1
|
Tang D, Li X, Zhang L, Xiao P, Nie Y, Qiu F, Cheng Z, Li W, Zhao Y. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. BIORESOURCE TECHNOLOGY 2025; 418:132004. [PMID: 39710205 DOI: 10.1016/j.biortech.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Reactive oxygen species (ROS) are crucial in stress perception, the integration of environmental signals, and the activation of downstream response networks. This review emphasizes ROS-mediated signaling pathways in microalgae and presents an overview of strategies for leveraging ROS. Eight distinct signaling pathways mediated by ROS in microalgae have been summarized, including the calcium signaling pathway, the target of rapamycin signaling pathway, the mitogen-activated protein kinase signaling pathway, the cyclic adenosine monophosphate/protein kinase A signaling pathway, the ubiquitin/protease pathway, the ROS-regulated transcription factors and enzymes, the endoplasmic reticulum stress, and the retrograde ROS signaling. Moreover, this review outlines three strategies for utilizing ROS: two-stage cultivation, combined stress with phytohormones, and strain engineering. The physicochemical properties of various ROS, together with their redox reactions with downstream targets, have been elucidated to reveal the role of ROS in signal transduction processes while delineating the ROS-mediated signal transduction network within microalgae.
Collapse
Affiliation(s)
- Dexin Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Pengying Xiao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Wensheng Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
2
|
De Bhowmick G, Plouviez M, Reis MG, Guieysse B, Everett DW, Agnew MP, Maclean P, Thum C. Evaluation of Extraction Techniques for Recovery of Microalgal Lipids under Different Growth Conditions. ACS OMEGA 2024; 9:27976-27986. [PMID: 38973871 PMCID: PMC11223222 DOI: 10.1021/acsomega.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Microalgal lipids contain a wide array of liposoluble bioactive compounds, but lipid extraction remains a critical limitation for their commercial use. An accelerated solvent extraction (ASE) was used to extract lipids from Chlamydomonas reinhardtii, Arthrospira platensis (Spirulina), and Chlorella vulgaris grown under either standard or nitrogen depletion conditions. Under standard growth conditions, ASE using methanol:chloroform (2:1), methyl tert-butyl ether (MTBE):methanol:water, and ethanol at 100 °C resulted in the highest recovery of total lipids (352 ± 30, 410 ± 32, and 127 ± 15 mg/g biomass from C. reinhardtii, C. vulgaris, and A. platensis, respectively). Similarly, the highest total lipid and triacylglycerols (TAGs) recovery from biomass cultivated under nitrogen depletion conditions was found at 100 °C using methanol:chloroform, for C. reinhardtii (total, 550 ± 21; TAG, 205 ± 2 mg/g biomass) and for C. vulgaris (total, 612 ± 29 mg/g; TAG, 253 ± 7 mg/g biomass). ASE with MTBE:methanol:water at 100 °C yielded similar TAG recovery for C. reinhardtii (159 ± 6 mg/g) and C. vulgaris (200 ± 4 mg/g). Thus, MTBE:methanol:water is suggested as an alternative substitute to replace hazardous solvent mixtures for TAGs extraction with a much lower environmental impact. The extracted microalgal TAGs were rich in palmitic (C16:0), stearic (C18:0), oleic (C18:1,9), linoleic (C18:2n6), and α-linolenic (C18:3n3) acids. Under nitrogen depletion conditions, increased palmitic acid (C16:0) recovery up to 2-fold was recorded from the biomasses of C. reinhardtii and C. vulgaris. This study demonstrates a clear linkage between the extraction conditions applied and total lipid and TAG recovery.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Maxence Plouviez
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - Mariza Gomes Reis
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Benoit Guieysse
- School
of Engineering and Advanced Technology, Massey University, Private
Bag 11 222, Palmerston North, 4442 New Zealand
| | - David W. Everett
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
- Riddet
Institute, Private Bag
11 222, Palmerston North 4442, New Zealand
| | - Michael P. Agnew
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| | - Paul Maclean
- AgResearch
Ltd., Grasslands Campus, Palmerston North 4442, New Zealand
| | - Caroline Thum
- AgResearch
Ltd., Te Ohu Rangahau Kai, Palmerston North, 4474 New Zealand
| |
Collapse
|
3
|
Ciccia T, Pandard P, Ciffroy P, Urien N, Lafay L, Bado-Nilles A. Sub-lethal toxicity of five disinfection by-products on microalgae determined by flow cytometry - Lines of evidence for adverse outcome pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115582. [PMID: 37862747 DOI: 10.1016/j.ecoenv.2023.115582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Standardised tests are often used to determine the ecotoxicity of chemicals and focus mainly on one or a few generic endpoints (e.g. mortality, growth), but information on the sub-cellular processes leading to these effects remain usually partial or missing. Flow cytometry (FCM) can be a practical tool to study the physiological responses of individual cells (such as microalgae) exposed to a stress via the use of fluorochromes and their morphology and natural autofluorescence. This work aimed to assess the effects of five chlorine-based disinfection by-products (DBPs) taken individually on growth and sub-cellular endpoints of the green microalgae Raphidocelis subcapitata. These five DBPs, characteristic of a chlorinated effluent, are the following monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), bromochloroacetic acid (BCAA) and 1,1-dichloropropan-2-one (1,1-DCP). Results showed that 1,1-DCP had the strongest effect on growth inhibition (EC50 = 1.8 mg.L-1), followed by MCAA, TCAA, BCAA and DCAA (EC50 of 10.1, 15.7, 27.3 and 64.5 mg.L-1 respectively). Neutral lipid content, reactive oxygen species (ROS) formation, red autofluorescence, green autofluorescence, size and intracellular complexity were significantly affected by the exposure to the five DBPs. Only mitochondrial membrane potential did not show any variation. Important cellular damages (>10%) were observed for only two of the chemicals (BCAA and 1,1-DCP) and were probably due to ROS formation. The most sensitive and informative sub-lethal parameter studied was metabolic activity (esterase activity), for which three types of response were observed. Combining all this information, an adverse outcome pathways framework was proposed to explain the effect of the targeted chemicals on R. subcapitata. Based on these results, both FCM sub-cellular analysis and conventional endpoint of algal toxicity were found to be complementary approaches.
