1
|
López-Siles M, Tajuelo A, Caravaca-Fuentes P, Planas M, Feliu L, McConnell MJ. Identification and characterization of amphipathic antimicrobial peptides with broad spectrum activity against multi-drug resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100363. [PMID: 40084383 PMCID: PMC11904594 DOI: 10.1016/j.crmicr.2025.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Antimicrobial peptides (AMPs) are potential alternatives to antibiotics given the reduced likelihood of resistance and their high selectivity towards bacteria. AMPs with activity against antibiotic-resistant bacteria have been reported. The aim of this study is to characterize the activity of novel BP100 analogues against multidrug-resistant bacteria. Eleven bacterial strains representing five pathogenic species were used to evaluate the antimicrobial activity of 26 peptides. An initial screen was performed at 50 µg/ml, and those peptides that inhibited ≈90 % of growth of all strains were selected. Minimum inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC), inhibition in biofilm formation, time kill assays, stability in human serum and in vivo toxicity were assessed. BP607, BP76 and BP145, had broad activity against multidrug-resistant bacteria. MICs ranged between 3.13 and 50 µg/ml, whereas MBCs ranged between 6.25 and 100 µg/ml. Acinetobacter baumannii, Klebsiella pneumoniae and Escherichia coli were the most susceptible species. At 2x the MIC, all compounds were bactericidal after 6h. BP76 inhibited ≥ 76.77 % of K. pneumoniae and E. coli biofilm formation at subinhibitory concentrations. BP145 had improved serum stability and lower toxicity compared to BP607. In conclusion, BP145 and BP76 demonstrate broad antimicrobial activity, are active at non-toxic concentrations, feature bactericidal activity at 6h and inhibit biofilm formation.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Ana Tajuelo
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, Madrid, Spain
- Programa de Doctorado en Ciencias Biomédicas y Salud Pública. IMIENS. Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | | - Marta Planas
- LIPPSO, Department of Chemistry, Universitat de Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Universitat de Girona, Girona, Spain
| | - Michael J. McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
- Eck Institute for Global Health, Notre Dame, USA
| |
Collapse
|
2
|
Gimranov E, Santos J, Regalado L, Teixeira C, Gomes P, Santos C, Pereira-Dias L. Synthetic peptides bioactive against phytopathogens have lower impact on some beneficial bacteria: An assessment of peptides biosafety in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123942. [PMID: 39765060 DOI: 10.1016/j.jenvman.2024.123942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025]
Abstract
The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.1) against a collection of notorious phytopathogens, and quantified their impact on plant beneficial bacteria. Plant growth promoters (PGP) and biological control agents (BCA) were also included to study the feasibility of integrating AMPs with bio-based strategies to mitigate diseases impacts and promote crop production. Flow cytometry and fluorescence microscopy revealed that the AMPs' effects on the membrane integrity of both gram-negative and gram-positive strains were time- and concentration-dependent. Bacterial strains were separated into three groups of susceptibility to the AMPs. Group 1 was represented by the most sensitive, gram-negative phytopathogenic belonging to Xanthomonadales and Pseudomonadales and the gram-positive C. michiganensis subsp. michiganensis. Group 2 encompassed bacteria showing intermediate susceptibility, namely P. carotovorum subsp. carotovorum, P. cerasi, both phytopathogens, as well as the plant growth promoters P. fluorescens and P. putida. Finaly, Group 3 was represented by the bacteria with the lowest susceptibility to AMPs. It included beneficial bacteria (B. zhangzhouensis, B. subtilis, B. safensis, P. azotoformans), a phytopathogen (R. solanacearum), and a strain reported as able to act as both (P. aeruginosa). This work demonstrates that the minimum inhibitory concentrations (MICs) needed to act against the beneficial Bacillus and Pseudomonas strains were higher than those needed to produce bacteriostatic or bactericidal effects on the phytopathogens tested, hence supporting that these AMPs might be environmentally safe antibiotics with low likeliness of disrupting the beneficial microbial communities. The possibility of mixing these AMPs with BCA/PGP, in a combined biocontrol strategy, is also discussed.
Collapse
Affiliation(s)
- Emil Gimranov
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Cátia Teixeira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Paula Gomes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal.
| |
Collapse
|
3
|
Hernández de la Torre M, Covaleda-Cortés G, Montesinos L, Covaleda D, Ortiz JC, Piñol J, Bautista JM, Castillo JP, Reverter D, Avilés FX. Analysis of Protein Inhibitors of Trypsin in Quinoa, Amaranth and Lupine Seeds. Selection and Deep Structure-Function Characterization of the Amaranthus caudatus Species. Int J Mol Sci 2025; 26:1150. [PMID: 39940919 PMCID: PMC11817793 DOI: 10.3390/ijms26031150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protease inhibitors are biomolecules with growing biotechnological and biomedical relevance, including those derived from plants. This study investigated strong trypsin inhibitors in quinoa, amaranth, and lupine seeds, plant grains traditionally used in Andean South America. Amaranth seeds displayed the highest trypsin inhibitory activity, despite having the lowest content of aqueous soluble and thermostable protein material. This activity, directly identified by enzymatic assay, HPLC, intensity-fading mass spectrometry (IF-MS), and MS/MS, was attributed to a single protein of 7889.1 Da, identified as identical in Amaranthus caudatus and A. hybridus, with a Ki of 1.2 nM for the canonical bovine trypsin. This form of the inhibitor, which is highly homogeneous and scalable, was selected, purified, and structurally-functionally characterized due to the high nutritional quality of amaranth seeds as well as its promising agriculture-biotech-biomed applicability. The protein was crystallized in complex with bovine trypsin, and its 3D crystal structure resolved at 2.85 Å, revealing a substrate-like transition state interaction. This verified its classification within the potato I inhibitor family. It also evidenced that the single disulfide bond of the inhibitor constrains its binding loop, which is a key feature. Cell culture assays showed that the inhibitor did not affect the growth of distinct plant microbial pathogen models, including diverse bacteria, fungi, and parasite models, such as Mycoplasma genitalium and Plasmodium falciparum. These findings disfavour the notion that the inhibitor plays an antimicrobial role, favouring its potential as an agricultural insect deterrent and prompting a redirection of its functional research.
