualizing label. Tyr-PEG2-RM26 was labelled with 125I with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG2-RM26 and DOTA-PEG2-RM26 were 1.7 ± 0.3 nM and 3.3 ± 0.5 nM, respectively. The cellular processing of [125I]I-Tyr-PEG2-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [125I]I-Tyr-PEG2-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [111In]In-DOTA-PEG2-RM26. Tumor uptake of [111In]In-DOTA-PEG2-RM26 was significantly higher than for [125I]I-Tyr-PEG2-RM26, resulting in higher tumour-to-organ ratio for [111In]In-DOTA-PEG2-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-750 03 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
12
|
Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther 2019; 369:454-465. [PMID: 30971479 PMCID: PMC6519687 DOI: 10.1124/jpet.118.255141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand. This study was designed to address this problem and to develop and characterize a specific radiolabeled ligand for BRS-3. The peptide antagonist Bantag-1 had >10,000-fold selectivity for human BRS-3 (hBRS-3) over other mammalian Bn receptors (BnRs) [i.e., gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR)]. Using iodogen and basic conditions, it was radiolabeled to high specific activity (2200 Ci/mmol) and found to bind with high affinity/specificity to hBRS-3. Binding was saturable, rapid, and reversible. The ligand only interacted with known BRS-3 ligands, and not with other specific GRPR/NMBR ligands or ligands for unrelated receptors. The magnitude of 125I-Bantag-1 binding correlated with BRS-3 mRNA expression and the magnitude of activation of phospholipase C in lung cancer cells, as well as readily identifying BRS-3 in lung cancer cells and normal tissues, allowing the direct assessment of BRS-3 receptor pharmacology/numbers on cells containing BRS-3 with other BnRs, which is usually the case. This circumvents the need for subtraction assays, which are now frequently used to assess BRS-3 indirectly using radiolabeled pan-ligands, which interact with all BnRs.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Kumar K. 18F-AlF-Labeled Biomolecule Conjugates as Imaging Pharmaceuticals. J Nucl Med 2018; 59:1208-1209. [PMID: 29880510 DOI: 10.2967/jnumed.118.210609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Zhang J, Niu G, Fan X, Lang L, Hou G, Chen L, Wu H, Zhu Z, Li F, Chen X. PET Using a GRPR Antagonist 68Ga-RM26 in Healthy Volunteers and Prostate Cancer Patients. J Nucl Med 2018; 59:922-928. [PMID: 29123014 PMCID: PMC6004560 DOI: 10.2967/jnumed.117.198929] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
This study was designed to analyze the safety, biodistribution, and radiation dosimetry of a gastrin-releasing peptide receptor (GRPR) antagonist PET tracer, 68Ga-RM26; to assess its clinical diagnostic value in prostate cancer patients; and to perform a direct comparison between GRPR antagonist 68Ga-RM26 and agonist 68Ga-BBN. Methods: Five healthy volunteers were enrolled to validate the safety of 68Ga-RM26 and calculate dosimetry. A total of 28 patients with prostate cancer (17 newly diagnosed and 11 posttherapy) were recruited and provided written informed consent. All the cancer patients underwent PET/CT at 15-30 min after intravenous injection of 1.85 MBq (0.05 mCi) per kilogram of body weight of 68Ga-RM26. Among them, 22 patients (11 newly diagnosed and 11 posttherapy) underwent 68Ga-BBN PET/CT for comparison within 1 wk. 99mTc-MDP (methylene diphosphonate) bone scans were obtained within 2 wk for comparison. GRPR immunohistochemical staining of tumor samples was performed. Results: The administration of 68Ga-M26 was well tolerated by all subjects, with no adverse symptoms being noticed or reported during the procedure and at 2-wk follow-up. The total effective dose equivalent and effective dose were 0.0912 ± 0.0140 and 0.0657 ± 0.0124 mSv/MBq, respectively. In the 17 patients with newly diagnosed prostate cancer, 68Ga-RM26 PET/CT showed positive prostate-confined findings in 15 tumors with an SUVmax of 6.49 ± 2.37. In the 11 patients who underwent prostatectomy or brachytherapy with or without androgen deprivation therapy, 68Ga-RM26 PET/CT detected 8 metastatic lymph nodes in 3 patients with an SUVmax of 4.28 ± 1.25 and 21 bone lesions in 8 patients with an SUVmax of 3.90 ± 3.07. Compared with 68Ga-RM26 PET/CT, GRPR agonist 68Ga-BBN PET/CT detected fewer primary lesions and lymph node metastases as well as demonstrated lower tracer accumulation. There was a significant positive correlation between SUV derived from 68Ga-RM26 PET and the expression level of GRPR (P < 0.001). Conclusion: This study indicates the safety and significant efficiency of GRPR antagonist 68Ga-RM26. 68Ga-RM26 PET/CT would have remarkable value in detecting both primary prostate cancer and metastasis. 68Ga-RM26 is also expected to be better than GRPR agonist as an imaging marker to evaluate GRPR expression in prostate cancer.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Xinrong Fan
- Department of Urology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China; and
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| | - Guozhu Hou
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Libo Chen
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Science & PUMC, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
15
|
Kumar K, Ghosh A. 18F-AlF Labeled Peptide and Protein Conjugates as Positron Emission Tomography Imaging Pharmaceuticals. Bioconjug Chem 2018; 29:953-975. [PMID: 29463084 DOI: 10.1021/acs.bioconjchem.7b00817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The clinical applications of positron emission tomography (PET) imaging pharmaceuticals have increased tremendously over the past several years since the approval of 18fluorine-fluorodeoxyglucose (18F-FDG) by the Food and Drug Administration (FDA). Numerous 18F-labeled target-specific potential imaging pharmaceuticals, based on small and large molecules, have been evaluated in preclinical and clinical settings. 18F-labeling of organic moieties involves the introduction of the radioisotope by C-18F bond formation via a nucleophilic or an electrophilic substitution reaction. However, biomolecules, such as peptides, proteins, and oligonucleotides, cannot be radiolabeled via a C-18F bond formation as these reactions involve harsh conditions, including organic solvents, high temperature, and nonphysiological conditions. Several approaches, including 18F-labeled prosthetic groups, silicon, boron, and aluminum fluoride acceptor chemistry, and click chemistry have been developed, in the past, for 18F labeling of biomolecules. Linear and macrocyclic polyaminocarboxylates and their analogs and derivatives form thermodynamically stable and kinetically inert aluminum chelates. Hence, macrocyclic polyaminocarboxylates have been used for conjugation with biomolecules, such as folate, peptides, affibodies, and protein fragments, followed by 18F-AlF chelation, and evaluation of their targeting abilities in preclinical and clinical environments. The goal of this report is to provide an overview of the 18F radiochemistry and 18F-labeling methodologies for small molecules and target-specific biomolecules, a comprehensive review of coordination chemistry of Al3+, 18F-AlF labeling of peptide and protein conjugates, and evaluation of 18F-labeled biomolecule conjugates as potential imaging pharmaceuticals.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| | - Arijit Ghosh