Collapse
Affiliation(s)
- Théo Ciccia
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France.
| | - Pascal Pandard
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Philippe Ciffroy
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Nastassia Urien
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Léo Lafay
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), 6 Quai de Watier, 78401 Chatou Cedex 01, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| |
Collapse
|
4
|
Je S, Lee Y, Yamaoka Y. Effect of Common ER Stress-Inducing Drugs on the Growth and Lipid Phenotypes of Chlamydomonas and Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:392-404. [PMID: 36318453 DOI: 10.1093/pcp/pcac154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Several compounds are used to induce the unfolded protein response (UPR) in animals, with different modes of action, but which ER stress-inducing drugs induce ER stress in microalgae or land plants is unclear. In this study, we examined the effects of seven chemicals that were reported to induce ER stress in animals on the growth, UPR gene expression and fatty acid profiles of Chlamydomonas reinhardtii (Chlamydomonas) and Arabidopsis thaliana (Arabidopsis): 2-deoxyglucose, dithiothreitol (DTT), tunicamycin (TM), thapsigargin, brefeldin A (BFA), monensin (MON) and eeyarestatin I. In both model photosynthetic organisms, DTT, TM, BFA and MON treatment induced ER stress, as indicated by the induction of spliced bZIP1 and bZIP60, respectively. In Chlamydomonas, DTT, TM and BFA treatment induced the production of transcripts related to lipid biosynthesis, but MON treatment did not. In Arabidopsis, DTT, TM, BFA and MON inhibited seed germination and seedling growth with the activation of bZIP60. These findings lay the foundation for using four types of ER stress-inducing drugs in photosynthetic organisms, and they help uncover the mode of action of each compound.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, The Republic of Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, The Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, The Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, The Republic of Korea
| |
Collapse
|
5
|
Nur EAA, Kobayashi K, Ohte S, Tomoda H, Ohshiro T. Screening for microbial potentiators of neutral lipid degradation in CHO-K1 cells. Drug Discov Ther 2022; 16:273-279. [PMID: 36450503 DOI: 10.5582/ddt.2022.01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A cell-based assay was conducted to screen microbial culture broths for potentiators of neutral lipid degradation in Chinese Hamster Ovary K1 cells. A total of 5,363 microbial cultures from fungi and actinomycetes were screened in this assay. Brefeldin A (1) from fungal cultures was found to promote the degradation of triacylglycerol (TG) with an EC50 of 2.6 µM. Beauveriolides I (2), III (3), beauverolides A (4), B (5), and K (6) from fungal cultures showed potentiating effect on cholesteryl ester (CE) degradation with EC50s ranging from 0.02 to 0.13 µM. Among these compounds, 2 and 6 exhibited the strongest activities (EC50, 0.02 µM). From actinomycete cultures, oxohygrolidin (7) (EC50 for TG and CE, > 1.7 and 0.8 µM, respectively) and hygrolidin (8) (EC50 for TG and CE, 0.08 and 0.004 µM, respectively) promoted degradation of CE more preferably than TG.
Collapse
Affiliation(s)
- Elyza Aiman Azizah Nur
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Keisuke Kobayashi
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Satoshi Ohte
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hiroshi Tomoda
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Laboratory of Drug Discovery, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taichi Ohshiro
- Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
6
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
7
|
Lee JW, Lee MW, Jin CZ, Oh HM, Jin E, Lee HG. Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:88. [PMID: 36030272 PMCID: PMC9419350 DOI: 10.1186/s13068-022-02187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.
Results
The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m2/s), TAG productivity in Cr-mgd1–HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT–HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.
Conclusions
By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.
Collapse
|
8
|
Choi BY, Shim D, Kong F, Auroy P, Lee Y, Li-Beisson Y, Lee Y, Yamaoka Y. The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion. THE NEW PHYTOLOGIST 2022; 235:595-610. [PMID: 35383411 DOI: 10.1111/nph.18141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions. Two myb1 mutants accumulated less total fatty acids and storage lipids than their parental strain upon nitrogen (N) depletion. Transcriptome analysis revealed that genes involved in lipid metabolism are highly enriched in the wild-type but not in the myb1-1 mutant after 4 h of N depletion. Among these genes were several involved in the transport of fatty acids from the chloroplast to the endoplasmic reticulum (ER): acyl-ACP thioesterase (FAT1), Fatty Acid EXporters (FAX1, FAX2), and long-chain acyl-CoA synthetase1 (LACS1). Furthermore, overexpression of FAT1 in the chloroplast increased lipid production. These results suggest that, upon N depletion, MYB1 promotes lipid accumulation by facilitating fatty acid transport from the chloroplast to the ER. This study identifies MYB1 as an important positive regulator of lipid accumulation in C. reinhardtii upon N depletion, adding another player to the established regulators of this process, including NITROGEN RESPONSE REGULATOR 1 (NRR1) and TRIACYLGLYCEROL ACCUMULATION REGULATOR 1 (TAR1).