Collapse
Affiliation(s)
| | - Giovanni Covaleda-Cortés
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17004 Girona, Spain;
| | - Daniela Covaleda
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
- Institut de Biotecnologia i Biomedicina, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Juan C. Ortiz
- Institut de Biotecnologia i Biomedicina, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - J. Patricio Castillo
- Departamento de Ciencias Nucleares, Escuela Politécnica Nacional, Quito 170143, Ecuador;
| | - David Reverter
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| |
Collapse
|
4
|
Patel P, Benzle K, Pei D, Wang GL. Cell-penetrating peptides for sustainable agriculture. TRENDS IN PLANT SCIENCE 2024; 29:1131-1144. [PMID: 38902122 PMCID: PMC11449662 DOI: 10.1016/j.tplants.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Cell-penetrating peptides (CPPs) are short (typically 5-30 amino acids), cationic, amphipathic, or hydrophobic peptides that facilitate the cellular uptake of diverse cargo molecules by eukaryotic cells via direct translocation or endocytosis across the plasma membrane. CPPs can deliver a variety of bioactive cargos, including proteins, peptides, nucleic acids, and small molecules into the cell. Once inside, the delivered cargo may function in the cytosol, nucleus, or other subcellular compartments. Numerous CPPs have been used for studies and drug delivery in mammalian systems. Although CPPs have many potential uses in plant research and agriculture, the application of CPPs in plants remains limited. Here we review the structures and mechanisms of CPPs and highlight their potential applications for sustainable agriculture.
Collapse
Affiliation(s)
- Preeti Patel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Benzle
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
6
|
Vélez N, Argel A, Kissmann AK, Alpízar-Pedraza D, Escandón P, Rosenau F, Ständker L, Firacative C. Pore-forming peptide C14R exhibits potent antifungal activity against clinical isolates of Candida albicans and Candida auris. Front Cell Infect Microbiol 2024; 14:1389020. [PMID: 38601736 PMCID: PMC11004338 DOI: 10.3389/fcimb.2024.1389020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Invasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris. Methods Antifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R. Results C. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 µg/ml and 5.34 µg/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 µg/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans' membrane. Discussion C14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide's potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains.
Collapse
Affiliation(s)
- Norida Vélez
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Andreys Argel
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Daniel Alpízar-Pedraza
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ciudad de La Habana, Cuba
| | | | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
7
|
Riesco-Llach G, Llanet-Ferrer S, Planas M, Feliu L. Deciphering the Mechanism of Action of the Antimicrobial Peptide BP100. Int J Mol Sci 2024; 25:3456. [PMID: 38542427 PMCID: PMC10970450 DOI: 10.3390/ijms25063456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 01/03/2025] Open
Abstract
The linear undecapeptide KKLFKKILKYL-NH2 (BP100) highlights for its antibacterial activity against Gram-negative bacteria and its low toxicity. These excellent biological properties prompted the investigation of its mechanism of action, which were undertaken using spectroscopic techniques, biophysical analysis, microscopy, and molecular dynamic simulations. Studies were conducted in different membrane environments, such as anionic, zwitterionic, and mixed membranes, as well as in vesicles (LUVs and GUVs) and bacteria. The findings suggest that BP100 exhibits a preference for anionic membranes, and its mechanism of action involves charge neutralization and membrane permeabilization. In these membranes, BP100 transitions from an unstructured state in water to an α-helix with the axis parallel to the surface. MD simulations suggest that after electrostatic interaction with the membrane, BP100 flips, facilitating the insertion of its hydrophobic face into the membrane bilayer. Thus, BP100 adopts an almost vertical transmembrane orientation with lysine side chains snorkelling on both sides of the membrane. As a result of the rotation, BP100 induces membrane thinning and slow lipid diffusion and promotes water penetration, particularly in anionic lipid membranes. These investigations pointed towards a carpet-like mechanism and are aligned with the biological activity profile described for BP100. This review covers all the studies carried out on the mechanism of action of BP100 published between 2009 and 2023.
Collapse
Affiliation(s)
| | | | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain; (G.R.-L.); (S.L.-F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain; (G.R.-L.); (S.L.-F.)
| |
Collapse
|
8
|
Chatupheeraphat C, Peamchai J, Luk-in S, Yainoy S, Eiamphungporn W. Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. PLoS One 2023; 18:e0294287. [PMID: 37972089 PMCID: PMC10653547 DOI: 10.1371/journal.pone.0294287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Drug-resistant Enterobacterales infections are a great health concern due to the lack of effective treatments. Consequently, finding novel antimicrobials or combining therapies becomes a crucial approach in addressing this problem. BP203 and MAP-0403 J-2, novel antimicrobial peptides, have exhibited effectiveness against Gram-negative bacteria. In this study, we assessed the in vitro antibacterial activity of BP203 and MAP-0403 J-2, along with their synergistic interaction with conventional antibiotics including colistin, rifampicin, chloramphenicol, ceftazidime, meropenem, and ciprofloxacin against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. The minimal inhibitory concentrations (MIC) of BP203 and MAP-0403 J-2 against tested E. coli isolates were 2-16 and 8-32 μg/mL, respectively. However, for the majority of K. pneumoniae isolates, the MIC of BP203 and MAP-0403 J-2 were >128 μg/mL. Notably, our results demonstrated a synergistic effect when combining BP203 with rifampicin, meropenem, or chloramphenicol, primarily observed in most K. pneumoniae isolates. In contrast, no synergism was evident between BP203 and colistin, chloramphenicol, ceftazidime, rifampicin, or ciprofloxacin when tested against all E. coli isolates. Furthermore, synergistic effects between MAP-0403 J-2 and rifampicin, ceftazidime or colistin were observed against the majority of E. coli isolates. Similarly, the combined effect of MAP-0403 J-2 with rifampicin or chloramphenicol was synergistic in the majority of K. pneumoniae isolates. Importantly, these peptides displayed the stability at high temperatures, across a wide range of pH values, in specific serum concentrations and under physiological salt conditions. Both peptides also showed no significant hemolysis and cytotoxicity against mammalian cells. Our findings suggested that BP203 and MAP-0403 J-2 are promising candidates against colistin-resistant E. coli. Meanwhile, the synergism of these peptides and certain antibiotics could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Abstract
Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (a) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (b) the need to develop suitable formulations to increase their shelf life and methods of application, (c) the selection of compounds with acceptable toxicological profiles, and (d) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.