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology , The Ohio State University , Columbus , Ohio 43212 , United States
| |
Collapse
|
16
|
Liolios C, Buchmuller B, Bauder-Wüst U, Schäfer M, Leotta K, Haberkorn U, Eder M, Kopka K. Monomeric and Dimeric 68Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J Med Chem 2018; 61:2062-2074. [PMID: 29432691 DOI: 10.1021/acs.jmedchem.7b01856] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The GRPr, highly expressed in prostate PCa and breast cancer BCa, is a promising target for the development of new PET radiotracers. The chelator HBED-CC ( N, N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine- N, N'-diacetic acid) was coupled to the bombesin peptides: HBED-C-BN(2-14) 1, HBED-CC-PEG2-[d-Tyr6,β-Ala11,Thi13,Nle14]-BN(6-14) 2, HBED-CC-Y-[d-Phe6,Sta13,Leu14]-BN(6-14) (Y = 4-amino-1-carboxymethylpiperidine) 3, and HBED-CC-{PEG2-Y-[d-Phe6,Sta13,Leu14]-BN(6-14)}2 4 (homodimer). Compounds 1-4 presented high binding affinities for GRPr (T47D, 0.56-3.51 nM; PC-3, 2.12-4.68 nM). In PC-3 and T47D cells, agonists [68Ga]1 and [68Ga]2 were mainly internalized while antagonists [68Ga]3 and [68Ga]4 were surface bound. Cell-related radioactivity reached a maximum after 45 min, while tracer levels followed GRPr expression (PC-3 > T47D > LNCaP > MDA-MB-231). [68Ga]4 showed the highest cell-bound radioactivity (PC-3 and T47D). In vivo, tumor (PC-3) targeting for [68Ga]3 and [68Ga]4 increased over time, with dynamic μPET showing clearer tumors images at later time points. [68Ga]3 and [68Ga]4 can be considered suitable PET tracers for imaging PCa and BCa expressing GRPr.
Collapse
Affiliation(s)
| | | | | | | | | | - Uwe Haberkorn
- Department of Nuclear Medicine , University of Heidelberg , Im Neuenheimer Feld 400 , 69120 Heidelberg , Germany
| | - Matthias Eder
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK) Freiburg, and Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Hugstetter Straße 55 , 79106 Freiburg , Germany
| | | |
Collapse
|
17
|
Schwarzenböck SM, Schmeja P, Kurth J, Souvatzoglou M, Nawroth R, Treiber U, Kundt G, Berndt S, Graham K, Senekowitsch-Schmidtke R, Schwaiger M, Ziegler SI, Dinkelborg L, Wester HJ, Krause BJ. Comparison of [(11)C]Choline ([(11)C]CHO) and [(18)F]Bombesin (BAY 86-4367) as Imaging Probes for Prostate Cancer in a PC-3 Prostate Cancer Xenograft Model. Mol Imaging Biol 2017; 18:393-401. [PMID: 26483088 DOI: 10.1007/s11307-015-0901-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Carbon-11- and fluorine-18-labeled choline derivatives are commonly used in prostate cancer imaging in the clinical setting for staging and re-staging of prostate cancer. Due to a limited detection rate of established positron emission tomography (PET) tracers, there is a clinical need for innovative tumor-specific PET compounds addressing new imaging targets. The aim of this study was to compare the properties of [(18)F]Bombesin (BAY 86-4367) as an innovative biomarker for prostate cancer imaging targeting the gastrin-releasing peptide receptor and [(11)C]Choline ([(11)C]CHO) in a human prostate tumor mouse xenograft model by small animal PET/X-ray computed tomography (CT). PROCEDURES We carried out a dual-tracer small animal PET/CT study comparing [(18)F]Bombesin and [(11)C]CHO. The androgen-independent human prostate tumor cell line PC-3 was implanted subcutaneously in the flanks of nu/nu NMRI mice (n = 10) (PET/CT measurements of two [(11)C]Choline mice could not be analyzed due to technical reasons). [(18)F]Bombesin and [(11)C]CHO PET/CT imaging was performed about 3-4 weeks after the implantation of PC-3 cells on two separate days. After the intravenous tail vein injection of 14 MBq [(18)F]Bombesin and 37 MBq [(11)C]CHO, respectively, a dynamic study over 60 min was acquired in list mode using an Inveon animal PET/CT scanner (Siemens Medical Solutions). The sequence of [(18)F]Bombesin and [(11)C]CHO was randomized. Image analysis was performed using summed images as well as dynamic data. To calculate static and dynamic tumor-to-muscle (T/M), tumor-to-blood (T/B), liver-to-blood (L/B), and kidney-to-blood (K/B) ratios, 4 × 4 × 4 mm(3) volumes of interest (VOIs) of tumor, muscle (thigh), liver, kidney, and blood derived from transversal slices were used. RESULTS The mean T/M ratio of [(18)F]Bombesin and [(11)C]CHO was 6.54 ± 2.49 and 1.35 ± 0.30, respectively. The mean T/B ratio was 1.83 ± 0.79 for [(18)F]Bombesin and 0.55 ± 0.10 for [(11)C]CHO. The T/M ratio as well as the T/B ratio for [(18)F]Bombesin were significantly higher compared to those for [(11)C]CHO (p < 0.001, respectively). Kidney and liver uptake was statistically significantly lower for [(18)F]Bombesin (K/B 3.41 ± 0.81, L/B 1.99 ± 0.38) compared to [(11)C]CHO [K/B 7.91 ± 1.85 (p < 0.001), L/B 6.27 ± 1.99 (p < 0.001)]. The magnitudes of the time course of T/M and T/B ratios (T/M and T/Bdyn ratios) were statistically significantly different (showing a higher uptake of [(18)F]Bombesin compared to [(11)C]CHO); additionally, also the change of the T/M and T/B ratios over time was significantly different between both tracers in the dynamic analysis (p < 0.001, respectively). Furthermore, there was a statistically significantly different change of the K/B and L/B ratios over time between the two tracers in the dynamic analysis (p = 0.026 and p < 0.001, respectively). CONCLUSIONS [(18)F]Bombesin (BAY 86-4367) visually and semi-quantitatively outperforms [(11)C]CHO in the PC-3 prostate cancer xenograft model. [(18)F]Bombesin tumor uptake was significantly higher compared to [(11)C]CHO. [(18)F]Bombesin showed better imaging properties compared to the clinically utilized [(11)C]CHO due to a higher tumor uptake as well as a lower liver and kidney uptake.
