1
|
Terhaar H, Jiminez V, Grant E, Collins C, Khass M, Yusuf N. Immune Repertoires in Various Dermatologic and Autoimmune Diseases. Genes (Basel) 2024; 15:1591. [PMID: 39766858 PMCID: PMC11675122 DOI: 10.3390/genes15121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The immune repertoire (IR) is a term that defines the combined unique genetic rearrangements of antigen receptors expressed by B and T lymphocytes. The IR determines the ability of the immune system to identify and respond to foreign antigens while preserving tolerance to host antigens. When immune tolerance is disrupted, development of autoimmune diseases can occur due to the attack of self-antigens. Recent technical advances in immune profiling allowed identification of common patterns and shared antigen-binding sequences unique to diverse array of diseases. However, there is no current literature to date evaluates IR findings in autoimmune and skin inflammatory conditions. In this review, we provide an overview of the past and current research findings of IR in various autoimmune and dermatologic conditions. Enriching our understanding of IRs in these conditions is critical for understanding the pathophysiology behind autoimmune skin disease onset and progression. Furthermore, understanding B-cell and T-cell IR will help devise therapeutic treatments in the hopes of restoring immune tolerance and preventing disease onset and progression.
Collapse
Affiliation(s)
- Hanna Terhaar
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily Grant
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camden Collins
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed Khass
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Endodontics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2018; 55:6329-6336. [PMID: 29294247 DOI: 10.1007/s12035-017-0841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.
Collapse
|
3
|
Theotokis P, Touloumi O, Lagoudaki R, Nousiopoulou E, Kesidou E, Siafis S, Tselios T, Lourbopoulos A, Karacostas D, Grigoriadis N, Simeonidou C. Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination. J Neuroinflammation 2016; 13:265. [PMID: 27724971 PMCID: PMC5057208 DOI: 10.1186/s12974-016-0730-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nogo-A and its putative receptor NgR are considered to be among the inhibitors of axonal regeneration in the CNS. However, few studies so far have addressed the issue of local NgR complex multilateral localization within inflammation in an MS mouse model of autoimmune demyelination. METHODS Chronic experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. Analyses were performed on acute (days 18-22) and chronic (day 50) time points and compared to controls. The temporal and spatial expression of the Nogo receptor complex (NgR and coreceptors) was studied at the spinal cord using epifluorescent and confocal microscopy or real-time PCR. Data are expressed as cells/mm2, as mean % ± SEM, or as arbitrary units of integrated density. RESULTS Animals developed a moderate to severe EAE without mortality, followed by a progressive, chronic clinical course. NgR complex spatial expression varied during the main time points of EAE. NgR with coreceptors LINGO-1 and TROY was increased in the spinal cord in the acute phase whereas LINGO-1 and p75 signal seemed to be dominant in the chronic phase, respectively. NgR was detected on gray matter NeuN+ neurons of the spinal cord, within the white matter inflammatory foci (14.2 ± 4.3 % NgR+ inflammatory cells), and found to be colocalized with GAP-43+ axonal growth cones while no β-TubIII+, SMI-32+, or APP+ axons were found as NgR+. Among the NgR+ inflammatory cells, 75.6 ± 9.0 % were microglial/macrophages (lectin+), 49.6 ± 14.2 % expressed CD68 (phagocytic ED1+ cells), and no cells were Mac-3+. Of these macrophages/monocytes, only Arginase-1+/NgR+ but not iNOS+/NgR+ were present in lesions both in acute and chronic phases. CONCLUSIONS Our data describe in detail the expression of the Nogo receptor complex within the autoimmune inflammatory foci and suggest a possible immune action for NgR apart from the established inhibitory one on axonal growth. Its expression by inflammatory macrophages/monocytes could signify a possible role of these cells on axonal guidance and clearance of the lesioned area during inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Arginase/metabolism
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Freund's Adjuvant/immunology
- Freund's Adjuvant/toxicity
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Nerve Tissue Proteins/metabolism
- Nogo Proteins/genetics
- Nogo Proteins/metabolism
- Nogo Receptors/genetics
- Nogo Receptors/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Signal Transduction/physiology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Paschalis Theotokis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Olga Touloumi
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Roza Lagoudaki
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Nousiopoulou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Kesidou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Spyridon Siafis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Theodoros Tselios
- Department of Chemistry, University of Patras, Rion, 265 04 Patras, Greece
| | - Athanasios Lourbopoulos
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
- Institute for Stroke and Dementia Research (ISD), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Dimitrios Karacostas
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Constantina Simeonidou
- Department of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Central Macedonia Greece
| |
Collapse
|
4
|
Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C, Maddaloni M, Pascual DW. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:5036-46. [PMID: 27194787 DOI: 10.4049/jimmunol.1501973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE.
Collapse
Affiliation(s)
- Eduardo Huarte
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - SangMu Jun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Sara Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Larissa Jackiw
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Carol Hoffman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Massimo Maddaloni
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - David W Pascual
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| |
Collapse
|
5
|
Systemic ocular antigen immunization leads only to a minor secondary immune response. J Neuroimmunol 2016; 293:114-122. [DOI: 10.1016/j.jneuroim.2016.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022]
|
6
|
Seiler S, Di Santo S, Widmer HR. Non-canonical actions of Nogo-A and its receptors. Biochem Pharmacol 2015; 100:28-39. [PMID: 26348872 DOI: 10.1016/j.bcp.2015.08.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|