Collapse
Affiliation(s)
- Emilio Montesinos
- Institute of Food and Agricultural Technology, Plant Pathology-CIDSAV, University of Girona, Girona, Spain;
| |
Collapse
|
10
|
Sabri M, El Handi K, Valentini F, De Stradis A, Achbani EH, Benkirane R, Elbeaino T. Exploring Antimicrobial Peptides Efficacy against Fire Blight ( Erwinia amylovora). PLANTS (BASEL, SWITZERLAND) 2022; 12:113. [PMID: 36616240 PMCID: PMC9824012 DOI: 10.3390/plants12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.
Collapse
Affiliation(s)
- Miloud Sabri
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Kaoutar El Handi
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Franco Valentini
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, 70126 Bari, BA, Italy
| | - El Hassan Achbani
- Laboratory of Phyto-Bacteriology and Biocontrol, Plant Protection Unit-National Institute of Agronomic Research INRA, Meknès 50000, Morocco
| | - Rachid Benkirane
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, BA, Italy
| |
Collapse
|
11
|
Baró A, Saldarelli P, Saponari M, Montesinos E, Montesinos L. Nicotiana benthamiana as a model plant host for Xylella fastidiosa: Control of infections by transient expression and endotherapy with a bifunctional peptide. FRONTIERS IN PLANT SCIENCE 2022; 13:1061463. [PMID: 36531347 PMCID: PMC9752042 DOI: 10.3389/fpls.2022.1061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Transient expression of genes encoding peptides BP134 and BP178 by means of a Potato virus X (PVX) based-vector system, and treatment with synthetic peptides by endotherapy, were evaluated in the control of Xylella fastidiosa infections, in the model plant Nicotiana benthamiana. Transient production of BP178 significantly decreased disease severity compared to PVX and non-treated control (NTC) plants, without adverse effects. Plants treated with synthetic BP134 and BP178 showed consistently lower levels of disease than NTC plants. However, the coinfection with PVX-BP134 and X. fastidiosa caused detrimental effects resulting in plant death. The levels of X. fastidiosa in three zones sampled, upwards and downwards of the inoculation/treatment point, significantly decreased compared to the NTC plants, after the treatment with BP178, but not when BP178 was produced transiently. The effect of treatment and transient production of BP178 in the induction of defense-related genes was also studied. Synthetic BP178 applied by endotherapy induced the expression of ERF1, PR1a, PAL, PALII and WRKY25, while the transient expression of BP178 overexpressed the Cath, Cyc, PR4a, 9-LOX and Endochitinase B genes. Both treatments upregulated the expression of PR1, PR3, PR4 and CycT9299 genes compared to the NTC or PVX plants. It was concluded that the effect of BP178, either by endotherapy or by transient expression, on the control of the X. fastidiosa infections in N. benthamiana, was due in part to the induction of the plant defense system in addition to its bactericidal activity reported in previous studies. However, the protection observed when BP178 was transiently produced seems mainly mediated by the induction of plant defense, because the levels of X. fastidiosa were not significantly affected.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
12
|
Exploring Active Peptides with Antimicrobial Activity In Planta against Xylella fastidiosa. BIOLOGY 2022; 11:biology11111685. [DOI: 10.3390/biology11111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited quarantine plant bacterium and one of the most harmful agricultural pathogens across the world. Despite significant research efforts, neither a direct treatment nor an efficient strategy has yet been developed for combatting Xylella-associated diseases. Antimicrobial peptides (AMPs) have been gaining interest as a promising sustainable tool to control pathogens due to their unique mechanism of action, broad spectrum of activity, and low environmental impact. In this study, we disclose the bioactivity of nine AMPs reported in the literature to be efficient against human and plant pathogen bacteria, i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, against Xf, through in vitro and in vivo experiments. Based on viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM) assays, peptides Ascaphin-8 (GF19), DASamP1 (FF13), and DASamP2 (IL14) demonstrated the highest bactericidal and antibiofilm activities and were more efficient than the peptide PB178 (KL29), reported as one of the most potent AMPs against Xf at present. Furthermore, these AMPs showed low to no toxicity when tested on eukaryotic cells. In in planta tests, no Xf disease symptoms were noticed in Nicotiana tabacum plants treated with the AMPs 40 days post inoculation. This study highlighted the high antagonistic activity of newly tested AMP candidates against Xf, which could lead to the development of promising eco-friendly management of Xf-related diseases.
Collapse
|
13
|
Synthetic Peptides against Plant Pathogenic Bacteria. Microorganisms 2022; 10:microorganisms10091784. [PMID: 36144386 PMCID: PMC9504393 DOI: 10.3390/microorganisms10091784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The control of plant diseases caused by bacteria that seriously compromise crop productivity around the world is still one of the most important challenges in food security. Integrated approaches for disease control generally lack plant protection products with high efficacy and low environmental and health adverse effects. Functional peptides, either from natural sources or synthetic, are considered as novel candidates to develop biopesticides. Synthetic peptides can be obtained based on the structure of natural compounds or de novo designed, considering the features of antimicrobial peptides. The advantage of this approach is that analogues can be conveniently prepared, enabling the identification of sequences with improved biological properties. Several peptide libraries have been designed and synthetized, and the best sequences showed strong bactericidal activity against important plant pathogenic bacteria, with a good profile of biodegradability and low toxicity. Among these sequences, there are bacteriolytic or antibiofilm peptides that work against the target bacteria, plant defense elicitor peptides, and multifunctional peptides that display several of these properties. Here, we report the research performed by our groups during the last twenty years, as well as our ongoing work. We also highlight those peptides that can be used as candidates to develop novel biopesticides, and the main challenges and prospects.
