1
|
Differential Expression of CREM/ICER Isoforms Is Associated with the Spontaneous Control of HIV Infection. mBio 2022; 13:e0197921. [PMID: 35041523 PMCID: PMC8725591 DOI: 10.1128/mbio.01979-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A rare subset of HIV-infected individuals, termed elite controllers (ECs), can maintain long-term control over HIV replication in the absence of antiretroviral therapy (ART). To elucidate the biological mechanism of resistance to HIV replication at the molecular and cellular levels, we performed RNA sequencing and identified alternative splicing variants from ECs, HIV-infected individuals undergoing ART, ART-naive HIV-infected individuals, and healthy controls. We identified differential gene expression patterns that are specific to ECs and may influence HIV resistance, including alternative RNA splicing and exon usage variants of the CREM/ICER gene (cyclic AMP [cAMP]-responsive element modulator/inducible cAMP early repressors). The knockout and knockdown of specific ICER exons that were found to be upregulated in ECs resulted in significantly increased HIV infection in a CD4+ T cell line and primary CD4+ T cells. Overexpression of ICER isoforms decreased HIV infection in primary CD4+ T cells. Furthermore, ICER regulated HIV long terminal repeat (LTR) promoter activity in a Tat-dependent manner. Together, these results suggest that ICER is an HIV host factor that may contribute to the HIV resistance of ECs. These findings will help elucidate the mechanisms of HIV control by ECs and may yield a new approach for treatment of HIV. IMPORTANCE A small group of HIV-infected individuals, termed elite controllers (ECs), display control of HIV replication in the absence of antiretroviral therapy (ART). However, the mechanism of ECs' resistance to HIV replication is not clear. In our work, we found an increased expression of specific, small isoforms of ICER in ECs. Further experiments proved that ICER is a robust host factor to regulate viral replication. Furthermore, we found that ICER regulates HIV LTR promoter activity in a Tat-dependent manner. These findings suggest that ICER is related to spontaneous control of HIV infection in ECs. This study may help elucidate a novel target for treatment of HIV.
Collapse
|
2
|
Ren J, Wu W, Zhang K, Choi EJ, Wang P, Ivanciuc T, Peniche A, Qian Y, Garofalo RP, Zhou J, Bao X. Exchange Protein Directly Activated by cAMP 2 Enhances Respiratory Syncytial Virus-Induced Pulmonary Disease in Mice. Front Immunol 2021; 12:757758. [PMID: 34733289 PMCID: PMC8558466 DOI: 10.3389/fimmu.2021.757758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Department of Chemistry, University of Houston Clear Lake, Clear Lake, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Youwen Qian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
4
|
Salinas FM, Nebreda AD, Vázquez L, Gentilini MV, Marini V, Benedetti M, Nabaes Jodar MS, Viegas M, Shayo C, Bueno CA. Imiquimod suppresses respiratory syncytial virus (RSV) replication via PKA pathway and reduces RSV induced-inflammation and viral load in mice lungs. Antiviral Res 2020; 179:104817. [PMID: 32387475 PMCID: PMC7202858 DOI: 10.1016/j.antiviral.2020.104817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease and bronchiolitis in children, as well as an important cause of morbidity and mortality in elderly and immunocompromised individuals. However, there is no safe and efficacious RSV vaccine or antiviral treatment. Toll Like Receptors (TLR) are important molecular mediators linking innate and adaptive immunity, and their stimulation by cognate agonists has been explored as antiviral agents. Imiquimod is known as a TLR7 agonist, but additionally acts as an antagonist for adenosine receptors. In this study, we demonstrate that imiquimod, but not resiquimod, has direct anti-RSV activity via PKA pathway in HEp-2 and A549 cells, independently of an innate response. Imiquimod restricts RSV infection after viral entry into the host cell, interfering with viral RNA and protein synthesis. Probably as a consequence of these anti-RSV properties, imiquimod displays cytokine modulating activity in RSV infected epithelial cells. Moreover, in a murine model of RSV infection, imiquimod treatment improves the course of acute disease, evidenced by decreased weight loss, reduced RSV lung titers, and attenuated airway inflammation. Consequently, imiquimod represents a promising therapeutic alternative against RSV infection and may inform the development of novel therapeutic targets to control RSV pathogenesis. Imiquimod has direct anti-RSV activity via PKA pathway, independently of an innate response. Imiquimod restricts RSV infection after viral entry into the host cell, interfering with viral RNA and protein synthesis. Imiquimod reduces cytokine production in RSV infected epithelial cells, probably as a result of its anti-RSV properties. Imiquimod reduces RSV lung titers and decreases weight loss and airway inflammation in a murine model of RSV infection.