Collapse
Affiliation(s)
- Sarah Marie Schwarzenböck
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany.
| | - Philipp Schmeja
- Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| | - Michael Souvatzoglou
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Uwe Treiber
- Department of Urology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Guenther Kundt
- Department of Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Str. 8, 18057, Rostock, Germany
| | - Sandra Berndt
- Global Drug Discovery, Bayer Healthcare, Muellerstr. 178, 13353, Berlin, Germany
| | - Keith Graham
- Global Drug Discovery, Bayer Healthcare, Muellerstr. 178, 13353, Berlin, Germany
| | - Reingard Senekowitsch-Schmidtke
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | | | - Hans-Jürgen Wester
- Institution of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748, Garching, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Rostock University Medical Centre, Gertrudenplatz 1, 18057, Rostock, Germany
| |
Collapse
|
18
|
High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6873684. [PMID: 29097932 PMCID: PMC5612608 DOI: 10.1155/2017/6873684] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
High gastrin releasing peptide receptor (GRPR) expression is associated with numerous cancers including prostate and breast cancer. The aim of the current study was to develop a 55Co-labeled PET agent based on GRPR antagonist RM26 for visualization of GRPR-expressing tumors. Labeling with 57Co and 55Co, stability, binding specificity, and in vitro and in vivo characteristics of 57Co-NOTA-PEG2-RM26 were studied. NOTA-PEG2-RM26 was successfully radiolabeled with 57Co and 55Co with high yields and demonstrated high stability. The radiopeptide showed retained binding specificity to GRPR in vitro and in vivo. 57Co-NOTA-PEG2-RM26 biodistribution in mice was characterized by rapid clearance of radioactivity from blood and normal non-GRPR-expressing organs and low hepatic uptake. The clearance was predominantly renal with a low degree of radioactivity reabsorption. Tumor-to-blood ratios were approximately 200 (3 h pi) and 1000 (24 h pi). The favorable biodistribution of cobalt-labeled NOTA-PEG2-RM26 translated into high contrast preclinical PET/CT (using 55Co) and SPECT/CT (using 57Co) images of PC-3 xenografts. The initial biological results suggest that 55Co-NOTA-PEG2-RM26 is a promising tracer for PET visualization of GRPR-expressing tumors.
Collapse
|
19
|
Allott L, Da Pieve C, Turton DR, Smith G. A general [18F]AlF radiochemistry procedure on two automated synthesis platforms. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00204h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first general [18F]AIF automated radiolabelling procedure developed on the GE Tracerlab FX FN (Left) and Trasis AllInOne (Right) platforms.
Collapse
Affiliation(s)
- L. Allott
- Division of Radiotherapy and Imaging
- The Institute of Cancer Research
- London
- UK
| | - C. Da Pieve
- Division of Radiotherapy and Imaging
- The Institute of Cancer Research
- London
- UK
| | - D. R. Turton
- Division of Radiotherapy and Imaging
- The Institute of Cancer Research
- London
- UK
| | - G. Smith
- Division of Radiotherapy and Imaging
- The Institute of Cancer Research
- London
- UK
| |
Collapse
|
20
|
Khosravi M, Rahimi R, pourahmad J, Zarei MH, Rabbani M. Comparison of Kinetic Study and Protective Effects of Biological Dipeptide and Two Porphyrin Derivatives on Metal Cytotoxicity Toward Human Lymphocytes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:1059-1070. [PMID: 29201094 PMCID: PMC5610760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this research, dipeptide (his-β-alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+in-vitro. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kinetic study of dipeptide (his-β-alanine), meso-tetrakis(4-trimethylanilinium) porphyrin (TAPP) and Tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) were carried out by our team. In addition, cytotoxicity assays of metals and chelators were also performed using methylthiazoletetrazolium (MTT) test. Furthermore we investigated the protective effect of chelators against cytotoxicity, induced by differenrt toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+ on human lymphocytes. EC50 values on human lymphocytes obtained after 12 h. incubation for Al3+, Cu2+ and Hg2+ were 30, 51, 3 µM respectively and for Pb2+ no cytotoxicity was observed on human lymphocyte up to 1000 µM concentration. EC50 obtained for chelators dipeptide, TPPS4 and TAPP were 948, 472 and 175 µM respectively. Pretreatment of human lymphocyte with subtoxic concentations of chelators reduced toxicity of the metals against human blood lymphocytes.
