1
|
Wang J, Ho M, Bunick CG. Chemical, Biochemical, and Structural Similarities and Differences of Dermatological cAMP Phosphodiesterase-IV Inhibitors. J Invest Dermatol 2025; 145:1471-1488.e1. [PMID: 39608668 PMCID: PMC12103293 DOI: 10.1016/j.jid.2024.10.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Roflumilast, the third phosphodiesterase-IV (PDE4) inhibitor approved for use in dermatology, is indicated for topical treatment of psoriasis, seborrheic dermatitis, and atopic dermatitis, whereas its 2 predecessors, apremilast and crisaborole, are indicated for oral treatment of psoriasis and topical treatment of atopic dermatitis, respectively. All 3 are rationally designed PDE4 inhibitors, but roflumilast is the most potent and effective among the 3, with in vitro inhibitory constant half-maximal inhibitory concentration value of 0.7 nM (roflumilast), 0.14 μM (apremilast), and 0.24 μM (crisaborole), representing differences of over 3 orders of magnitude. PDE4 is a cAMP (an intracellular secondary messenger) hydrolase consisting of at least 4 subtypes of exon-spliced isoforms, which are primarily expressed in immune cells for inflammatory response. PDE4 inhibition lengthens the duration of cAMP signals and increases cellular cAMP concentrations, generating anti-inflammatory effects. We examined the physicochemical principles that make PDE4 inhibitors effective and propose chemical modifications to improve them. Sequence alignment of the catalytic domains of all phosphodiesterases identified many previously unreported invariant residues. These residues bind 1 Zn and 1 Mg ion plus 5 structural water molecules for orienting an attacking μ-hydroxyl/μ-oxo anion and for stabilizing 2 nonbridging phosphate oxygen atoms. The arrangement of the 2 divalent metal ions in phosphodiesterases is not related to that of the classic mechanism for general phosphoryl transfer.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Minh Ho
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Saganuwan SA. Structure-activity relationship of pharmacophores and toxicophores: the need for clinical strategy. Daru 2024; 32:781-800. [PMID: 38935265 PMCID: PMC11555194 DOI: 10.1007/s40199-024-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Sometimes clinical efficacy and potential risk of therapeutic and toxic agents are difficult to predict over a long period of time. Hence there is need for literature search with a view to assessing cause of toxicity and less efficacy of drugs used in clinical practice. METHOD Hence literatures were searched for physicochemical properties, chemical formulas, molecular masses, pH values, ionization, receptor type, agonist and antagonist, therapeutic, toxic and structure-activity relationship of chemical compounds with pharmacophore and toxicophore, with a view to identifying high efficacious and relative low toxic agents. Inclusion criteria were manuscripts published on PubMed, Scopus, Web of Science, PubMed Central, Google Scholar among others, between 1960 and 2023. Keywords such as pharmacophore, toxicophore, structure-activity-relationship and disease where also searched. The exclusion criteria were the chemicals that lack pharmacophore, toxicophore and manuscripts published before 1960. RESULTS Findings have shown that pharmacophore and toxicophore functional groups determine clinical efficacy and safety of therapeutics, but if they overlap therapeutic and toxicity effects go concurrently. Hence the functional groups, dose, co-administration and concentration of drugs at receptor, drug-receptor binding and duration of receptor binding are the determining factors of pharmacophore and toxicophore activity. Molecular mass, chemical configuration, pH value, receptor affinity and binding capacity, multiple pharmacophores, hydrophilic/lipophilic nature of the chemical contribute greatly to functionality of pharmacophore and toxicophore. CONCLUSION Daily single therapy, avoidance of reversible pharmacology, drugs with covalent adduct, maintenance of therapeutic dose, and the use of multiple pharmacophores for terminal diseases will minimize toxicity and improve efficacy.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, P.M.B. 2373, Benue State, Nigeria.