Collapse
|
14
|
Moll L, Baró A, Montesinos L, Badosa E, Bonaterra A, Montesinos E. Induction of Defense Responses and Protection of Almond Plants Against Xylella fastidiosa by Endotherapy with a Bifunctional Peptide. PHYTOPATHOLOGY 2022; 112:1907-1916. [PMID: 35384723 DOI: 10.1094/phyto-12-21-0525-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), causing significant yield losses in economically important Mediterranean crops. Almond leaf scorch (ALS) is currently one of the most relevant diseases observed in Spain, and no cure has been found to be effective for this disease. In previous reports, the peptide BP178 has shown a strong bactericidal activity in vitro against X. fastidiosa and to other plant pathogens, and to trigger defense responses in tomato plants. In the present work, BP178 was applied by endotherapy to almond plants of cultivar Avijor using preventive and curative strategies. The capacity of BP178 to reduce the population levels of X. fastidiosa and to decrease disease symptoms and its persistence over time were demonstrated under greenhouse conditions. The most effective treatment consisted of a combination of preventive and curative applications, and the peptide was detected in the stem up to 60 days posttreatment. Priming plants with BP178 induced defense responses mainly through the salicylic acid pathway, but also overexpressed some genes of the jasmonic acid and ethylene pathways. It is concluded that the bifunctional peptide is a promising candidate to be further developed to manage ALS caused by X. fastidiosa.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luís Moll
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Anna Bonaterra
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, Girona, 17003, Spain
| |
Collapse
|
15
|
Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Appl Environ Microbiol 2022; 88:e0057422. [PMID: 35638842 PMCID: PMC9238401 DOI: 10.1128/aem.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thirty peptide conjugates were designed by combining an antimicrobial peptide (BP16, BP100, BP143, KSL-W, BP387, or BP475) at the N- or C-terminus of a plant defense elicitor peptide (flg15, BP13, Pep13, or PIP1). These conjugates were highly active in vitro against six plant-pathogenic bacteria, especially against Xanthomonas arboricola pv. pruni, Xanthomonas fragariae and Xanthomonas axonopodis pv. vesicatoria. The most active peptides were those incorporating Pep13. The order of the conjugation influenced the antibacterial activity and the hemolysis. Regarding the former, peptide conjugates incorporating the elicitor peptide flg15 or Pep13 at the C-terminus were, in general, more active against Pseudomonas syringae pv. actinidiae and P. syringae pv. syringae, whereas those bearing these elicitor peptides at the N-terminus displayed higher activity against Erwinia. amylovora and the Xanthomonas species. The best peptide conjugates displayed MIC values between 0.8 and 12.5 μM against all the bacteria tested and also had low levels of hemolysis and low phytotoxicity. Analysis of the structural and physicochemical parameters revealed that a positive charge ranging from +5 to +7 and a moderate hydrophobic moment/amphipathic character is required for an optimal biological profile. Interestingly, flg15-BP475 exhibited a dual activity, causing the upregulation of the same genes as flg15 and reducing the severity of bacterial spot in tomato plants with a similar or even higher efficacy than copper oxychloride. Characterization by nuclear magnetic resonance (NMR) of the secondary structure of flg15-BP475 showed that residues 10 to 25 fold into an α-helix. This study establishes trends to design new bifunctional peptides useful against plant diseases caused by plant-pathogenic bacteria. IMPORTANCE The consequences of plant pathogens on crop production together with the lack of effective and environmentally friendly pesticides evidence the need of new agents to control plant diseases. Antimicrobial and plant defense elicitor peptides have emerged as good candidates to tackle this problem. This study focused on combining these two types of peptides into a single conjugate with the aim to potentiate the activity of the individual fragments. Differences in the biological activity of the resulting peptide conjugates were obtained depending on their charge, amphipathicity, and hydrophobicity, as well as on the order of the conjugation of the monomers. This work provided bifunctional peptide conjugates able to inhibit several plant-pathogenic bacteria, to stimulate plant defense responses, and to reduce the severity of bacterial spot in tomato plants. Thus, this study could serve as the basis for the development of new antibacterial/plant defense elicitor peptides to control bacterial plant pathogens.
Collapse
|
16
|
Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211583. [PMID: 35116161 PMCID: PMC8790363 DOI: 10.1098/rsos.211583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
In the last century, conventional antibiotics have played a significant role in global healthcare. Antibiotics support the body in controlling bacterial infection and simultaneously increase the tendency of drug resistance. Consequently, there is a severe concern regarding the regression of the antibiotic era. Despite the use of antibiotics, host defence systems are vital in fighting infectious diseases. In fact, the expression of ribosomal antimicrobial peptides (AMPs) has been crucial in the evolution of innate host defences and has been irreplaceable to date. Therefore, this valuable source is considered to have great potential in tackling the antimicrobial resistance (AMR) crisis. Furthermore, the possibility of bacterial resistance to AMPs has been intensively investigated. Here, we summarize all aspects related to the multiple applications of ribosomal AMPs and their derivatives in combating AMR.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | | | - Thang Nguyen Quoc
- Nuclear Medicine Unit, Vinmec Healthcare System, Hanoi 10000, Vietnam
| | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
17
|
Mendes RJ, Sario S, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122637. [PMID: 34961108 PMCID: PMC8705937 DOI: 10.3390/plants10122637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 μM (1:1). Results showed MIC and MBC values between 2.5 and 4 μM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.
Collapse
Affiliation(s)
- Rafael J. Mendes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
- Correspondence:
| | - Sara Sario
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João Pedro Luz
- QRural, Polytechnic Institute of Castelo Branco, School of Agriculture, 6000-909 Castelo Branco, Portugal;
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Cátia Teixeira
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Paula Gomes
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Tavares
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, InBIO, Associated Laboratory, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Conceição Santos
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (S.S.); (C.T.); (P.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Front Microbiol 2021; 12:753874. [PMID: 34819923 PMCID: PMC8606745 DOI: 10.3389/fmicb.2021.753874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
19
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
20
|
Dematei A, Nunes JB, Moreira DC, Jesus JA, Laurenti MD, Mengarda ACA, Vieira MS, do Amaral CP, Domingues MM, de Moraes J, Passero LFD, Brand G, Bessa LJ, Wimmer R, Kuckelhaus SAS, Tomás AM, Santos NC, Plácido A, Eaton P, Leite JRSA. Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper ( Bothrops atrox). JOURNAL OF NATURAL PRODUCTS 2021; 84:1787-1798. [PMID: 34077221 DOI: 10.1021/acs.jnatprod.1c00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - João B Nunes
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Jéssica A Jesus
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Márcia D Laurenti
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Ana C A Mengarda
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Maria Silva Vieira
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Josué de Moraes
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Luiz F D Passero
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucinda J Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Selma A S Kuckelhaus
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ana M Tomás
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
- ICBAS, Abel Salazar Institute for Biomedical Research, University of Porto, Porto 4099-002, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
21
|
Oliveras À, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Planas M, Feliu L. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. Int J Mol Sci 2021; 22:ijms22126631. [PMID: 34205705 PMCID: PMC8233901 DOI: 10.3390/ijms22126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Gerard Riesco-Llach
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Arnau Tolosa-Canudas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Sergio Gil-Caballero
- Serveis Tècnics de Recerca (NMR), Universitat de Girona, Parc Científic i Tecnològic de la UdG, Pic de Peguera 15, 17004 Girona, Spain;
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| |
Collapse
|
22
|
Caravaca-Fuentes P, Camó C, Oliveras À, Baró A, Francés J, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules 2021; 26:molecules26113426. [PMID: 34198776 PMCID: PMC8201157 DOI: 10.3390/molecules26113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 μM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.