Collapse
Affiliation(s)
- Bae Young Choi
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Fantao Kong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pascaline Auroy
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Korea
| |
Collapse
|
9
|
Cao S, Yang J, Fu J, Chen H, Jia H. The Dissection of SNAREs Reveals Key Factors for Vesicular Trafficking to the Endosome-like Compartment and Apicoplast via the Secretory System in Toxoplasma gondii. mBio 2021; 12:e0138021. [PMID: 34340555 PMCID: PMC8406237 DOI: 10.1128/mbio.01380-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Vesicular trafficking is a fundamental cellular process involved in material transport in eukaryotes, but the diversity of the intracellular compartments has prevented researchers from obtaining a clear understanding of the specific functions of vesicular trafficking factors, including SNAREs, tethers, and Rab GTPases, in Apicomplexa. In this study, we analyzed the localization of SNAREs and investigated their roles in vesicular trafficking in Toxoplasma gondii. Our results revealed the specific localizations of SNAREs in the endoplasmic reticulum (ER) (T. gondii Stx18 [TgStx18] and TgStx19), Golgi stacks (TgGS27), and endosome-like compartment (TgStx10 and TgStx12). The conditional ablation of ER- and Golgi-residing SNAREs caused severe defects in the secretory system. Most importantly, we found an R-SNARE (TgVAMP4-2) that is targeted to the apicoplast; to our knowledge, this work provides the first information showing a SNARE protein on endosymbiotic organelles and functioning in vesicular trafficking in eukaryotes. Conditional knockout of TgVAMP4-2 blocked the entrance of TgCPN60, TgACP, TgATrx2, and TgATrx1 into the apicoplast and interfered with the targeting of TgAPT1 and TgFtsH1 to the outermost membrane of the apicoplast. Together, our findings revealed the functions of SNAREs in the secretory system and the transport of nucleus-encoded proteins to an endosymbiotic organelle in a model organism of Apicomplexa. IMPORTANCE SNAREs are essential for the fusion of the transport vesicles and target membranes and, thus, provide perfect targets for obtaining a global view of the vesicle transport system. In this study, we report that a novel Qc-SNARE (TgStx19) instead of Use1 is located at the ER and acts as a partner of TgStx18 in T. gondii. TgGS27 and the tethering complex TRAPP III are conserved and critical for the biogenesis of the Golgi complex in T. gondii. A novel R-SNARE, TgVAMP4-2, is found on the outermost membrane of the apicoplast. The transport of NEAT proteins into the secondary endosymbiotic organelle depends on its function. To our knowledge, this work provides the first mention of a SNARE located on endosymbiotic organelles that functions in vesicular trafficking in eukaryotes.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Juan Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
10
|
Nutrient deficiency and an algicidal bacterium improved the lipid profiles of a novel promising oleaginous dinoflagellate, Prorocentrum donghaiense, for biodiesel production. Appl Environ Microbiol 2021; 87:e0115921. [PMID: 34319787 PMCID: PMC8436737 DOI: 10.1128/aem.01159-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid production potential of 8 microalgae species was investigated. Among these eight species, the best strain was a dominant bloom-causing dinoflagellate, Prorocentrum donghaiense; this species had a lipid content of 49.32±1.99% and exhibited a lipid productivity of 95.47±0.99 mg L-1 d-1, which was 2-fold higher than the corresponding values obtained for the oleaginous microalgae Nannochloropsis gaditana and Phaeodactylum tricornutum. P. donghaiense, which is enriched in C16:0 and C22:6, is appropriate for commercial DHA production. Nitrogen or phosphorus stress markedly induced lipid accumulation to levels surpassing 75% of the dry weight, increased the C18:0 and C17:1 contents, and decreased the C18:5 and C22:6 contents, and these effects resulted in decreases in the unsaturated fatty-acid levels and changes in the lipid properties of P. donghaiense such that the species met the biodiesel specification standards. Compared with the results obtained under N-deficient conditions, the enhancement in the activity of alkaline phosphatase of P. donghaiense observed under P-deficient conditions could partly alleviate the adverse effects on the photosynthetic system exerted by P deficiency to induce the production of more carbohydrates for lipogenesis. The supernatant of the algicidal bacterium Paracoccus sp. Y42 culture lysed P. donghaiense without decreasing its lipid content, which resulted in facilitation of the downstream oil extraction process and energy savings through the lysis of algal cells. The Y42 supernatant treatment improved the lipid profiles of algal cells by increasing their C16:0, C18:0 and C18:1 contents and decreasing their C18:5 and C22:6 contents, which is favourable for biodiesel production. IMPORTANCE This study demonstrates the high potential of P. donghaiense, a dominant bloom-causing dinoflagellate, for lipid production. Compared with previously studied oleaginous microalgae, P. donghaiense exhibit greater potential for practical application due to its higher biomass and lipid contents. Nutrient deficiency and the algicidal bacterium Paracoccus sp. Y42 could improve the suitability of the lipid profile of P. donghaiense for biodiesel production. Furthermore, Paracoccus sp. Y42 effectively lyse algal cells, which facilitates the downstream oil extraction process for biodiesel production and results in energy savings through the lysing of algal cells. This study provides a more promising candidate for the production of DHA for human nutritional products and of microalgal biofuel, as well as a more cost-effective method for breaking algal cells. The high lipid productivity of P. donghaiense and algal cell lysis by algicidal bacteria contribute to reductions in the production cost of microalgal oil.