| |
Collapse
|
3
|
Vathanaruba M, Raja SJ, Princess R, Tharmaraj P. Pharmacological and Molecular docking studies of new copper (II) complexes of N2-Phenyl-N4,N6-di(thiazol-2-yl)-1,3,5-triazine-2,4,6-triamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Gogoi B, Gogoi D, Gogoi N, Mahanta S, Buragohain AK. Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants. J Biomol Struct Dyn 2021; 40:8004-8017. [PMID: 33769188 DOI: 10.1080/07391102.2021.1905554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The incurable Type 2 diabetes mellitus (T2DM) has now been considered a pandemic with only supportive care in existence. Due to the adverse effects of available anti-diabetic drugs, there arises a great urgency to develop new drug molecules. One of the alternatives that can be considered for the treatment of T2DM are natural compounds from traditionally used herbal medicine. The present study undertakes, an integrated multidisciplinary concept of Network Pharmacology to evaluate the efficacy of potent anti-diabetic compound from traditionally used anti-diabetic plants of north east India and followed by DFT analysis. In the course of the study, 22 plant species were selected on the basis of their use in traditional medicine for the treatment of T2DM by various ethnic groups of the north eastern region of India. Initially, a library of 1053 compounds derived from these plants was generated. This was followed by network preparation between compounds and targets based on the docking result. The compounds having the best network property were considered for DFT analysis. We have identified that auraptene, a monoterpene coumarin for its activity in the management of Type 2 diabetes mellitus and deciphered its unexplored probable mechanisms. Molecular dynamics simulation of the ligand-protein complexes also reveals the stable binding of auraptene with the target proteins namely, Protein Kinase C θ, Glucocorticoid receptor, 11-β hydroxysteroid dehydrogenase 1 and Aldose Reductase, all of which form uniform interactions throughout the MD simulation trajectory. Therefore, this finding could provide new insights for the development of a new anti-diabetic drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhaskarjyoti Gogoi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| | - Dhrubajyoti Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Alak K Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| |
Collapse
|
5
|
Labéguère F, Dupont S, Alvey L, Soulas F, Newsome G, Tirera A, Quenehen V, Mai TTT, Deprez P, Blanqué R, Oste L, Le Tallec S, De Vos S, Hagers A, Vandevelde A, Nelles L, Vandervoort N, Conrath K, Christophe T, van der Aar E, Wakselman E, Merciris D, Cottereaux C, da Costa C, Saniere L, Clement-Lacroix P, Jenkins L, Milligan G, Fletcher S, Brys R, Gosmini R. Discovery of 9-Cyclopropylethynyl-2-(( S)-1-[1,4]dioxan-2-ylmethoxy)-6,7-dihydropyrimido[6,1- a]isoquinolin-4-one (GLPG1205), a Unique GPR84 Negative Allosteric Modulator Undergoing Evaluation in a Phase II Clinical Trial. J Med Chem 2020; 63:13526-13545. [PMID: 32902984 DOI: 10.1021/acs.jmedchem.0c00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.
Collapse
Affiliation(s)
| | - Sonia Dupont
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Luke Alvey
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Florilène Soulas
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Gregory Newsome
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Amynata Tirera
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Vanessa Quenehen
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Thi Thu Trang Mai
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Pierre Deprez
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Roland Blanqué
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Steve De Vos
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Annick Hagers
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Ann Vandevelde
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Luc Nelles
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Nele Vandervoort
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Katja Conrath
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | | | | | - Didier Merciris
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Céline Cottereaux
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Cécile da Costa
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Laurent Saniere
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stephen Fletcher
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Romain Gosmini
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| |
Collapse
|
6
|
Puratchikody A, Umamaheswari A, Irfan N, Sriram D. Molecular Dynamics Studies on COX-2 Protein-tyrosine Analogue Complex and Ligand-based Computational Analysis of Halo-substituted Tyrosine Analogues. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180627123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The quest for new drug entities and novel structural fragments with
applications in therapeutic areas is always at the core of medicinal chemistry.