Collapse
Affiliation(s)
- Maryam Khosravi
- Bionorganic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Rahmatollah Rahimi
- Bionorganic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Jalal pourahmad
- School of Pharmacy, Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Zarei
- School of Pharmacy, Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahboubeh Rabbani
- Bionorganic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
21
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2017:749-775. [DOI: 10.1007/978-3-319-26236-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Popp I, Del Pozzo L, Waser B, Reubi JC, Meyer PT, Maecke HR, Gourni E. Approaches to improve metabolic stability of a statine-based GRP receptor antagonist. Nucl Med Biol 2016; 45:22-29. [PMID: 27865999 DOI: 10.1016/j.nucmedbio.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
The bombesin receptor family, in particular the gastrin-releasing peptide receptor (GRPr), is an attractive target in the field of nuclear oncology due to the high density of these receptors on the cell surface of several human tumors. The successful clinical implementation of 64Cu-CB-TE2A-AR06, 68Ga-RM2 and 68Ga-NODAGA-MJ9, prompted us to continue the development of GRPr-antagonists. The aim of the present study was to assess if N-terminal modulations of the statine-based GRPr-antagonist influence the binding affinity, the pharmacokinetic performance and the in vivo metabolic stability. METHODS The GRPr-antagonist (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) was functionalized with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via the spacer 4-amino-1-carboxymethyl-piperidine (Pip) and the amino acid N-Methyl-β-Ala, to obtain NMe-RM2 and labeled with 68Ga and 177Lu. The GRPr affinity of the corresponding metalloconjugates determined using [125I-Tyr4]-BN as radioligand. In vitro evaluation included internalization studies using PC3 cells. The 68Ga-conjugate was evaluated in PC3 xenografts by biodistribution and PET studies, while investigations on the metabolic stability and plasma protein binding were performed. RESULTS The half maximum inhibitory concentrations (IC50) of the metalloconjugates, using [125I-Tyr4]-BN, are in the low nanomolar range. PC3-cell culture binding studies of both metallated NMe-RM2 and RM2 show high GRPr-bound activity and low internalization. Metabolic studies showed that 68Ga-NMe-RM2 and 68Ga-RM2 are being cleaved in a similar fashion into three metabolites, with a good proportion of about 50% of the remaining blood activity at 15min post injection (p.i.) being represented by the intact radiotracer. 68Ga-NMe-RM2 was shown to target specifically PC3 xenografts, with high and sustained tumor uptake of about 13% IA/g within a time frame of 3h. The PET images clearly visualized the tumor. CONCLUSIONS The relatively high percentage of the remaining intact radiotracer in blood 15min post injection sufficiently enables in vivo targeting of GRPr positive tumors, finding which has been also shown in clinical trials.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Luigi Del Pozzo
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beatrice Waser
- Department of Pathology, University Hospital Bern, Bern, Switzerland
| | - Jean Claude Reubi
- Department of Pathology, University Hospital Bern, Bern, Switzerland
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut R Maecke
- Department of Nuclear Medicine, University Hospital Freiburg, Germany
| | - Eleni Gourni
- Department of Nuclear Medicine, University Hospital Freiburg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany,.
| |
Collapse
|
23
|
Mansi R, Minamimoto R, Mäcke H, Iagaru AH. Bombesin-Targeted PET of Prostate Cancer. J Nucl Med 2016; 57:67S-72S. [DOI: 10.2967/jnumed.115.170977] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023] Open
|
24
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-1073. [PMID: 26981612 PMCID: PMC5067074 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Terry W. Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert T. Jensen
- Digestive Diseases Branch, Cell Biology Section, NIDDK, and Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Sun Y, Ma X, Zhang Z, Sun Z, Loft M, Ding B, Liu C, Xu L, Yang M, Jiang Y, Liu J, Xiao Y, Cheng Z, Hong X. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer. Bioconjug Chem 2016; 27:1857-64. [PMID: 27399868 DOI: 10.1021/acs.bioconjchem.6b00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high contrast, and optimal pharmacokinetics is still very challenging. Herein, a novel bombesin (BBN) analogue (named SCH1) based on JMV594 peptide modified with an 8-amino octanoic acid spacer (AOC) was thus designed and conjugated with the metal chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA). The resulting NODAGA-SCH1 was then radiolabeled with (68)Ga and evaluated for PET imaging of PCa. Compared with (68)Ga-NODAGA-JMV594 probe, (68)Ga-NODAGA-SCH1 exhibited excellent PET/CT imaging properties on PC-3 tumor-bearing nude mice, such as high tumor uptake (5.80 ± 0.42 vs 3.78 ± 0.28%ID/g, 2 h) and high tumor/muscle contrast (16.6 ± 1.50 vs 8.42 ± 0.61%ID/g, 2 h). Importantly, biodistribution data indicated a relatively similar accumulation of (68)Ga-NODAGA-SCH1 was observed in the liver (4.21 ± 0.42%ID/g) and kidney (3.41 ± 0.46%ID/g) suggesting that the clearance is through both the kidney and the liver. Overall, (68)Ga-NODAGA-SCH1 showed promising in vivo properties and is a promising candidate for translation into clinical PET-imaging of PCa patients.