Collapse
Affiliation(s)
- Pau Caravaca-Fuentes
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Cristina Camó
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Jesús Francés
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +34-660719646
| |
Collapse
|
23
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
24
|
Mariz-Ponte N, Regalado L, Gimranov E, Tassi N, Moura L, Gomes P, Tavares F, Santos C, Teixeira C. A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae. Molecules 2021; 26:molecules26051461. [PMID: 33800273 PMCID: PMC7962642 DOI: 10.3390/molecules26051461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 µM, respectively and MBC 3.4-10 µM for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Microbial Diversity and Evolution Group, University of Porto (UP), 4485-661 Vairão, Portugal
- Correspondence:
| | - Laura Regalado
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Emil Gimranov
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| | - Luísa Moura
- CISAS—Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| | - Fernando Tavares
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Microbial Diversity and Evolution Group, University of Porto (UP), 4485-661 Vairão, Portugal
| | - Conceição Santos
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| |
Collapse
|
25
|
Montesinos L, Gascón B, Ruz L, Badosa E, Planas M, Feliu L, Montesinos E. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. FRONTIERS IN PLANT SCIENCE 2021; 12:756357. [PMID: 34733307 PMCID: PMC8558481 DOI: 10.3389/fpls.2021.756357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1-10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Beatriz Gascón
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Ruz
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
- *Correspondence: Emilio Montesinos
| |
Collapse
|
26
|
Souza F, Fornasier F, Carvalho A, Silva B, Lima M, Pimentel A. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Baró A, Badosa E, Montesinos L, Feliu L, Planas M, Montesinos E, Bonaterra A. Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiol 2020; 20:229. [PMID: 32727358 PMCID: PMC7392676 DOI: 10.1186/s12866-020-01915-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Xylella fastidiosa is one of the most harmful bacterial plant pathogens worldwide, causing a variety of diseases, with huge economic impact to agriculture and environment. Although it has been extensively studied, there are no therapeutic solutions to suppress disease development in infected plants. In this context, antimicrobial peptides represent promising alternatives to traditional compounds due to their activity against a wide range of plant pathogens, their low cytotoxicity, their mode of action that make resistance more difficult and their availability for being expressed in plants. Results Peptide conjugates derived from the lead peptide BP100 and fragments of cecropin, magainin or melittin were selected and tested against the plant pathogenic bacteria X. fastidiosa. In order to screen the activity of these antimicrobials, and due to the fastidious nature of the pathogen, a methodology consisting of a contact test coupled with the viability-quantitative PCR (v-qPCR) method was developed. The nucleic acid-binding dye PEMAX was used to selectively quantify viable cells by v-qPCR. In addition, the primer set XF16S-3 amplifying a 279 bp fragment was selected as the most suitable for v-qPCR. The performance of the method was assessed by comparing v-qPCR viable cells estimation with conventional qPCR and plate counting. When cells were treated with peptide conjugates derived from BP100, the observed differences between methods suggested that, in addition to cell death due to the lytic effect of the peptides, there was an induction of the viable but non-culturable state in cells. Notably, a contact test coupled to v-qPCR allowed fast and accurate screening of antimicrobial peptides, and led to the identification of new peptide conjugates active against X. fastidiosa. Conclusions Antimicrobial peptides active against X. fastidiosa have been identified using an optimized methodology that quantifies viable cells without a cultivation stage, avoiding underestimation or false negative detection of the pathogen due to the viable but non-culturable state, and overestimation of the viable population observed using qPCR. These findings provide new alternative compounds for being tested in planta for the control of X. fastidiosa, and a methodology that enables the fast screening of a large amount of antimicrobials against this plant pathogenic bacterium.
Collapse
Affiliation(s)
- Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Laura Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain.
| |
Collapse
|
28
|
Baró A, Mora I, Montesinos L, Montesinos E. Differential Susceptibility of Xylella fastidiosa Strains to Synthetic Bactericidal Peptides. PHYTOPATHOLOGY 2020; 110:1018-1026. [PMID: 31985337 DOI: 10.1094/phyto-12-19-0477-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The kinetics of cell inactivation and the susceptibility of Xylella fastidiosa subspecies fastidiosa, multiplex, and pauca to synthetic antimicrobial peptides from two libraries (CECMEL11 and CYCLO10) were studied. The bactericidal effect was dependent on the relative concentrations of peptide and bacterial cells, and was influenced by the diluent, either buffer or sap. The most bactericidal and lytic peptide was BP178, an enlarged derivative of the amphipathic cationic linear undecapeptide BP100. The maximum reduction in survivors after BP178 treatment occurred within the first 10 to 20 min of contact and at micromolar concentrations (<10 μM), resulting in pore formation in cell membranes, abundant production of outer membrane vesicles, and lysis. A threshold ratio of 109 molecules of peptide per bacterial cell was estimated to be necessary to initiate cell inactivation. There was a differential susceptibility to BP178 among strains, with DD1 being the most resistant and CFBP 8173 the most susceptible. Moreover, strains showed a proportion of cells under the viable but nonculturable state, which was highly variable among strains. These findings may have implications for managing the diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Isabel Mora
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| |
Collapse
|
29
|
Khademi M, Varasteh-Shams M, Nazarian-Firouzabadi F, Ismaili A. New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1236. [PMID: 32903611 PMCID: PMC7438598 DOI: 10.3389/fpls.2020.01236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
Antimicrobial peptides have been long known to confer resistance to plant pathogens. In this study, new recombinant peptides constructed from a dermaseptin B1 (DrsB1) peptide fused to a chitin-binding domain (CBD) from Avr4 protein, were used for Agrobacterium tumefaciens-mediated transformation of tobacco plants. Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and western blotting analysis demonstrated the incorporation and expression of transgenes in tobacco genome and transgenic plants, respectively. In vitro experiments with recombinant peptides extracted from transgenic plants demonstrated a significant (P<0.01) inhibitory effect on the growth and development of plant pathogens. The DrsB1-CBD recombinant peptide had the highest antifungal activity against fungal pathogens. The expression of the recombinant peptides greatly protected transgenic plants from Alternaria alternata, Alternaria solani, Fusarium oxysporum, and Fusarium solani fungi, in comparison to Pythium sp. and Pythium aphanidermatum. Expression of new recombinant peptides resulted in a delay in the colonization of fungi and appearance of fungal disease symptoms from 6 days to more than 7 weeks. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, cling together, and crushed following the antimicrobial activity of the recombinant peptides. Greenhouse bioassay analysis showed that transgenic plants were more resistant to Fusarium and Pythium infections as compared with the control plants. Due to the high antimicrobial activity of the recombinant peptides against plant pathogens and novelty of recombinant peptides, this report shows the feasibility of this approach to generate disease resistance transgenic plants.