Collapse
Affiliation(s)
- Franco Maximiliano Salinas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Antonela Díaz Nebreda
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental, IBYME, CONICET, Buenos Aires, Argentina
| | - Luciana Vázquez
- Unidad Operativa Centro de Contención Biológica (UOCCB) - Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Argentina
| | - María Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)-CONICET, Buenos Aires, Argentina
| | - Victoria Marini
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Buenos Aires, Argentina
| | - Martina Benedetti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Buenos Aires, Argentina
| | - Mercedes Soledad Nabaes Jodar
- CONICET, Buenos Aires, Argentina; Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Viegas
- CONICET, Buenos Aires, Argentina; Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental, IBYME, CONICET, Buenos Aires, Argentina
| | - Carlos Alberto Bueno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Virología, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina.
| |
Collapse
|
5
|
Maseda D, Ricciotti E, Crofford LJ. Prostaglandin regulation of T cell biology. Pharmacol Res 2019; 149:104456. [PMID: 31553935 DOI: 10.1016/j.phrs.2019.104456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype. Here we put in context our knowledge about how PG affect T cell biology, and review advances that bring light into how specific T cell functions that have been newly discovered are modulated through PG. We will also comment on drugs that target PG metabolism and sensing, their effect on T cell function during disease, and we will finally discuss how we can design new approaches that modulate PG in order to maximize desired therapeutic T cell effects.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania School of Medicine, 8-138 Smillow Center for Translational Research, Philadelphia, PA, USA.
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
7
|
Rezaee F, Harford TJ, Linfield DT, Altawallbeh G, Midura RJ, Ivanov AI, Piedimonte G. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption. PLoS One 2017; 12:e0181876. [PMID: 28759570 PMCID: PMC5536269 DOI: 10.1371/journal.pone.0181876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches.
Collapse
Affiliation(s)
- Fariba Rezaee
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Terri J. Harford
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Debra T. Linfield
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ghaith Altawallbeh
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ronald J. Midura
- Biomedical Engineering Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Andrei I. Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Giovanni Piedimonte
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Wang P, Liu Z, Chen H, Ye N, Cheng X, Zhou J. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett 2017; 27:1633-1639. [PMID: 28283242 PMCID: PMC5397994 DOI: 10.1016/j.bmcl.2017.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators. The discovery of EPAC proteins has significantly facilitated understanding on cAMP-dependent signaling pathway and efforts along this line open new avenues for developing novel therapeutics for cancer, diabetes, heart failure, inflammation, infections, neurological disorders and other human diseases. Over the past decade, important progress has been made in the identification of EPAC agonists, antagonists and their biological and pharmacological applications. In this review, we briefly summarize recently reported novel functions of EPACs and the discovery of their small molecule modulators. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
9
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
10
|
Le CN, Hulgan T, Tseng CH, Milne GL, Lake JE. Urine Eicosanoids in the Metabolic Abnormalities, Telmisartan, and HIV Infection (MATH) Trial. PLoS One 2017; 12:e0170515. [PMID: 28118376 PMCID: PMC5261803 DOI: 10.1371/journal.pone.0170515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Arachidonic acid metabolites (eicosanoids) reflect oxidative stress and vascular health and have been associated with anthropometric measures and sex differences in cross-sectional analyses of HIV-infected (HIV+) persons. Telmisartan is an angiotensin receptor blocker and PPAR-γ agonist with potential anti-inflammatory and metabolic benefits. We assessed telmisartan's effects on urine eicosanoids among HIV+ adults with central adiposity on suppressive antiretroviral therapy enrolled in a prospective clinical trial. METHODS Thirty-five HIV+ adults (15 women; 20 men) completed 24 weeks of open-label oral telmisartan 40mg daily. Lumbar computed tomography quantified visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue. Urine F2-isoprostane (F2-IsoP), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB-M) were quantified at baseline and 24 weeks using gas/liquid chromatography-mass spectroscopy. Mann-Whitney-U tests compared sub-group differences; Spearman's rho assessed correlations between clinical factors and eicosanoid levels. RESULTS Median PGE-M increased on telmisartan (p<0.01), with greater changes in men (+4.1 [p = 0.03] vs. +1.0 ng/mg cr in women; between-group p = 0.25) and participants losing >5% VAT (+3.7 ng/mg cr, p<0.01) and gaining >5% SAT (+1.7 ng/mg cr, p = 0.04). Median baseline F2-IsoP and TxB-M were slightly higher in women (both between-group p = 0.08) and did not change on telmisartan. CONCLUSIONS Urine PGE-M increased with 24 weeks of telmisartan in virally suppressed, HIV+ adults with central adiposity. Associations with favorable fat redistribution suggest increased PGE-M may reflect a beneficial response.