Collapse
Affiliation(s)
- Yao Sun
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Xiaowei Ma
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Zhe Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Ziyan Sun
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Mathias Loft
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Bingbing Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| | - Changhao Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Liying Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Meng Yang
- Chinese Academy of Medical Science, Peking Union Medical College Hospital , Department of Ultrasound, Beijing, 100730, China
| | - Yuxin Jiang
- Chinese Academy of Medical Science, Peking Union Medical College Hospital , Department of Ultrasound, Beijing, 100730, China
| | - Jianfeng Liu
- Chinese Academy of Medical Science , Institute of Radiation Medicine, Department of Molecular Nuclear Medicine, Tianjin, 300192, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California94305, United States
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, China
| |
Collapse
|
26
|
Ding H, Kothandaraman S, Gong L, Williams MM, Dirksen WP, Rosol TJ, Tweedle MF. A human GRPr-transfected Ace-1 canine prostate cancer model in mice. Prostate 2016; 76:783-95. [PMID: 26940014 PMCID: PMC5867903 DOI: 10.1002/pros.23172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND A versatile drug screening system was developed to simplify early targeted drug discovery in mice and then translate readily from mice to a dog prostate cancer model that more fully replicates the features of human prostate cancer. METHODS We stably transfected human cDNA of the GRPr bombesin (BBN) receptor subtype to canine Ace-1 prostate cancer cells (Ace-1(huGRPr) ). Expression was examined by (125) I-Tyr(4) -BBN competition, calcium stimulation assay, and fluorescent microscopy. A dual tumor nude mouse xenograft model was developed from Ace-1(CMV) (vector transfected Ace-1) and Ace-1(huGRPr) cells. The model was used to explore the in vivo behavior of two new IRDye800-labeled GRPr binding optical imaging agents: 800-G-Abz4-t-BBN, from a GRPr agonist peptide, and 800-G-Abz4-STAT, from a GRPr antagonist peptide, by imaging the tumor mice and dissected organs. RESULTS Both agents bound Ace-1(huGRPr) and PC-3, a known GRPr-expressing human prostate cancer cell line, with 4-13 nM IC50 against (125) I-Tyr(4) -BBN, but did not bind Ace-1(CMV) cells (vector transfected). Binding was blocked by bombesin. Ca(2+) activation assays demonstrated that Ace-1(huGPRr) expressed biologically active GRPr. Both Ace-1 cell lines grew in the flanks of 100% of the nude mice and formed tumors of ∼0.5 cm diameter in 1 week. In vivo imaging of the mice at 800 nm emission showed GRPr+: GRPr- tumor signal brighter by a factor of two at 24 h post IV administration of 10 nmol of the imaging agents. Blood retention (4-8% ID at 1 h) was greater by a factor >10 and cumulative urine accumulation (28-30% at 4 h) was less by a factor 2 compared to a radioactive analog of the t-BBN containing agent, (177) LuAMBA, probably due to binding to blood albumin, which we confirmed in a mouse serum assay. CONCLUSIONS The dual tumor Ace-1(CMV) /Ace-1(huGRPr) model system provides a rapid test of specific to nonspecific binding of new GRPr avid agents in a model that will extend logically to the known Ace-1 orthotopic canine prostate cancer model. Prostate 76:783-795, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haiming Ding
- Department of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Shankaran Kothandaraman
- Department of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Li Gong
- Department of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Michelle M. Williams
- Department of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Wessel P. Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Michael F. Tweedle
- Department of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Mitran B, Varasteh Z, Selvaraju RK, Lindeberg G, Sörensen J, Larhed M, Tolmachev V, Rosenström U, Orlova A. Selection of optimal chelator improves the contrast of GRPR imaging using bombesin analogue RM26. Int J Oncol 2016; 48:2124-34. [PMID: 26983776 DOI: 10.3892/ijo.2016.3429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
Abstract
Bombesin (BN) analogs bind with high affinity to gastrin-releasing peptide receptors (GRPRs) that are up-regulated in prostate cancer and can be used for the visualization of prostate cancer. The aim of this study was to investigate the influence of radionuclide-chelator complexes on the biodistribution pattern of the 111In-labeled bombesin antagonist PEG2-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (PEG2-RM26) and to identify an optimal construct for SPECT imaging. A series of RM26 analogs N-terminally conjugated with NOTA, NODAGA, DOTA and DOTAGA via a PEG2 spacer were radiolabeled with 111In and evaluated both in vitro and in vivo. The conjugates were successfully labeled with 111In with 100% purity and retained binding specificity to GRPR and high stability. The cellular processing of all compounds was characterized by slow internalization. The IC50 values were in the low nanomolar range, with lower IC50 values for positively charged natIn-NOTA-PEG2-RM26 (2.6 ± 0.1 nM) and higher values for negatively charged natIn-DOTAGA-PEG2-RM26 (4.8 ± 0.5 nM). The kinetic binding studies showed KD values in the picomolar range that followed the same pattern as the IC50 data. The biodistribution of all compounds was studied in BALB/c nu/nu mice bearing PC-3 prostate cancer xenografts. Tumor targeting and biodistribution studies displayed rapid clearance of radioactivity from the blood and normal organs via kidney excretion. All conjugates showed similar uptake in tumors at 4 h p.i. The radioactivity accumulation in GRPR-expressing organs was significantly lower for DOTA- and DOTAGA-containing constructs compared to those containing NOTA and NODAGA. 111In-NOTA-PEG2-RM26 with a positively charged complex showed the highest initial uptake and the slowest clearance of radioactivity from the liver. At 4 h p.i., DOTA- and DOTAGA-coupled analogs showed significantly higher tumor-to-organ ratios compared to NOTA- and NODAGA-containing variants. The NODAGA conjugate demonstrated the best retention of radioactivity in tumors, and, at 24 h p.i., had the highest contrast to blood, muscle and bones.