Collapse
|
30
|
Thagun C, Chuah J, Numata K. Targeted Gene Delivery into Various Plastids Mediated by Clustered Cell-Penetrating and Chloroplast-Targeting Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902064. [PMID: 31832328 PMCID: PMC6891901 DOI: 10.1002/advs.201902064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Indexed: 05/05/2023]
Abstract
The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparation of plant material, require expensive experimental instruments, and are time consuming for obtaining a transplastomic plant line that produces significant levels of the biomolecule of interest. Herein, a transient plastid transformation technique is presented using a peptide-based gene carrier. By formulating peptide/plasmid DNA complexes that combine the functions of both a cell-penetrating peptide and a chloroplast-targeting peptide, DNA molecules are translocated across the plant cell membrane and delivered to the plastid efficiently via vesicle formation and intracellular vesicle trafficking. A simple infiltration method enables the introduction of a complex solution into intact plants, and plastid-localized transgene expression is expeditiously observed in various types of plastids in differentiated cell types of several plants. The gene delivery technology thus provides a useful tool to rapidly engineer plastids in crop species.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Jo‐Ann Chuah
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| |
Collapse
|
31
|
Mirakhorli N, Norolah Z, Foruzandeh S, Shafizade F, Nikookhah F, Saffar B, Ansari O. Multi-functionPlantDefensin,AntimicrobialandHeavyMetal Adsorbent Peptide. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1562. [PMID: 32195280 PMCID: PMC7080970 DOI: 10.29252/ijb.1562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Defensin peptide isolated from plants are often heterogeneous in length, sequence and structure, but they are mostly small, cationic and amphipathic.
Plant defensins exhibit broad-spectrum antibacterial and antifungal activities against Gram-positive and Gram-negative bacteria, fungi and etc.
Plant defensins also play an important role in innate immunity, such as heavy metal and some abiotic stresses tolerance. Objectives: In this paper, in vitro broad-spectrum activities, antimicrobial and heavy metal absorption, of a recombinant plant defensin were studied. Material and Methods: SDmod gene, a modified plant defensin gene, was cloned in pBISN1-IN (EU886197) plasmid, recombinant protein was produced by transient expression
via Agroinfiltration method in common bean. The recombinant protein was tested for antibacterial activity against Gram-negative, Gram-positive bacteria
and Fusarium sp. the effects of different treatments on heavy metal zinc absorption by this peptide were tested. Results: We confirmed the antibacterial activities of this peptide against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive
(Staphylococcus aureus and Bacillus cereus) bacteria, and antifungal activities of this peptide against Fusarium spp.
(Fusarium oxysporum and Fusarium solani).
High metal absorption coefficient for this peptide was also observed.
Results: Out of six actinobacterial isolates, VITVAMB 1 possessed the most efficient RO-16 decolorization property.
It decolorized 85.6% of RO-16 (250 mg L-1) within 24hrs. Isolate VITVAMB 1 was identified to be Nocardiopsis sp.
Maximum dye decolorization occurred at pH 8, temperature 35oC, 3% salt concentration and a dye concentration of 50 mg L-1. Conclusions: Results suggesting that modified defensin peptide facilitates a broader range of defense activities. dedefensins are an important part of the
innate immune system in eukaryotes. These molecules have multidimensional properties that making them promising agents for therapeutic drugs.
Collapse
Affiliation(s)
- Neda Mirakhorli
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Zahra Norolah
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Samira Foruzandeh
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Fateme Shafizade
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Nikookhah
- Department of Fisheries and Environmental Science, Shahrekord University, Shahrekord, Iran
| | - Behnaz Saffar
- Department of Genetic, Shahrekord University, Shahrekord, Iran
| | - Omid Ansari
- Ecofibre Industries Operations and Ananda Hemp, Brisbane, Australia
| |
Collapse
|
32
|
Guo B, Itami J, Oikawa K, Motoda Y, Kigawa T, Numata K. Native protein delivery into rice callus using ionic complexes of protein and cell-penetrating peptides. PLoS One 2019; 14:e0214033. [PMID: 31361745 PMCID: PMC6667096 DOI: 10.1371/journal.pone.0214033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/11/2019] [Indexed: 01/03/2023] Open
Abstract
Direct protein delivery into intact plants remains a challenge for the agricultural and plant science fields. Cell-penetrating peptide (CPP)-mediated protein delivery requires the binding of CPPs to a protein to carry the protein into the cell through the cell wall and lipid bilayer. Thus, we prepared ionic complexes of a CPP-containing carrier peptide and a cargo protein, namely, Citrine yellow fluorescent protein, and subsequently studied their physicochemical properties. Two types of carrier peptides, BP100(KH)9 and BP100CH7, were investigated for delivery efficiency into rice callus. Both BP100(KH)9 and BP100CH7 successfully introduced Citrine protein into rice callus cells under pressure and vacuum treatment. Moreover, delivery efficiency varied at different growth stages of rice callus; 5-day rice callus was a more efficient recipient for Citrine than 21-day callus.