Methods:
As part of our efforts to develop novel selective cyclooxygenase-2 (COX-2) inhibitors
containing tyrosine scaffold. The objective of this study was to identify potent COX-2 inhibitors by
dynamic simulation, pharmacophore and 3D-QSAR methodologies. Dynamics simulation was performed
for COX-2/tyrosine derivatives complex to characterise structure validation and binding
stability. Certainly, Arg120 and Tyr355 residue of COX-2 protein formed a constant interaction
with tyrosine inhibitor throughout the dynamic simulation phase. A four-point pharmacophore with
one hydrogen bond acceptor, two hydrophobic and one aromatic ring was developed using the
HypoGen algorithm. The generated, statistically significant pharmacophore model, Hypo 1 with a
correlation coefficient of r2, 0.941, root mean square deviation, 1.15 and total cost value of 96.85.
Results:
The QSAR results exhibited good internal (r2, 0.992) and external predictions (r2pred,
0.814). The results of this study concluded the COX-2 docked complex was stable and interactive
like experimental protein structure. Also, it offered vital chemical features with geometric constraints
responsible for the inhibition of the selective COX-2 enzyme by tyrosine derivatives.
Conclusion:
In principle, this work offers significant structural understandings to design and develop
novel COX-2 inhibitors.
Collapse
Affiliation(s)
- Ayarivan Puratchikody
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Appavoo Umamaheswari
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Navabshan Irfan
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Dharmarajan Sriram
- Pharmacy Group, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 560078, India
| |
Collapse
|
7
|
Lee YH, Yi GS. Prediction of Novel Anoctamin1 (ANO1) Inhibitors Using 3D-QSAR Pharmacophore Modeling and Molecular Docking. Int J Mol Sci 2018; 19:ijms19103204. [PMID: 30336555 PMCID: PMC6214110 DOI: 10.3390/ijms19103204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022] Open
Abstract
Recently, anoctamin1 (ANO1), a calcium-activated chloride channel, has been considered an important drug target, due to its involvement in various physiological functions, as well as its possibility for treatment of cancer, pain, diarrhea, hypertension, and asthma. Although several ANO1 inhibitors have been discovered by high-throughput screening, a discovery of new ANO1 inhibitors is still in the early phase, in terms of their potency and specificity. Moreover, there is no computational model to be able to identify a novel lead candidate of ANO1 inhibitor. Therefore, three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophore modeling approach was employed for identifying the essential chemical features to be required in the inhibition of ANO1. The pharmacophore hypothesis 2 (Hypo2) was selected as the best model based on the highest correlation coefficient of prediction on the test set (0.909). Hypo2 comprised a hydrogen bond acceptor, a hydrogen bond donor, a hydrophobic, and a ring aromatic feature with good statistics of the total cost (73.604), the correlation coefficient of the training set (0.969), and the root-mean-square deviation (RMSD) value (0.946). Hypo2 was well assessed by the test set, Fischer randomization, and leave-one-out methods. Virtual screening of the ZINC database with Hypo2 retrieved the 580 drug-like candidates with good potency and ADMET properties. Finally, two compounds were selected as novel lead candidates of ANO1 inhibitor, based on the molecular docking score and the interaction analysis. In this study, the best pharmacophore model, Hypo2, with notable predictive ability was successfully generated, and two potential leads of ANO1 inhibitors were identified. We believe that these compounds and the 3D-QSAR pharmacophore model could contribute to discovering novel and potent ANO1 inhibitors in the future.