Collapse
Affiliation(s)
- Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Zohreh Varasteh
- Division of Molecular Imaging, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ram Kumar Selvaraju
- Division of Molecular Imaging, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Gunnar Lindeberg
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Department of Medical Sciences, Clinical Physiology, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Larhed
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Bernard-Gauthier V, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R. From Unorthodox to Established: The Current Status of (18)F-Trifluoroborate- and (18)F-SiFA-Based Radiopharmaceuticals in PET Nuclear Imaging. Bioconjug Chem 2015; 27:267-79. [PMID: 26566577 DOI: 10.1021/acs.bioconjchem.5b00560] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unorthodox (18)F-labeling strategies not employing the formation of a carbon-(18)F bond are seldom found in radiochemistry. Historically, the formation of a boron- or silicon-(18)F bond has been introduced very early on into the repertoire of labeling chemistries, but is without translation into any clinical radiotracer besides inorganic B[(18)F]F4(-) for brain tumor diagnosis. For many decades these labeling methodologies were forgotten and have just recently been revived by a handful of researchers thinking outside the box. When breaking with established paradigms such as the inability to obtain labeled compounds of high specific activity via isotopic exchange or performing radiofluorination in aqueous media, the research community often reacts skeptically. In 2005 and 2006, two novel labeling methodologies were introduced into radiochemistry for positron emission tomography (PET) tracer development: RBF3(-) labeling reported by Perrin et al. and the SiFA methodology by Schirrmacher, Jurkschat, and Waengler et al. which is based on isotopic exchange (IE). Both labeling methodologies have been complemented by other noncanonical strategies to introduce (18)F into biomolecules of diagnostic importance, thus profoundly enriching the landscape of (18)F radiolabeling. B- and Si-based labeling strategies finally revealed that IE is a viable alternative to established and traditional radiochemistry with the advantage of simplifying both the labeling effort as well as the necessary purification of the radiotracer. Hence IE will be the focus of this contribution over other noncanonical labeling methods. Peptides for tumor imaging especially lend themselves favorably toward one-step labeling via IE, but small molecules have been described as well, taking advantage of these new approaches, and have been used successfully for brain imaging. This Review gives an account of both radiochemistries centered on boron and silicon, describing the very beginnings of their basic research, the path that led to optimization of their chemistries, and the first encouraging preclinical results paving the way to their clinical use. This side by side approach will give the reader the opportunity to follow the development of a new basic discovery into a clinically applicable radiotracer including all the hurdles that have had to be overcome.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Justin J Bailey
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | | | | | - Klaus Jurkschat
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , 44227 Dortmund, Germany
| | - David M Perrin
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ralf Schirrmacher
- Division of Oncological Imaging, Department of Oncology, University of Alberta , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
29
|
Pu F, Qiao J, Xue S, Yang H, Patel A, Wei L, Hekmatyar K, Salarian M, Grossniklaus HE, Liu ZR, Yang JJ. GRPR-targeted Protein Contrast Agents for Molecular Imaging of Receptor Expression in Cancers by MRI. Sci Rep 2015; 5:16214. [PMID: 26577829 PMCID: PMC4649707 DOI: 10.1038/srep16214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is differentially expressed on the surfaces of various diseased cells, including prostate and lung cancer. However, monitoring temporal and spatial expression of GRPR in vivo by clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capability and tumor penetration. Here, we report the development of a GRPR-targeted MRI contrast agent by grafting the GRPR targeting moiety into a scaffold protein with a designed Gd3+ binding site (ProCA1.GRPR). In addition to its strong binding affinity for GRPR (Kd = 2.7 nM), ProCA1.GRPR has high relaxivity (r1 = 42.0 mM−1s−1 at 1.5 T and 25 °C) and strong Gd3+ selectivity over physiological metal ions. ProCA1.GRPR enables in vivo detection of GRPR expression and spatial distribution in both PC3 and H441 tumors in mice using MRI. ProCA1.GRPR is expected to have important preclinical and clinical implications for the early detection of cancer and for monitoring treatment effects.
Collapse
Affiliation(s)
- Fan Pu
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jingjuan Qiao
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, 30322
| | - Anvi Patel
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Lixia Wei
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Khan Hekmatyar
- Bio-imaging Research Center, University of Georgia, Athens, GA, 30602
| | - Mani Salarian
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | | | - Zhi-Ren Liu
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jenny J Yang
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
30
|
Desbois N, Pacquelet S, Dubois A, Michelin C, Gros CP. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition. Beilstein J Org Chem 2015; 11:2202-8. [PMID: 26664643 PMCID: PMC4660971 DOI: 10.3762/bjoc.11.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022] Open
Abstract
The Cu(I)-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI.
Collapse
Affiliation(s)
- Nicolas Desbois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Sandrine Pacquelet
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Adrien Dubois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Clément Michelin
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Claude P Gros
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| |
Collapse
|
31
|
Zhu C, Xu Q, Pan D, Xu Y, Liu P, Yang R, Wang L, Sun X, Luo S, Yang M. Prostate cancer imaging of FSHR antagonist modified with a hydrophilic linker. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:99-105. [DOI: 10.1002/cmmi.1662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Chen Zhu
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Qing Xu
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Ping Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Xinchen Sun
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
| | - Shineng Luo
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| | - Min Yang
- Department of Radiation Oncology; The First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; 20 Qianrong Road Wuxi 214063 China
| |
Collapse
|
32
|
Varasteh Z, Mitran B, Rosenström U, Velikyan I, Rosestedt M, Lindeberg G, Sörensen J, Larhed M, Tolmachev V, Orlova A. The effect of macrocyclic chelators on the targeting properties of the 68 Ga-labeled gastrin releasing peptide receptor antagonist PEG 2 -RM26. Nucl Med Biol 2015; 42:446-454. [DOI: 10.1016/j.nucmedbio.2014.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022]
|
33
|
Pourghiasian M, Liu Z, Pan J, Zhang Z, Colpo N, Lin KS, Perrin DM, Bénard F. 18F-AmBF3-MJ9: A novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorg Med Chem 2015; 23:1500-6. [DOI: 10.1016/j.bmc.2015.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
|
34
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [PMID: 25689590 DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
35
|
KIM MINHWAN, PARK JIAE, WOO SANGKEUN, LEE KYOCHUL, AN GWANGIL, KIM BYOUNGSOO, KIM KWANGIL, LEE TAESUP, KIM CHANWHA, KIM KYEONGMIN, KANG JOOHYUN, LEE YONGJIN. Evaluation of a 64Cu-labeled 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA)-galactose-bombesin analogue as a PET imaging probe in a gastrin-releasing peptide receptor-expressing prostate cancer xenograft model. Int J Oncol 2015; 46:1159-68. [PMID: 25586565 DOI: 10.3892/ijo.2015.2832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/23/2014] [Indexed: 11/06/2022] Open
|
36
|
Olberg DE, Hausner SH, Bauer N, Klaveness J, Indrevoll B, Andressen KW, Dahl M, Levy FO, Sutcliffe JL, Haraldsen I. Radiosynthesis of high affinity fluorine-18 labeled GnRH peptide analogues: in vitro studies and in vivo assessment of brain uptake in rats. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00486h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of high affinity 18F-GnRH peptides have been synthesized and show utility as imaging agents for GnRH receptor expression in vivo.