Collapse
|
11
|
Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 2021; 96:2373-2391. [PMID: 34101323 DOI: 10.1111/brv.12759] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
12
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
13
|
Proteomics analysis of lipid droplets indicates involvement of membrane trafficking proteins in lipid droplet breakdown in the oleaginous diatom Fistulifera solaris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Wase N, Tu B, Rasineni GK, Cerny R, Grove R, Adamec J, Black PN, DiRusso CC. Remodeling of Chlamydomonas Metabolism Using Synthetic Inducers Results in Lipid Storage during Growth. PLANT PHYSIOLOGY 2019; 181:1029-1049. [PMID: 31501300 PMCID: PMC6836844 DOI: 10.1104/pp.19.00758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 05/19/2023]
Abstract
Microalgae accumulate lipids during stress such as that of nutrient deprivation, concomitant with cessation of growth and depletion of chloroplasts. By contrast, certain small chemical compounds selected by high-throughput screening in Chlamydomonas reinhardtii can induce lipid accumulation during growth, maintaining biomass. Comprehensive pathway analyses using proteomics, transcriptomics, and metabolomics data were acquired from Chlamydomonas cells grown in the presence of one of two structurally distinct lipid activators. WD10784 stimulates both starch and lipid accumulation, whereas WD30030-treated cells accumulate only lipids. The differences in starch accumulation are largely due to differential effects of the two compounds on substrate levels that feed into starch synthesis and on genes encoding starch metabolic enzymes. The compounds had differential effects on photosynthesis, respiration, and oxidative stress pathways. Cells treated with WD10784 showed slowed growth over time and reduced abundance of photosynthetic proteins, decreased respiration, and increased oxidative stress proteins, glutathione, and reactive oxygen species specific to this compound. Both compounds maintained central carbon and nitrogen metabolism, including the tricarboxylic acid cycle, glycolysis, respiration, and the Calvin-Benson-Bassham cycle. There were few changes in proteins and transcripts related to fatty acid biosynthesis, whereas proteins and transcripts for triglyceride production were elevated, suggesting that lipid synthesis is largely driven by substrate availability. This study reports that the compound WD30030 and, to a lesser extent WD10784, increases lipid and lipid droplet synthesis and storage without restricting growth or biomass accumulation by mechanisms that are substantially different from nutrient deprivation.
Collapse
Affiliation(s)
- Nishikant Wase
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Boqiang Tu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | | | - Ronald Cerny
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Ryan Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Paul N Black
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Concetta C DiRusso
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
15
|
Messias Sandes J, Nascimento Moura DM, Divina da Silva Santiago M, Barbosa de Lima G, Cabral Filho PE, da Cunha Gonçalves de Albuquerque S, de Paiva Cavalcanti M, Fontes A, Bressan Queiroz Figueiredo RC. The effects of endoplasmic reticulum stressors, tunicamycin and dithiothreitol on Trypanosoma cruzi. Exp Cell Res 2019; 383:111560. [PMID: 31437457 DOI: 10.1016/j.yexcr.2019.111560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
In higher eukaryotic cells, pertubations in ER environment, called ER stress, usually activate unfolded protein response (UPR) pathway in an attempt to re-stablish the ER homeostasis and prevent cell death. Because trypanosomatids appear to lack the classical UPR, it is not clear how these parasites respond to ER stress. Thus, the aim of this work was to evaluate the effects of ER stressors tunicamycin (TM) or dithiothreitol (DTT) on Trypanosoma cruzi. The TM treatment showed strong trypanostatic effect. At 2.5 μg/mL of TM, the mRNA levels of both binding protein (BiP) and calreticulin (CRT) increased significantly, whereas the protein levels of BiP remained stable. TM treatment induced ultrastructural changes compatible with an autophagic process. The DTT treatment inhibited the cell growth, induced drastic morphological changes, mitochondrial membrane depolarization and increased ROS production. The expression of BiP apparently was not affected by DTT, whereas the mRNA levels of BiP and CRT were significantly reduced. Our results suggest that TM induces autophagy/ER-phagy without causing substantial injury to the parasite. Conversely, the DTT treatment seems to rupture the mitochondrion homeostasis leading to parasite death. The comprehension of the mechanisms behind the susceptibility of T. cruzi to ER stress open perspectives for the development of chemotherapeutic agents addressed to these pathways.
Collapse
Affiliation(s)
- Jana Messias Sandes
- Departamento de Microbiologia, Instituto Aggeu Magalhães/FIOCRUZ, Recife, Pernambuco, Brazil; Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | | | - Gustavo Barbosa de Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães/FIOCRUZ, Recife, Pernambuco, Brazil.
| | - Paulo Euzébio Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | |
Collapse
|
16
|
Yamaoka Y, Shin S, Choi BY, Kim H, Jang S, Kajikawa M, Yamano T, Kong F, Légeret B, Fukuzawa H, Li-Beisson Y, Lee Y. The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in Chlamydomonas reinhardtii. THE PLANT CELL 2019; 31:1127-1140. [PMID: 30894460 PMCID: PMC6533020 DOI: 10.1105/tpc.18.00723] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/29/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Here, we identified proteins and lipids that function downstream of the ER stress sensor INOSITOL-REQUIRING ENZYME1 (CrIRE1) that contributes to ER stress tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Treatment with the ER stress inducer tunicamycin resulted in the splicing of a 32-nucleotide fragment of a basic leucine zipper 1 (bZIP1) transcription factor (CrbZIP1) mRNA by CrIRE1 that, in turn, resulted in the loss of the transmembrane domain in CrbZIP1, and the translocation of CrbZIP1 from the ER to the nucleus. Mutants deficient in CrbZIP1 failed to induce the expression of the unfolded protein response genes and grew poorly under ER stress. Levels of diacylglyceryltrimethylhomoserine (DGTS) and pinolenic acid (18:3Δ5,9,12) increased in the parental strains but decreased in the crbzip1 mutants under ER stress. A yeast one-hybrid assay revealed that CrbZIP1 activated the expression of enzymes catalyzing the biosynthesis of DGTS and pinolenic acid. Moreover, two lines harboring independent mutant alleles of Chlamydomonas desaturase (CrDES) failed to synthesize pinolenic acid and were more sensitive to ER stress than were their parental lines. Together, these results indicate that CrbZIP1 is a critical component of the ER stress response mediated by CrIRE1 in Chlamydomonas that acts via lipid remodeling.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Fantao Kong
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yonghua Li-Beisson
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, 13108 Saint Paul-Lez-Durance, France
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
17
|
Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass. Appl Environ Microbiol 2019; 85:AEM.02614-18. [PMID: 30552184 DOI: 10.1128/aem.02614-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Microalgae are promising alternatives for sustainable biodiesel production. Previously, it was found that 100 ppm triethylamine greatly enhanced lipid production and lipid content per cell of Dunaliella tertiolecta by 20% and 80%, respectively. However, triethylamine notably reduced biomass production and pigment contents. In this study, a two-stage cultivation with glycerol and triethylamine was attempted to improve cell biomass and lipid accumulation. At the first stage with 1.0 g/liter glycerol addition, D. tertiolecta cells reached the late log phase in a shorter time due to rapid cell growth, leading to the highest cell biomass (1.296 g/liter) for 16 days. However, the increased glycerol concentrations with glycerol addition decreased the lipid content. At the second-stage cultivation with 100 ppm triethylamine, the highest lipid concentration and lipid weight content were 383.60 mg/liter and 37.7% of dry cell weight (DCW), respectively, in the presence of 1.0 g/liter glycerol, which were 27.36% and 72.51% higher than those of the control group, respectively. Besides, the addition of glycerol alleviated the inhibitory effect of triethylamine on cell morphology, algal growth, and pigment accumulation in D. tertiolecta The results indicated that two-stage cultivation is a viable way to improve lipid yield in microalgae.IMPORTANCE Microalgae are promising alternatives for sustainable biodiesel production. Two-stage cultivation with glycerol and triethylamine enhanced the lipid productivity of Dunaliella tertiolecta, indicating that two-stage cultivation is an efficient strategy for biodiesel production from microalgae. It was found that glycerol significantly enhanced cell biomass of D. tertiolecta, and the presence of glycerol alleviated the inhibitory effect of triethylamine on algal growth. Glycerol, the major byproduct from biodiesel production, was used for the biomass accumulation of D. tertiolecta at the first stage of cultivation. Triethylamine, as a lipid inducer, was used for lipid accumulation at the second stage of cultivation. Two-stage cultivation with glycerol and triethylamine enhanced lipid productivity and alleviated the inhibitory effect of triethylamine on the algal growth of D. tertiolecta, which is an efficient strategy for lipid production from D. tertiolecta.
Collapse
|
18
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
19
|
Traewachiwiphak S, Yokthongwattana C, Ves-Urai P, Charoensawan V, Yokthongwattana K. Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:107-116. [PMID: 29807581 DOI: 10.1016/j.plantsci.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).
Collapse
Affiliation(s)
- Somchoke Traewachiwiphak
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
| | - Parthompong Ves-Urai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Yokthongwattana
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
21
|
Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song WY, Cho CH, Yoon HS, Kohno K, Lee Y. Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:91-104. [PMID: 29385296 DOI: 10.1111/tpj.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Chung H Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
22
|
Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-A review. BIORESOURCE TECHNOLOGY 2017; 244:1198-1206. [PMID: 28601395 DOI: 10.1016/j.biortech.2017.05.170] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
Microalgae have promising potential to produce lipids and a variety of high-value chemicals. Suitable stress conditions such as nitrogen starvation and high salinity could stimulate synthesis and accumulation of lipids and high-value products by microalgae, therefore, various stress-modification strategies were developed to manipulate and optimize cultivation processes to enhance bioproduction efficiency. On the other hand, advancements in omics-based technologies have boosted the research to globally understand microalgal gene regulation under stress conditions, which enable further improvement of production efficiency via genetic engineering. Moreover, integration of multi-omics data, synthetic biology design, and genetic engineering manipulations exhibits a tremendous potential in the betterment of microalgal biorefinery. This review discusses the process manipulation strategies and omics studies on understanding the regulation of metabolite biosynthesis under various stressful conditions, and proposes genetic engineering of microalgae to improve bioproduction via manipulating stress tolerance.
Collapse
Affiliation(s)
- Bailing Chen
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Wan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Taiwan
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
23
|
Seo SH, Ha JS, Yoo C, Srivastava A, Ahn CY, Cho DH, La HJ, Han MS, Oh HM. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO 2-controlled photoautotrophic chemostat. BIORESOURCE TECHNOLOGY 2017; 244:621-628. [PMID: 28810216 DOI: 10.1016/j.biortech.2017.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/29/2017] [Accepted: 08/04/2017] [Indexed: 05/06/2023]
Abstract
The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL-1d-1 and 291.4mgL-1d-1 with a pH of 6.5, dilution rate of 0.78d-1, and light intensity of 1500μmolphotonsm-2s-1. With a sufficient supply of CO2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth.
Collapse
Affiliation(s)
- Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji-San Ha
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Yoo
- Department of Life Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun-Joon La
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung-Soo Han
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
|
26
|
Praveenkumar R, Kim B, Lee J, Vijayan D, Lee K, Nam B, Jeon SG, Kim DM, Oh YK. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. BIORESOURCE TECHNOLOGY 2016; 220:661-665. [PMID: 27634024 DOI: 10.1016/j.biortech.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG.
Collapse
Affiliation(s)
- Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33720, Finland
| | - Bohwa Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Durairaj Vijayan
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bora Nam
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Sang Goo Jeon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| |
Collapse
|
27
|
Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y. Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2158-2167. [PMID: 27133096 PMCID: PMC5096022 DOI: 10.1111/pbi.12572] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 05/03/2023]
Abstract
Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Dorine Achard
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Bertrand Legéret
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Shogo Kamisuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama, Japan
| | - Donghwi Ko
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Miriam Schulz-Raffelt
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Ikuo Nishida
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-Ku, Saitama, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Yonghua Li-Beisson
- Institut de Biosciences et Biotechnologies, CEA Cadarache, Saint-Paul-lez-Durance, France.
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea.