Collapse
Affiliation(s)
- Catherine N. Le
- Vanderbilt University School of Medicine, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
- * E-mail:
| | - Todd Hulgan
- Vanderbilt University School of Medicine, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
| | - Chi-Hong Tseng
- University of California-Los Angeles, Department of Medicine, Division of Infectious Disease, Los Angeles, California, United States of America
| | - Ginger L. Milne
- Vanderbilt University School of Medicine, Department of Medicine, Division of Infectious Disease, Nashville, Tennessee, United States of America
| | - Jordan E. Lake
- University of California-Los Angeles, Department of Medicine, Division of Infectious Disease, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Nanotechnology as a New Therapeutic Approach to Prevent the HIV-Infection of Treg Cells. PLoS One 2016; 11:e0145760. [PMID: 26785250 PMCID: PMC4718685 DOI: 10.1371/journal.pone.0145760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023] Open
Abstract
Background HIV-1 has proved to infect regulatory T cells (Treg) modifying their phenotype and impairing their suppressive capacity. As Treg cells are a crucial component in the preservation of the immune homeostasis, we researched that the antiviral capacity of carboxilan dendrimers prevents the HIV-1 infection of Treg and their effects. The phenotype and suppressive capacity of Treg treated or non-treated with carbosilane dendrimers were studied by flow cytometry. Treated and non-treated Treg from healthy donors were infected with HIV-1NL4.3. The infection of Treg cells by HIV-1, and protective effect of two dendrimers were determined by measuring antigen p24gag in the supernatant of the culture and intracellular. Results The Treg cells were treated with cationic and anionic carbosilane dendrimers. The results showed that both dendrimers did not modify the phenotype and functionality of Treg cells compared with non- treated Treg cells. Anionic dendrimers showed high biocompatibility with normal activity of the Treg cells and in antiviral assays. These dendrimers were highly active against HIV-1 preventing the infection of Treg, and were able to protect the Treg from the Foxp3 downregulation induced by the HIV-1 infection. Conclusions This is the first work showing that the in vitro use of anionic dendrimers prevent the HIV-1 replication and the infection of expanded Treg cells in culture, which raises the possibility to use Treg cells therapeutically in HIV-1-infected subjects.
Collapse
|
12
|
HIV-1 increases TLR responses in human primary astrocytes. Sci Rep 2015; 5:17887. [PMID: 26671458 PMCID: PMC4680863 DOI: 10.1038/srep17887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the major glial cell within the central nervous system and have a number of important physiological properties related to brain homeostasis. They provide trophic support to neurons and are immune cells with key roles during states-of-inflammation. The potential for production of proinflammatory cytokines and its consequences has been studied in the context of HIV-1 infection of normal human astrocytes (NHA). NHA express TLR3, TLR4, and TLR5. TLR3 ligation induced the strongest proinflammatory polarizing response, characterized by generation of high levels of TNF-α, IL-6, and IL-8. HIV-1 increased the transient production of key inflammatory mediators, and exposure to LPS of HIV-1-infected cells increased significantly the cytokine secretion. We confirmed that it is necessary viral gene expression from the moment of pretreatment with antiretrovirals inhibited totally HIV-1-induced TLR response. The higher response to LPS from HIV-1-infected cells did not correlate with TLR4 or MyD88 increased expression. LPS responsiveness of infected cells parallels MHC class II expression, but not CD14. HIV-1-infected NHA present increased sensitivity to the proinflammatory effects of LPS. If this phenomenon occurs in vivo, it will contribute to the immunopathogenesis of this disease and may ultimately offer novel targets for immunomodulatory therapy.
Collapse
|
13
|
Goodwin CM, Xu S, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol 2015; 23:789-798. [PMID: 26439298 PMCID: PMC4679435 DOI: 10.1016/j.tim.2015.08.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Host cells possess the metabolic assets required for viral infection. Recent studies indicate that control of the host's metabolic resources is a core host–pathogen interaction. Viruses have evolved mechanisms to usurp the host's metabolic resources, funneling them towards the production of virion components as well as the organization of specialized compartments for replication, maturation, and dissemination. Consequently, hosts have developed a variety of metabolic countermeasures to sense and resist these viral changes. The complex interplay between virus and host over metabolic control has only just begun to be deconvoluted. However, it is clear that virally induced metabolic reprogramming can substantially impact infectious outcomes, highlighting the promise of targeting these processes for antiviral therapeutic development. Numerous viruses modulate host-cell metabolic processes to ensure successful infection. The host-cell metabolic network contributes the energy, precursors, and specialized components necessary to produce infectious virions. Viruses deploy host-cell metabolic activities to organize viral maturation compartments. Metabolic control is a host–pathogen interaction that can sway the outcome of viral infection.
Collapse
Affiliation(s)
- Christopher M Goodwin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shihao Xu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release 2015; 200:60-70. [DOI: 10.1016/j.jconrel.2014.12.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/14/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
|