Collapse
Affiliation(s)
- Yoon Hyeok Lee
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
8
|
Modi P, Patel S, Chhabria MT. Identification of some novel pyrazolo[1,5-a]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking. J Biomol Struct Dyn 2018; 37:1736-1749. [PMID: 29663870 DOI: 10.1080/07391102.2018.1465852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The InhA inhibitors play key role in mycolic acid synthesis by preventing the fatty acid biosynthesis pathway. In this present article, Pharmacophore modelling and molecular docking study followed by in silico virtual screening could be considered as effective strategy to identify newer enoyl-ACP reductase inhibitors. Pyrrolidine carboxamide derivatives were opted to generate pharmacophore models using HypoGen algorithm in Discovery studio 2.1. Further it was employed to screen Zinc and Minimaybridge databases to identify and design newer potent hit molecules. The retrieved newer hits were further evaluated for their drug likeliness and docked against enoyl acyl carrier protein reductase. Here, novel pyrazolo[1,5-a]pyrimidine analogues were designed and synthesized with good yields. Structural elucidation of synthesized final molecules was perform through IR, MASS, 1H-NMR, 13C-NMR spectroscopy and further tested for its in vitro anti-tubercular activity against H37Rv strain using Microplate Alamar blue assay (MABA) method. Most of the synthesized compounds displayed strong anti-tubercular activities. Further, these potent compounds were gauged for MDR-TB, XDR-TB and cytotoxic study.
Collapse
Affiliation(s)
- Palmi Modi
- a Department of Pharmaceutical Chemistry , L. M. College of Pharmacy , Ahmedabad 380009 , Gujarat , India.,b Department of Pharmacy , Dharmsinh Desai University , Nadiad 387001 , Gujarat , India
| | - Shivani Patel
- a Department of Pharmaceutical Chemistry , L. M. College of Pharmacy , Ahmedabad 380009 , Gujarat , India.,c Division of Biological and Life Sciences , Ahmedabad University , Ahmedabad 380009 , Gujarat , India
| | - Mahesh T Chhabria
- a Department of Pharmaceutical Chemistry , L. M. College of Pharmacy , Ahmedabad 380009 , Gujarat , India
| |
Collapse
|
9
|
Li P, Peng J, Zhou Y, Li Y, Liu X, Wang L, Zuo Z. Discovery of FIXa inhibitors by combination of pharmacophore modeling, molecular docking, and 3D-QSAR modeling. J Recept Signal Transduct Res 2018; 38:213-224. [PMID: 29724133 DOI: 10.1080/10799893.2018.1468784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor-Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2 = 0.709, r2 = 0.949, and r2pred = 0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.
Collapse
Affiliation(s)
- Penghua Li
- a School of Chemical Engineering , Sichuan University of Science and Engineering , Zigong , PR China
| | - Jiale Peng
- a School of Chemical Engineering , Sichuan University of Science and Engineering , Zigong , PR China
| | - Yeheng Zhou
- a School of Chemical Engineering , Sichuan University of Science and Engineering , Zigong , PR China
| | - Yaping Li
- a School of Chemical Engineering , Sichuan University of Science and Engineering , Zigong , PR China
| | - XingYong Liu
- a School of Chemical Engineering , Sichuan University of Science and Engineering , Zigong , PR China
| | - LiangLiang Wang
- b State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , PR China.,c Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming , PR China
| | - ZhiLi Zuo
- b State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming , PR China.,c Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming , PR China
| |
Collapse
|
10
|
Identification of potential type 4 cAMP phosphodiesterase inhibitors via 3D pharmacophore modeling, virtual screening, DFT and structural bioisostere design. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1998-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. Identification of novel human renin inhibitors through a combined approach of pharmacophore modelling, molecular DFT analysis and in silico screening. Comput Biol Chem 2017; 69:28-40. [DOI: 10.1016/j.compbiolchem.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/09/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
|
12
|
Spadaccini M, D'Alessio S, Peyrin-Biroulet L, Danese S. PDE4 Inhibition and Inflammatory Bowel Disease: A Novel Therapeutic Avenue. Int J Mol Sci 2017; 18:1276. [PMID: 28617319 PMCID: PMC5486098 DOI: 10.3390/ijms18061276] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last few decades, a better knowledge of the inflammatory pathways involved in the pathogenesis of Inflammatory Bowel Disease (IBD) has promoted biological therapy as an important tool to treat IBD patients. However, in spite of a wider spectrum of biological drugs, a significant proportion of patients is unaffected by or lose their response to these compounds, along with increased risks of infections and malignancies. For these reasons there is an urgent need to look for new pharmacological targets. The novel Phosphodiesterase 4 (PDE4) inhibitors have been recently introduced as new modulators of intracellular signals and gene transcription for the treatment of IBD. AIM To discuss and describe the state of the art of this new class of compounds in the IBD field, with particular attention to apremilast. METHODS Published articles selected from PubMed were comprehensively reviewed, with key words including apremilast, inflammatory disease, IBD, psoriasis, psoriatic arthritis, pathogenesis, therapies, and treatment. RESULTS PDE4 inhibitors generate elevated intracellular levels of cyclic Adenosine Monophosphate (cAMP), that consequently down-regulate the release of pro-inflammatory cytokines in the mucosa of IBD patients. The newly developed apremilast is one of these drugs and has already been approved for the treatment of dermatologic/rheumatologic inflammatory conditions; studies in psoriasis and psoriatic arthritis have in fact demonstrated its clinical activity. However, no clinical trials have yet been published on the use of apremilast in IBD. CONCLUSION In light of the similarity of pro-inflammatory signaling pathways across the gut, the skin, and joints, apremilast is likely supposed to show its efficacy also in IBD.