Collapse
Affiliation(s)
| | - Sven H. Hausner
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
- Department of Internal Medicine
| | - Nadine Bauer
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Marie Dahl
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Finn Olav Levy
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Julie L. Sutcliffe
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
- Department of Internal Medicine
| | - Ira Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine
- Oslo University Hospital
- Oslo
- Norway
| |
Collapse
|
37
|
Chatalic KLS, Franssen GM, van Weerden WM, McBride WJ, Laverman P, de Blois E, Hajjaj B, Brunel L, Goldenberg DM, Fehrentz JA, Martinez J, Boerman OC, de Jong M. Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 2014; 55:2050-6. [PMID: 25413139 DOI: 10.2967/jnumed.114.141143] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Gastrin-releasing peptide receptor (GRPR) is overexpressed in human prostate cancer and is being used as a target for molecular imaging. In this study, we report on the direct comparison of 3 novel GRPR-targeted radiolabeled tracers: Al(18)F-JMV5132, (68)Ga-JMV5132, and (68)Ga-JMV4168 (JMV5132 is NODA-MPAA-βAla-βAla-[H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2], JMV4168 is DOTA-βAla-βAla-[H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2], and NODA-MPAA is 2-[4-(carboxymethyl)-7-{[4-(carboxymethyl)phenyl]methyl}-1,4,7-triazacyclononan-1-yl]acetic acid). METHODS The GRPR antagonist JMV594 (H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) was conjugated to NODA-MPAA for labeling with Al(18)F. JMV5132 was radiolabeled with (68)Ga and (18)F, and JMV4168 was labeled with (68)Ga for comparison. The inhibitory concentration of 50% values for binding GRPR of JMV4168, JMV5132, (nat)Ga-JMV4168, and (nat)Ga-JMV5132 were determined in a competition-binding assay using GRPR-overexpressing PC-3 tumors. The tumor-targeting characteristics of the compounds were assessed in mice bearing subcutaneous PC-3 xenografts. Small-animal PET/CT images were acquired, and tracer biodistribution was determined by ex vivo measurements. RESULTS JMV5132 was labeled with (18)F in a novel 1-pot, 1-step procedure within 20 min, without need for further purification and resulting in a specific activity of 35 MBq/nmol. Inhibitory concentration of 50% values (in nM) for GRPR binding of JMV5132, JMV4168, (nat)Ga-JMV5132, (nat)Ga-JMV4168, and Al(nat)F-JMV5132 were 6.8 (95% confidence intervals [CIs], 4.6-10.0), 13.2 (95% CIs, 5.9-29.3), 3.0 (95% CIs, 1.5-6.0), 3.2 (95% CIs, 1.8-5.9), and 10.0 (95% CIs, 6.3-16.0), respectively. In mice with subcutaneous PC-3 xenografts, all tracers cleared rapidly from the blood, exclusively via the kidneys for (68)Ga-JMV4168 and partially hepatobiliary for (68)Ga-JMV5132 and Al(18)F-JMV5132. Two hours after injection, the uptake of (68)Ga-JMV4168, (68)Ga-JMV5132, and Al(18)F-JMV5132 in PC-3 tumors was 5.96 ± 1.39, 5.24 ± 0.29, 5.30 ± 0.98 (percentage injected dose per gram), respectively. GRPR specificity was confirmed by significantly reduced tumor uptake of the 3 tracers after coinjection of a 100-fold excess of unlabeled JMV4168 or JMV5132. Small-animal PET/CT clearly visualized PC-3 tumors, with the highest resolution observed for Al(18)F-JMV5132. CONCLUSION JMV5132 could be rapidly and efficiently labeled with (18)F. Al(18)F-JMV5132, (68)Ga-JMV5132, and (68)Ga-JMV4168 all showed comparable high and specific accumulation in GRPR-positive PC-3 tumors. These new PET tracers are promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Kristell L S Chatalic
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Gerben M Franssen
- Department of Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Peter Laverman
- Department of Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik de Blois
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bouchra Hajjaj
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-UM1-UM2, Montpellier, France
| | - Luc Brunel
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-UM1-UM2, Montpellier, France
| | | | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-UM1-UM2, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-UM1-UM2, Montpellier, France
| | - Otto C Boerman
- Department of Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Varasteh Z, Rosenström U, Velikyan I, Mitran B, Altai M, Honarvar H, Rosestedt M, Lindeberg G, Sörensen J, Larhed M, Tolmachev V, Orlova A. The effect of mini-PEG-based spacer length on binding and pharmacokinetic properties of a 68Ga-labeled NOTA-conjugated antagonistic analog of bombesin. Molecules 2014; 19:10455-72. [PMID: 25036155 PMCID: PMC6270800 DOI: 10.3390/molecules190710455] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022] Open
Abstract
The overexpression of gastrin-releasing peptide receptor (GRPR) in cancer can be used for peptide-receptor mediated radionuclide imaging and therapy. We have previously shown that an antagonist analog of bombesin RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) via a diethyleneglycol (PEG2) spacer (NOTA-PEG2-RM26) and labeled with 68Ga can be used for imaging of GRPR-expressing tumors. In this study, we evaluated if a variation of mini-PEG spacer length can be used for optimization of targeting properties of the NOTA-conjugated RM26. A series of analogs with different PEG-length (n = 2, 3, 4, 6) was synthesized, radiolabeled and evaluated in vitro and in vivo. The IC50 values of natGa-NOTA-PEGn-RM26 (n = 2, 3, 4, 6) were 3.1 ± 0.2, 3.9 ± 0.3, 5.4 ± 0.4 and 5.8 ± 0.3 nM, respectively. In normal mice all conjugates demonstrated similar biodistribution pattern, however 68Ga-NOTA-PEG3-RM26 showed lower liver uptake. Biodistribution of 68Ga-NOTA-PEG3-RM26 was evaluated in nude mice bearing PC-3 (prostate cancer) and BT-474 (breast cancer) xenografts. High uptake in tumors (4.6 ± 0.6%ID/g and 2.8 ± 0.4%ID/g for PC-3 and BT-474 xenografts, respectively) and high tumor-to-background ratios (tumor/blood of 44 ± 12 and 42 ± 5 for PC-3 and BT-474 xenografts, respectively) were found already at 2 h p.i. of 68Ga-NOTA-PEG3-RM26. Results of this study suggest that variation in the length of the PEG spacer can be used for optimization of targeting properties of peptide-chelator conjugates. However, the influence of the mini-PEG length on biodistribution is minor when di-, tri-, tetra- and hexaethylene glycol are compared.