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
28
|
Lee MC, Han J, Lee SH, Kim DH, Kang HM, Won EJ, Hwang DS, Park JC, Om AS, Lee JS. A brominated flame retardant 2,2',4,4' tetrabrominated diphenyl ether (BDE-47) leads to lipogenesis in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:19-26. [PMID: 27450237 DOI: 10.1016/j.aquatox.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
De novo lipogenesis (DNL) is a fatty acid synthesis process that requires several genes, including sterol regulatory element binding protein (SREBP), ATP-citrate lyase (ACLY), and acetyl-CoA carboxylase (ACC). DNL up-regulation is able to induce fat accumulation through an increase in fatty acids. To investigate the relationship between DNL up-regulation and the accumulation of fatty acids and lipid droplets in response to 2,2',4,4' tetrabrominated diphenyl ether (BDE-47), we examined DNL in the copepod Tigriopus japonicus. Transcription levels of DNL-related genes were increased after exposure to 2.5μg/L BDE-47 for 24h. After exposure to 2.5μg/L BDE-47, palmitic acid was significantly increased (P<0.05) at days 1 and 4, along with upregulation of fatty acid synthesis-related genes (e.g., desaturases and elongases). However, docosahexaenoic acid and arachidonic acid were down-regulated at days 1 and 4, showing an antagonistic effect. Lipid droplet area significantly increased in Nile red staining analysis after 24h of exposure to 2.5μg/L BDE-47 in T. japonicus, while DNL was down-regulated in response to 500μM salicylate (a lipogenesis inhibitor), indicating that BDE-47 exposure is closely associated with an increase in fatty acids in this copepod. This study provides a better understanding of the effects of BDE-47 on DNL in copepods.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seung-Hwi Lee
- Department of Food and Nutrition, College of Health Science, Honam University, Gwangju 62399, South Korea; Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ae-Son Om
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
29
|
Goold HD, Cuiné S, Légeret B, Liang Y, Brugière S, Auroy P, Javot H, Tardif M, Jones B, Beisson F, Peltier G, Li-Beisson Y. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 171:2406-17. [PMID: 27297678 PMCID: PMC4972293 DOI: 10.1104/pp.16.00718] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 05/02/2023]
Abstract
Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Stéphan Cuiné
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Sabine Brugière
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Pascaline Auroy
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Hélène Javot
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Marianne Tardif
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Brian Jones
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Fred Beisson
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Gilles Peltier
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique Aix Marseille Université, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies, Cadarache 13108, France (H.D.G., S.C., B.L., Y.L., P.A., H.J., F.B., G.P., Y.L.-B.);Faculty of Agriculture and the Environment, University of Sydney, Sydney, New South Wales 2006, Australia (H.D.G., B.J.); andCommissariat à l'Energie Atomique, INSERM, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble 38000, France (S.B., M.T.)
| |
Collapse
|
30
|
Cell size selection in Chlamydomonas reinhardtii gametes using fluorescence activated cell sorting. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Process engineering strategy for high cell density-lipid rich cultivation of Chlorella sp. FC2 IITG via model guided feeding recipe and substrate driven pH control. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Gao Y, Lim TK, Lin Q, Li SFY. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris. Electrophoresis 2016; 37:1270-6. [DOI: 10.1002/elps.201500527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/29/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Gao
- Department of Chemistry, Faculty of Science; National University of Singapore; Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science; National University of Singapore; Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science; National University of Singapore; Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science; National University of Singapore; Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore
| |
Collapse
|
33
|
Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. PLANT, CELL & ENVIRONMENT 2016; 39:834-47. [PMID: 26477535 DOI: 10.1111/pce.12656] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 05/18/2023]
Abstract
Studying how photosynthetic cells modify membrane lipids in response to heat stress is important to understand how plants and microalgae adapt to daily fluctuations in temperature and to investigate new lipid pathways. Here, we investigate changes occurring in lipid molecular species and lipid metabolism genes during early response to heat stress in the model photosynthetic microorganism Chlamydomonas reinhardtii. Lipid molecular species analyses revealed that, after 60 min at 42 °C, a strong decrease in specific polyunsaturated membrane lipids was observed together with an increase in polyunsaturated triacylglycerols (TAGs) and diacylglycerols (DAGs). The fact that decrease in the major chloroplastic monogalactosyldiacylglycerol sn1-18:3/sn2-16:4 was mirrored by an accumulation of DAG sn1-18:3/sn2-16:4 and TAG sn1-18:3/sn2-16:4/sn3-18:3 indicated that newly accumulated TAGs were formed via direct conversion of monogalactosyldiacylglycerols to DAGs then TAGs. Lipidomic analyses showed that the third fatty acid of a TAG likely originated from a phosphatidylethanolamine or a diacylglyceryl-O-4'-(N,N,N,-trimethyl)-homoserine betaine lipid species. Candidate genes for this TAG synthesis pathway were provided through comparative transcriptomic analysis and included a phospholipase A2 homolog and the DAG acyltransferase DGTT1. This study gives insights into the molecular events underlying changes in membrane lipids during heat stress and reveals an alternative route for TAG synthesis.