Collapse
Affiliation(s)
- Marco Spadaccini
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
| | - Silvia D'Alessio
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan 20129, Italy.
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, Lorraine University, Vandoeuvre-lès-Nancy 54500, France.
| | - Silvio Danese
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan 20089, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan 20089, Italy.
| |
Collapse
|
13
|
Çifci G, Aviyente V, Akten ED, Monard G. Assessing protein-ligand binding modes with computational tools: the case of PDE4B. J Comput Aided Mol Des 2017; 31:563-575. [PMID: 28534194 DOI: 10.1007/s10822-017-0024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC[Formula: see text] values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC[Formula: see text] values [[Formula: see text](IC[Formula: see text])] and their calculated binding free energies ([Formula: see text]). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between [Formula: see text](IC[Formula: see text]) and the lowest [Formula: see text] is achieved with [Formula: see text].
Collapse
Affiliation(s)
- Gülşah Çifci
- Department of Chemistry, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - E Demet Akten
- Bioinformatics and Genetic, Kadir Has University, 34083, Cibali, Istanbul, Turkey
| | - Gerald Monard
- Université de Lorraine, UMR 7565 SRSMC, Boulevard des Aiguillettes, B.P. 70239, 54506, Vandoeuvre-les-Nancy, France. .,CNRS, UMR 7565 SRSMC, Boulevard des Aiguillettes, B.P. 70239, 54506, Vandoeuvre-les-Nancy, France.
| |
Collapse
|
14
|
Zou F, Yang Y, Ma T, Xi J, Zhou J, Zha X. Identification of novel MEK1 inhibitors by pharmacophore and docking based virtual screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1788-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Novel butyrylcholinesterase inhibitors through pharmacophore modeling, virtual screening and DFT-based approaches along-with design of bioisosterism-based analogues. Biomed Pharmacother 2017; 85:646-657. [DOI: 10.1016/j.biopha.2016.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
|
16
|
Nunes IKDC, de Souza ET, Cardozo SVS, Carvalho VDF, Romeiro NC, Silva PMRE, Martins MA, Barreiro EJ, Lima LM. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors. PLoS One 2016; 11:e0162895. [PMID: 27695125 PMCID: PMC5047629 DOI: 10.1371/journal.pone.0162895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022] Open
Abstract
Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma.
Collapse
Affiliation(s)
- Isabelle Karine da Costa Nunes
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Everton Tenório de Souza
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laborat×rio de Inflamação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - Suzana Vanessa S. Cardozo
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laborat×rio de Inflamação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - Vinicius de Frias Carvalho
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laborat×rio de Inflamação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - Nelilma Correia Romeiro
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Patrícia Machado Rodrigues e Silva
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laborat×rio de Inflamação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | - Marco Aurélio Martins
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Laborat×rio de Inflamação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
- * E-mail: (LML); (MAM)
| | - Eliezer J. Barreiro
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lídia Moreira Lima
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR). Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail: (LML); (MAM)
| |
Collapse
|
17
|
Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 2016; 411:68-80. [PMID: 27693363 DOI: 10.1016/j.jtbi.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques.