Collapse
Affiliation(s)
- Boyang Guo
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jun Itami
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kazusato Oikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yoko Motoda
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
33
|
Popa C, Shi X, Ruiz T, Ferrer P, Coca M. Biotechnological Production of the Cell Penetrating Antifungal PAF102 Peptide in Pichia pastoris. Front Microbiol 2019; 10:1472. [PMID: 31316491 PMCID: PMC6610294 DOI: 10.3389/fmicb.2019.01472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) have potent and durable antimicrobial activity to a wide range of fungi and bacteria. The growing problem of drug-resistant pathogenic microorganisms, together with the lack of new effective compounds, has stimulated interest in developing AMPs as anti-infective molecules. PAF102 is an AMP that was rationally designed for improved antifungal properties. This cell penetrating peptide has potent and specific activity against major fungal pathogens. Cecropin A is a natural AMP with strong and fast lytic activity against bacterial and fungal pathogens, including multidrug resistant pathogens. Both peptides, PAF102 and Cecropin A, are alternative antibiotic compounds. However, their exploitation requires fast, cost-efficient production systems. Here, we developed an innovative system to produce AMPs in Pichia pastoris using the oleosin fusion technology. Oleosins are plant-specific proteins with a structural role in lipid droplet formation and stabilization, which are used as carriers for recombinant proteins to lipid droplets in plant-based production systems. This study reports the efficient production of PAF102 in P. pastoris when fused to the rice plant Oleosin 18, whereas no accumulation of Cecropin A was detected. The Ole18-PAF102 fusion protein targets the lipid droplets of the heterologous system where it accumulates to high levels. Interestingly, the production of this fusion protein induces the formation of lipid droplets in yeast cells, which can be additionally enhanced by the coexpression of a diacylglycerol transferase gene that allows a three-fold increase in the production of the fusion protein. Using this high producer strain, PAF102 reaches commercially relevant yields of up to 180 mg/l of yeast culture. Moreover, the accumulation of PAF102 in the yeast lipid droplets facilitates its downstream extraction and recovery by flotation on density gradients, with the recovered PAF102 being biologically active against pathogenic fungi. Our results demonstrate that plant oleosin fusion technology can be transferred to the well-established P. pastoris cell factory to produce the PAF102 antifungal peptide, and potentially other AMPs, for multiple applications in crop protection, food preservation and animal and human therapies.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Tarik Ruiz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Barcelona, Spain
| |
Collapse
|
34
|
Pfeil MP, Pyne ALB, Losasso V, Ravi J, Lamarre B, Faruqui N, Alkassem H, Hammond K, Judge PJ, Winn M, Martyna GJ, Crain J, Watts A, Hoogenboom BW, Ryadnov MG. Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms. Sci Rep 2018; 8:14926. [PMID: 30297841 PMCID: PMC6175903 DOI: 10.1038/s41598-018-33289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.
Collapse
Affiliation(s)
- Marc-Philipp Pfeil
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Valeria Losasso
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Hasan Alkassem
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Martyn Winn
- STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
| | | | - Jason Crain
- IBM Research, Yorktown Heights, NY, 10598, USA
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| |
Collapse
|
35
|
Oliveras À, Baró A, Montesinos L, Badosa E, Montesinos E, Feliu L, Planas M. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS One 2018; 13:e0201571. [PMID: 30052685 PMCID: PMC6063448 DOI: 10.1371/journal.pone.0201571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
A collection of 36 lipopeptides were designed from the cecropin A-melittin hybrid peptide BP100 (H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2) previously described with activity against phytopathogenic bacteria. These lipopeptides were synthesized on solid-phase and screened for their antimicrobial activity, toxicity and proteolytic stability. They incorporated a butanoyl, a hexanoyl or a lauroyl group at the N-terminus or at the side chain of a lysine residue placed at each position of the sequence. Their antimicrobial activity and hemolysis depended on the fatty acid length and its position. In particular, lipopeptides containing a butanoyl or a hexanoyl chain exhibited the best biological activity profile. In addition, we observed that the incorporation of the acyl group did not induce the overexpression of defense-related genes in tomato. Best lipopeptides were BP370, BP378, BP381, BP387 and BP389, which were highly active against all the pathogens tested (minimum inhibitory concentration of 0.8 to 12.5 μM), low hemolytic, low phytotoxic and significantly stable to protease degradation. This family of lipopeptides might be promising functional peptides useful for plant protection.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Laura Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| |
Collapse
|
36
|
Chahardoli M, Fazeli A, Niazi A, Ghabooli M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1451780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mahmood Chahardoli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Arash Fazeli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
37
|
Bodenberger N, Kubiczek D, Halbgebauer D, Rimola V, Wiese S, Mayer D, Rodriguez Alfonso AA, Ständker L, Stenger S, Rosenau F. Lectin-Functionalized Composite Hydrogels for “Capture-and-Killing” of Carbapenem-Resistant Pseudomonas aeruginosa. Biomacromolecules 2018; 19:2472-2482. [DOI: 10.1021/acs.biomac.8b00089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nicholas Bodenberger
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
- Synthesis of Macromolecules Department, Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Dennis Kubiczek
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
| | - Daniel Halbgebauer
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
| | - Vittoria Rimola
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
| | - Daniel Mayer
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89070 Ulm, Germany
| | | | - Ludger Ständker
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University 89081 Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89070 Ulm, Germany
| | - Frank Rosenau
- Center for Peptide Pharmaceuticals, Faculty of Natural Science, Ulm University, 89081 Ulm, Germany
- Synthesis of Macromolecules Department, Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
38
|