Collapse
Affiliation(s)
- B Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - M Schulz-Raffelt
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - H M Nguyen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - P Auroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - F Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| | - G Blanc
- Laboratoire Information Génomique & Structurale, UMR7256 (IMM FR3479) CNRS Aix-Marseille Université, Marseille, France
| | - Y Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique, UMR7265, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR7265, Marseille, France
| |
Collapse
|
34
|
Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1269-1281. [PMID: 26883557 DOI: 10.1016/j.bbalip.2016.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 01/01/2023]
Abstract
Photosynthetic microalgae have promise as biofuel feedstock. Under certain conditions, they produce substantial amounts of neutral lipids, mainly in the form of triacylglycerols (TAGs), which can be converted to fuels. Much of our current knowledge on the genetic and molecular basis of algal neutral lipid metabolism derives mainly from studies of plants, i.e. seed tissues, and to a lesser extent from direct studies of algal lipid metabolism. Thus, the knowledge of TAG synthesis and the cellular trafficking of TAG precursors in algal cells is to a large extent based on genome predictions, and most aspects of TAG metabolism have yet to be experimentally verified. The biofuel prospects of microalgae have raised the interest in mechanistic studies of algal TAG biosynthesis in recent years and resulted in an increasing number of publications on lipid metabolism in microalgae. In this review we summarize the current findings on genetic, molecular and physiological studies of TAG accumulation in microalgae. Special emphasis is on the functional analysis of key genes involved in TAG synthesis, molecular mechanisms of regulation of TAG biosynthesis, as well as on possible mechanisms of lipid droplet formation in microalgal cells. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
|
35
|
Abstract
Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
36
|
Sharma SK, Nelson DR, Abdrabu R, Khraiwesh B, Jijakli K, Arnoux M, O’Connor MJ, Bahmani T, Cai H, Khapli S, Jagannathan R, Salehi-Ashtiani K. An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:164. [PMID: 26442756 PMCID: PMC4595058 DOI: 10.1186/s13068-015-0349-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/25/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Oils and bioproducts extracted from cultivated algae can be used as sustainable feedstock for fuels, nutritional supplements, and other bio-based products. Discovery and isolation of new algal species and their subsequent optimization are needed to achieve economical feasibility for industrial applications. Here we describe and validate a workflow for in situ analysis of algal lipids through confocal Raman microscopy. We demonstrate its effectiveness to characterize lipid content of algal strains isolated from the environment as well as algal cells screened for increased lipid accumulation through UV mutagenesis combined with Fluorescence Activated Cell Sorting (FACS). RESULTS To establish and validate our workflow, we refined an existing Raman platform to obtain better discrimination in chain length and saturation of lipids through ratiometric analyses of mixed fatty acid lipid standards. Raman experiments were performed using two different excitation lasers (λ = 532 and 785 nm), with close agreement observed between values obtained using each laser. Liquid chromatography coupled with mass spectrometry (LC-MS) experiments validated the obtained Raman spectroscopic results. To demonstrate the utility and effectiveness of the improved Raman platform, we carried out bioprospecting for algal species from soil and marine environments in both temperate and subtropical geographies to obtain algal isolates from varied environments. Further, we carried out two rounds of mutagenesis screens on the green algal model species, Chlamydomonas reinhardtii, to obtain cells with increased lipid content. Analyses on both environmental isolates and screened cells were conducted which determined their respective lipids. Different saturation states among the isolates as well as the screened C. reinhardtii strains were observed. The latter indicated the presence of cell-to cell variations among cells grown under identical condition. In contrast, non-mutagenized C. reinhardtii cells showed no significant heterogeneity in lipid content. CONCLUSIONS We demonstrate the utility of confocal Raman microscopy for lipid analysis on novel aquatic and soil microalgal isolates and for characterization of lipid-expressing cells obtained in a mutagenesis screen. Raman microscopy enables quantitative determination of the unsaturation level and chain lengths of microalgal lipids, which are key parameters in selection and engineering of microalgae for optimal production of biofuels.
Collapse
Affiliation(s)
- Sudhir Kumar Sharma
- />Division of Engineering, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - David R. Nelson
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- />Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Rasha Abdrabu
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- />Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Basel Khraiwesh
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- />Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Kenan Jijakli
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Marc Arnoux
- />Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Matthew J. O’Connor
- />Core Technology Platform, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Tayebeh Bahmani
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Hong Cai
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Sachin Khapli
- />Division of Engineering, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Ramesh Jagannathan
- />Division of Engineering, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Kourosh Salehi-Ashtiani
- />Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- />Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| |
Collapse
|
37
|
Li J, Niu X, Pei G, Sui X, Zhang X, Chen L, Zhang W. Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii. BIORESOURCE TECHNOLOGY 2015; 191:362-8. [PMID: 25818259 DOI: 10.1016/j.biortech.2015.03.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 05/26/2023]
Abstract
In the study, fourteen chemical modulators from five groups (i.e., auxin, gibberellin, cytokinin, signal transducer and amine) were evaluated for their effects on lipid accumulation in Crypthecodinium cohnii. The results showed that naphthoxyacetic acid (BNOA), 2-chlorodracylicacid, salicylic acid (SA), abscisic acid (ABA) and ethanolamine (ETA), increased lipid accumulation in C. cohnii by 10.00-18.78%. In addition, the combined uses of the above chemicals showed that two combinations, 1.0mg/L SA & 152.7 mg/L ETA and 4.0mg/L BNOA & 152.7 mg/L ETA, increased lipid accumulation by 22.45% and 20.54%, respectively. Moreover, a targeted metabolomic approach was employed to decipher the possible mechanisms responsible for the increased lipid accumulation, and the results showed that the enhanced metabolism in glycolysis and TCA cycle as well as the decreased metabolism in PPP pathway could be important for the stimulatory roles of BNOA & ETA and SA & ETA on lipid accumulation in C. cohnii.
Collapse
Affiliation(s)
- Jinghan Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Xiao Sui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; SynBio Platform, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China.
| |
Collapse
|
38
|
Wase N, Tu B, Black PN, DiRusso CC. Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015; 3:49. [PMID: 26322308 PMCID: PMC4533013 DOI: 10.3389/fcell.2015.00049] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
40
|
Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GKS, Nagarajan R, Chandrasekaran N, Mukherjee A. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:29-38. [PMID: 25770694 DOI: 10.1016/j.aquatox.2015.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Continuous increase in the usage of ZnO nanoparticles in commercial products has exacerbated the risk of release of these particles into the aquatic environment with possible harmful effects on the biota. In the current study, cytotoxic effects of two types of ZnO nanoparticles, having different initial effective diameters in filtered and sterilized lake water medium [487.5±2.55 nm for ZnO-1 NPs and 616.2±38.5 nm for ZnO-2 NPs] were evaluated towards a dominant freshwater algal isolate Scenedesmus obliquus in UV-C, visible and dark conditions at three exposure concentrations: 0.25, 0.5 and 1 mg/L. The toxic effects were found to be strongly dependent on the initial hydrodynamic particle size in the medium, the exposure concentrations and the irradiation conditions. The loss in viability, LDH release and ROS generation were significantly enhanced in the case of the smaller sized ZnO-1 NPs than in the case of ZnO-2 NPs under comparable test conditions. The toxicity of both types of ZnO NPs was considerably elevated under UV-C irradiation in comparison to that in dark and visible light conditions, the effects being more enhanced in case of ZnO-1 NPs. The size dependent dissolution of the ZnO NPs in the test medium and possible toxicity due to the released Zn(2+) ions was also noted. The surface adsorption of the nanoparticles was substantiated by scanning electron microscopy. The internalization/uptake of the NPs by the algal cells was confirmed by fluorescence microscopy, transmission electron microscopy, and elemental analyses.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - V Iswarya
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - S Archanaa
- Department of Biotechnology, IIT Madras, India
| | - G M Madhu
- Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, India
| | | | - R Nagarajan
- Department of Chemical Engineering, IIT Madras, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India.