Collapse
Affiliation(s)
- Dhrubajyoti Gogoi
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Vishwa Jyoti Baruah
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Amrita Kashyap Chaliha
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Bibhuti Bhushan Kakoti
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Diganta Sarma
- Department of Chemistry, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Alak Kumar Buragohain
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
18
|
Zou F, Pusch S, Eisel J, Ma T, Zhu Q, Deng D, Gu Y, Xu Y, von Deimling A, Zha X. Identification of a novel selective inhibitor of mutant isocitrate dehydrogenase 1 at allosteric site by docking-based virtual screening. RSC Adv 2016. [DOI: 10.1039/c6ra21617j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Optimal docking was employed to screen SPECS compound library, followed by cellular assays of mutant and wild type of IDH1.
Collapse
|
19
|
Mollica L, Conti G, Pollegioni L, Cavalli A, Rosini E. Unveiling the Atomic-Level Determinants of Acylase–Ligand Complexes: An Experimental and Computational Study. J Chem Inf Model 2015; 55:2227-41. [DOI: 10.1021/acs.jcim.5b00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Mollica
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Gianluca Conti
- Dipartimento
di Biotecnologie e Scienze della Vita, Università degli studi dell’Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Dipartimento
di Biotecnologie e Scienze della Vita, Università degli studi dell’Insubria, via J. H. Dunant 3, 21100 Varese, Italy
- The
Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano and Università degli studi dell’Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Rosini
- Dipartimento
di Biotecnologie e Scienze della Vita, Università degli studi dell’Insubria, via J. H. Dunant 3, 21100 Varese, Italy
- The
Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano and Università degli studi dell’Insubria, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
20
|
Perez-Aso M, Montesinos MC, Mediero A, Wilder T, Schafer PH, Cronstein B. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res Ther 2015; 17:249. [PMID: 26370839 PMCID: PMC4570588 DOI: 10.1186/s13075-015-0771-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Introduction This work was undertaken to delineate intracellular signaling pathways for the PDE4 inhibitor apremilast and to examine interactions between apremilast, methotrexate and adenosine A2A receptors (A2AR). Methods After apremilast and LPS incubation, intracellular cAMP, TNF-α, IL-10, IL-6 and IL-1α were measured in the Raw264.7 monocytic murine cell line. PKA, Epac1/2 (signaling intermediates for cAMP) and A2AR knockdowns were performed by shRNA transfection and interactions with A2AR and A2BR, as well as with methotrexate were tested in vitro and in the murine air pouch model. Statistical differences were determined using one or two-way ANOVA or Student’s t test. The alpha nominal level was set at 0.05 in all cases. A P value of < 0.05 was considered significant. Results In vitro, apremilast increased intracellular cAMP and inhibited TNF-α release (IC50=104nM) and the specific A2AR-agonist CGS21680 (1μM) increased apremilast potency (IC50=25nM). In this cell line, apremilast increased IL-10 production. PKA, Epac1 and Epac2 knockdowns prevented TNF-α inhibition and IL-10 stimulation by apremilast. In the murine air pouch model, both apremilast and MTX significantly inhibited leukocyte infiltration, while apremilast, but not MTX, significantly inhibited TNF-α release. The addition of MTX (1 mg/kg) to apremilast (5 mg/kg) yielded no more inhibition of leukocyte infiltration or TNF-α release than with apremilast alone. Conclusions The immunoregulatory effects of apremilast appear to be mediated by cAMP through the downstream effectors PKA, Epac1, and Epac2. A2AR agonism potentiated TNF-α inhibition by apremilast, consistent with the cAMP-elevating effects of that receptor. Because the A2AR is also involved in the anti-inflammatory effects of MTX, the mechanism of action of both drugs involves cAMP-dependent pathways and is therefore partially overlapping in nature. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| | - M Carmen Montesinos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain.