Collapse
Affiliation(s)
- Zohreh Varasteh
- Preclinical PET Platform, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Ulrika Rosenström
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Mohamed Altai
- Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Sciences, Faculty of Medicine, Uppsala University, Uppsala SE-751 85, Sweden
| | - Hadis Honarvar
- Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Sciences, Faculty of Medicine, Uppsala University, Uppsala SE-751 85, Sweden
| | - Maria Rosestedt
- Preclinical PET Platform, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Gunnar Lindeberg
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Jens Sörensen
- Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Sciences, Faculty of Medicine, Uppsala University, Uppsala SE-751 85, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala SE-751 23, Sweden
| | - Vladimir Tolmachev
- Biomedical Radiation Sciences, Department of Radiology, Oncology and Radiation Sciences, Faculty of Medicine, Uppsala University, Uppsala SE-751 85, Sweden.
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
39
|
Blasi F, Oliveira BL, Rietz TA, Rotile NJ, Day H, Looby RJ, Ay I, Caravan P. Effect of Chelate Type and Radioisotope on the Imaging Efficacy of 4 Fibrin-Specific PET Probes. J Nucl Med 2014; 55:1157-63. [PMID: 24790217 DOI: 10.2967/jnumed.113.136275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Thrombus formation plays a major role in cardiovascular diseases, but noninvasive thrombus imaging is still challenging. Fibrin is a major component of both arterial and venous thrombi and represents an ideal candidate for imaging of thrombosis. Recently, we showed that (64)Cu-DOTA-labeled PET probes based on fibrin-specific peptides are suitable for thrombus imaging in vivo; however, the metabolic stability of these probes was limited. Here, we describe 4 new probes using either (64)Cu or aluminum fluoride (Al(18)F) chelated to 2 NOTA derivatives. METHODS Probes were synthesized using a known fibrin-specific peptide conjugated to either NODAGA (FBP8, FBP10) or NOTA-monoamide (FBP9, FBP11) as chelators, followed by labeling with (64)Cu (FBP8 and FBP9) or Al(18)F (FBP10 and FBP11). PET imaging efficacy, pharmacokinetics, biodistribution, and metabolic stability were assessed in a rat model of arterial thrombosis. RESULTS All probes had similar nanomolar affinity (435-760 nM) for the soluble fibrin fragment DD(E). PET imaging allowed clear visualization of thrombus by all probes, with a 5-fold or higher thrombus-to-background ratio. Compared with the previous DOTA derivative, the new (64)Cu probes FBP8 and FBP9 showed substantially improved metabolic stability (>85% intact in blood at 4 h after injection), resulting in high uptake at the target site (0.5-0.8 percentage injected dose per gram) that persisted over 5 h, producing increasingly greater target-to-background ratios. The thrombus uptake was 5- to 20-fold higher than the uptake in the contralateral artery, blood, muscle, lungs, bone, spleen, large intestine, and heart at 2 h after injection and 10- to 40-fold higher at 5 h. The Al(18)F derivatives FBP10 and FBP11 were less stable, in particular the NODAGA conjugate (FBP10, <30% intact in blood at 4 h after injection), which showed high bone uptake and low thrombus-to-background ratios that decreased over time. The high thrombus-to-contralateral ratios for all probes were confirmed by ex vivo biodistribution and autoradiography. The uptake in the liver (<0.5 percentage injected dose per gram), kidneys, and blood were similar for all tracers, and they all showed predominant renal clearance. CONCLUSION FBP8, FBP9, and FBP11 showed excellent metabolic stability and high thrombus-to-background ratios and represent promising candidates for imaging of thrombosis in vivo.
Collapse
Affiliation(s)
- Francesco Blasi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bruno L Oliveira
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Tyson A Rietz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Helen Day
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Richard J Looby
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
40
|
de Herder WW. GEP-NETS update: functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs). Eur J Endocrinol 2014; 170:R173-83. [PMID: 24723670 DOI: 10.1530/eje-14-0077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For patients with neuroendocrine tumours (NETs) of the gastrointestinal tract and pancreas (GEP) (GEP-NETs), excellent care should ideally be provided by a multidisciplinary team of skilled health care professionals. In these patients, a combination of nuclear medicine imaging and conventional radiological imaging techniques is usually mandatory for primary tumour visualisation, tumour staging and evaluation of treatment. In specific cases, as in patients with occult insulinomas, sampling procedures can provide a clue as to where to localise the insulin-hypersecreting pancreatic NETs. Recent developments in these fields have led to an increase in the detection rate of primary GEP-NETs and their metastatic deposits. Radiopharmaceuticals targeted at specific tumour cell properties and processes can be used to provide sensitive and specific whole-body imaging. Functional imaging also allows for patient selection for receptor-based therapies and prediction of the efficacy of such therapies. Positron emission tomography/computed tomography (CT) and single-photon emission CT/CT are used to map functional images with anatomical localisations. As a result, tumour imaging and tumour follow-up strategies can be optimised for every individual GEP-NET patient. In some cases, functional imaging might give indications with regard to future tumour behaviour and prognosis.
Collapse
Affiliation(s)
- Wouter W de Herder
- Section of Endocrinology, Department of Internal Medicine, Erasmus MC, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|