| |
Collapse
|
41
|
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:504-522. [PMID: 25660108 DOI: 10.1111/tpj.12787] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 05/03/2023]
Abstract
Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Wayne Riekhof
- School of Biological Sciences and Center for Biological Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
42
|
Lee YC, Lee K, Oh YK. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. BIORESOURCE TECHNOLOGY 2015; 184:63-72. [PMID: 25465786 DOI: 10.1016/j.biortech.2014.10.145] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Among the various steps entailed in the production of biodiesel from microalgae, the efficiency and cost-reduction of the cultivation and harvesting steps remain key obstacles to its practical commercialization. Recently, in order to overcome the technical bottlenecks and limitations with regard to both steps, nanoparticle engineering based on particles' unique physico-chemical and mechanical properties has been extensively applied as a powerful analytical and practical tool. These applications include the enhancement of cell growth and/or pigments by light back-scattering, the induction of intracellular lipid accumulation by nutritional competition and/or stress environment, the improvement of cell separation efficiency and processing time from culture broth, the multiple reuse of magnetic nanoparticle flocculant, and integrated one-pot harvesting/cell-disruption. This review presents and discusses the recent nanoparticle-engineering-based developments in the implementation of practical microalgal cultivation and harvesting processes.
Collapse
Affiliation(s)
- Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon 305-343, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon 305-343, Republic of Korea.
| |
Collapse
|
43
|
Goold H, Beisson F, Peltier G, Li-Beisson Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. PLANT CELL REPORTS 2015; 34:545-55. [PMID: 25433857 DOI: 10.1007/s00299-014-1711-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 05/03/2023]
Abstract
Lipid droplet is the major site of neutral lipid storage in eukaryotic cells, and increasing evidence show its involvement in numerous cellular processes such as lipid homeostasis, signaling, trafficking and inter-organelle communications. Although the biogenesis, structure, and functions of lipid droplets have been well documented for seeds of vascular plants, mammalian adipose tissues, insects and yeasts, relative little is known about lipid droplets in microalgae. Over the past 5 years, the growing interest of microalgae as a platform for biofuel, green chemicals or value-added polyunsaturated fatty acid production has brought algal lipid droplets into spotlight. Studies conducted on the green microalga Chlamydomonas reinhardtii and other model microalgae such as Haematococcus and Nannochloropsis species have led to the identification of proteins associated with lipid droplets, which include putative structural proteins different from plant oleosins and animal perilipins, as well as candidate proteins for lipid biosynthesis, mobilization, trafficking and homeostasis. Biochemical and microscopy studies have also started to shed light on the role of chloroplasts in the biogenesis of lipid droplets in Chlamydomonas.
Collapse
Affiliation(s)
- Hugh Goold
- CEA, IBEB, Lab Bioenerget Biotechnol Bacteries and Microalgues, Saint-Paul-lez-Durance, 13108, France
| | | | | | | |
Collapse
|
44
|
Kim H, Jang S, Kim S, Yamaoka Y, Hong D, Song WY, Nishida I, Li-Beisson Y, Lee Y. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii. Front Microbiol 2015; 6:54. [PMID: 25759683 PMCID: PMC4338789 DOI: 10.3389/fmicb.2015.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/16/2015] [Indexed: 11/14/2022] Open
Abstract
Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL(-1)) for 1 h, Chlamydomonas cells accumulated at least fourfold the amount of triacylglycerols (TAGs) present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over twofold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.
Collapse
Affiliation(s)
- Hanul Kim
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Sunghoon Jang
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Sangwoo Kim
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Yasuyo Yamaoka
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Daewoong Hong
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Won-Yong Song
- Division of Molecular and Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Ikuo Nishida
- Division of Life Science, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
| | - Yonghua Li-Beisson
- Department of Plant Biology and Environmental Microbiology, Commissariat à l’Énergie Atomique et aux Énergies Alternatives – Centre National de la Recherche Scientifique – Aix-Marseille UniversitySaint-Paul-Lez-Durance, France
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Division of Integrative Biology and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
| |
Collapse
|
45
|
Yu X, Chen L, Zhang W. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 2015; 6:56. [PMID: 25741321 PMCID: PMC4330911 DOI: 10.3389/fmicb.2015.00056] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalga-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalga-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories:chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.
Collapse
Affiliation(s)
- Xinheng Yu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin, China
| |
Collapse
|
46
|
López García de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:207. [PMID: 26633994 PMCID: PMC4667458 DOI: 10.1186/s13068-015-0391-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. RESULTS We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. CONCLUSIONS In this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. This study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.
Collapse
Affiliation(s)
| | - Sascha Schäuble
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Jena University Language and Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- />Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jacob Valenzuela
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Saheed Imam
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Warren Carter
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | | | | | - Serdar Turkarslan
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - David J. Reiss
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Mónica V. Orellana
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Polar Science Center, University of Washington, Seattle, WA USA
| | - Nathan D. Price
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Bioengineering and Computer Science and Engineering, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Nitin S. Baliga
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Biology and Microbiology, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
- />Lawrence Berkeley National Lab, Berkeley, CA USA
| |
Collapse
|