| | - Aránzazu Mediero
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| | - Tuere Wilder
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA
| | - Peter H Schafer
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA.
| | - Bruce Cronstein
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA. .,Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, MSB251, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Herbs to curb cyclic nucleotide phosphodiesterase and their potential role in Alzheimer's disease. Mech Ageing Dev 2015; 149:75-87. [PMID: 26050556 DOI: 10.1016/j.mad.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/22/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
Abstract
Cyclic nucleotides viz., cAMP/cGMP has been well known to play important role in cellular function and deficiency in their levels has been implicated in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Phosphodiesterases (PDE) are the enzymes involved in the metabolism of cyclic nucleotides and the inhibition of phosphodiesterases is considered to be viable strategy to restore the level of cyclic nucleotides and their functions in the brain. Various synthetic PDE inhibitors had been used clinically for various disorders and also suggested to be useful candidates for treating neurological disorders. However, side effects of these synthetic PDE inhibitors have limited their use in clinical practice. Natural plant extracts or their bio-active compounds are considered to be safe and are widely acceptable. During the last decade, many plant extracts or their bio-active compounds were tested pre-clinically for PDE inhibitory activity and are reported to be equally potent in inhibiting PDE's, as that of synthetic compounds. The present review is aimed to discuss the potential plant extract/compounds with PDE inhibitory activity and critically discuss their potential role in Alzheimer's disease.
Collapse
|
22
|
Vlachakis D, Fakourelis P, Megalooikonomou V, Makris C, Kossida S. DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ 2015; 3:e725. [PMID: 25648563 PMCID: PMC4304849 DOI: 10.7717/peerj.725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022] Open
Abstract
During the past few years, pharmacophore modeling has become one of the key components in computer-aided drug design and in modern drug discovery. DrugOn is a fully interactive pipeline designed to exploit the advantages of modern programming and overcome the command line barrier with two friendly environments for the user (either novice or experienced in the field of Computer Aided Drug Design) to perform pharmacophore modeling through an efficient combination of the PharmACOphore, Gromacs, Ligbuilder and PDB2PQR suites. Our platform features a novel workflow that guides the user through each logical step of the iterative 3D structural optimization setup and drug design process. For the pharmacophore modeling we are focusing on either the characteristics of the receptor or the full molecular system, including a set of selected ligands. DrugOn can be freely downloaded from our dedicated server system at www.bioacademy.gr/bioinformatics/drugon/.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | - Paraskevas Fakourelis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | | | - Christos Makris
- Computer Engineering and Informatics Department, University of Patras, Patras, Greece
| | - Sophia Kossida
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,IMGT, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, Montpellier, France
| |
Collapse
|
23
|
Xing J, Li Q, Zhang S, Liu H, Zhao L, Cheng H, Zhang Y, Zhou J, Zhang H. Identification of dipeptidyl peptidase IV inhibitors: virtual screening, synthesis and biological evaluation. Chem Biol Drug Des 2014; 84:364-77. [PMID: 24674599 DOI: 10.1111/cbdd.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Inhibition of dipeptidyl peptidase IV is an important approach for the treatment of type-2 diabetes. In this study, we reported a multistage virtual screening workflow that integrated 3D pharmacophore models, structural consensus docking, and molecular mechanics/generalized Born surface area binding energy calculation to identify novel dipeptidyl peptidase IV inhibitors. After screening our in-house database, two hit compounds, HWL-405 and HWL-892, having persistent high performance in all stages of virtual screening were identified. These two hit compounds together with several analogs were synthesized and evaluated for in vitro inhibition of dipeptidyl peptidase IV. The experimental data indicated that most designed compounds exhibited significant dipeptidyl peptidase IV inhibitory activity. Among them, compounds 35f displayed the greatest potency against dipeptidyl peptidase IV in vitro with the IC50 value of 78 nm. In an oral glucose tolerance test in normal male Kunming mice, compound 35f reduced blood glucose excursion in a dose-dependent manner.
Collapse
Affiliation(s)
- Junhao Xing
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|