Zhang M, Shan Y, Gao H, Wang B, Liu X, Dong Y, Liu X, Yao N, Zhou Y, Li X, Li H. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb Cell Fact 2018; 17:18. [PMID: 29402269 PMCID: PMC5798188 DOI: 10.1186/s12934-018-0865-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Antibiotic residues can cause antibiotic resistance in livestock and their food safety-related issues have increased the consumer demand for products lacking these residues. Hence, developing safe and effective antibiotic alternatives is important to the animal feed industry. With their strong antibacterial actions, antimicrobial peptides have potential as antibiotic alternatives. Results We investigated the antibacterial and immunomodulatory activities and the mechanisms of action of an antimicrobial peptide. The hybrid antimicrobial peptide magainin II-cecropin B (Mag II-CB) gene was transformed into the medicinal Cordyceps militaris fungus. Recombinant Mag II-CB exhibited broad-spectrum antibacterial activity in vitro and its antibacterial and immunomodulatory functions were evaluated in BALB/c mice infected with Escherichia coli (ATCC 25922). Histologically, Mag II-CB ameliorated E. coli-related intestinal damage and maintained the integrity of the intestinal mucosal barrier by up-regulating tight junction proteins (zonula occludens-1, claudin-1 and occludin). The intestinal microbial flora was positively modulated in the Mag II-CB-treated mice infected with E. coli. Mag II-CB treatment also supported immune functioning in the mice by regulating their plasma immunoglobulin and ileum secreted immunoglobulin A levels, by attenuating their pro-inflammatory cytokine levels, and by elevating their anti-inflammatory cytokines levels. Moreover, directly feeding the infected mice with the C. militaris mycelium producing Mag II-CB further proofed the antibacterial and immunomodulatory functions of recombinant hybrid antimicrobial peptide. Conclusion Our findings suggest that both purified recombinant AMPs and C. militaris mycelium producing AMPs display antibacterial and immunomodulatory activities in mice. And C. militaris producing AMPs has the potential to become a substitute to antibiotics as a feed additive for livestock in future. Electronic supplementary material The online version of this article (10.1186/s12934-018-0865-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yuanlong Shan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hongtao Gao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Bin Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xin Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yuanyuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
39
|
Montesinos L, Bundó M, Badosa E, San Segundo B, Coca M, Montesinos E. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC PLANT BIOLOGY 2017; 17:63. [PMID: 28292258 PMCID: PMC5351061 DOI: 10.1186/s12870-017-1011-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND BP178 peptide is a synthetic BP100-magainin derivative possessing strong inhibitory activity against plant pathogenic bacteria, offering a great potential for future applications in plant protection and other fields. Here we report the production and recovery of a bioactive BP178 peptide using rice seeds as biofactories. RESULTS A synthetic gene encoding the BP178 peptide was prepared and introduced in rice plants. The gene was efficiently expressed in transgenic rice under the control of an endosperm-specific promoter. Among the three endosperm-specific rice promoters (Glutelin B1, Glutelin B4 or Globulin 1), best results were obtained when using the Globulin 1 promoter. The BP178 peptide accumulated in the seed endosperm and was easily recovered from rice seeds using a simple procedure with a yield of 21 μg/g. The transgene was stably inherited for at least three generations, and peptide accumulation remained stable during long term storage of transgenic seeds. The purified peptide showed in vitro activity against the bacterial plant pathogen Dickeya sp., the causal agent of the dark brown sheath rot of rice. Seedlings of transgenic events showed enhanced resistance to the fungal pathogen Fusarium verticillioides, supporting that the in planta produced peptide was biologically active. CONCLUSIONS The strategy developed in this work for the sustainable production of BP178 peptide using rice seeds as biofactories represents a promising system for future production of peptides for plant protection and possibly in other fields.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| |
Collapse
|
40
|
Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine. PLoS One 2016; 11:e0151639. [PMID: 27008420 PMCID: PMC4805166 DOI: 10.1371/journal.pone.0151639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclolipopeptides derived from the antimicrobial peptide c(Lys-Lys-Leu-Lys-Lys-Phe-Lys-Lys-Leu-Gln) (BPC194) were prepared on solid-phase and screened against four plant pathogens. The incorporation at Lys5 of fatty acids of 4 to 9 carbon atoms led to active cyclolipopeptides. The influence on the antimicrobial activity of the Lys residue that is derivatized was also evaluated. In general, acylation of Lys1, Lys2 or Lys5 rendered the sequences with the highest activity. Incorporation of a D-amino acid maintained the antimicrobial activity while significantly reduced the hemolysis. Replacement of Phe with a His also yielded cyclolipopeptides with low hemolytic activity. Derivatives exhibiting low phytotoxicity in tobacco leaves were also found. Interestingly, sequences with or without significant activity against phytopathogenic bacteria and fungi, but with differential hemolysis and phytotoxicity were identified. Therefore, this study represents an approach to the development of bioactive peptides with selective activity against microbial, plant and animal cell targets. These selective cyclolipopeptides are candidates useful not only to combat plant pathogens but also to be applied in other fields.
Collapse
|
41
|
Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLoS One 2016; 11:e0146919. [PMID: 26760761 PMCID: PMC4711921 DOI: 10.1371/journal.pone.0146919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.
Collapse
|
42
|
Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 2015; 33:1005-23. [DOI: 10.1016/j.biotechadv.2015.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022]
|
43
|
Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides. Appl Microbiol Biotechnol 2015; 99:8011-21. [PMID: 25846331 DOI: 10.1007/s00253-015-6541-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/05/2023]
Abstract
There are short cationic and tryptophan-rich antifungal peptides such as the hexapeptide PAF26 (RKKWFW) that have selective toxicity and cell penetration properties against fungal cells. This study demonstrates that concatemeric peptides with tandem repeats of the heptapeptide PAF54 (which is an elongated PAF26 sequence) show increased fungistatic and bacteriostatic activities while maintaining the absence of hemolytic activity of the monomer. The increase in antimicrobial activity of the double-repeated PAF sequences (diPAFs), compared to the nonrepeated PAF, was higher (4-8-fold) than that seen for the triple-repeated sequences (triPAFs) versus the diPAFs (2-fold). However, concatemerization diminished the fungicidal activity against quiescent spores of the filamentous fungus Penicillium digitatum. Peptide solubility and sensitivity to proteolytic degradation were affected by the design of the concatemers: incorporation of the AGPA sequence hinge to separate PAF54 repeats increased solubility while the C-terminal addition of the KDEL sequence decreased in vitro stability. These results led to the design of the triPAF sequence PAF102 of 30 amino acid residues, with increased antimicrobial activity and minimal inhibitory concentration (MIC) value of 1-5 μM depending on the fungus. Further characterization of the mode-of-action of PAF102 demonstrated that it colocalizes first with the fungal cell wall, it is thereafter internalized in an energy dependent manner into hyphal cells of the filamentous fungus Fusarium proliferatum, and finally kills hyphal cells intracellularly. Therefore, PAF102 showed mechanistic properties against fungi similar to the parental PAF26. These observations are of high interest in the future development of PAF-based antimicrobial molecules optimized for their production in biofactories.
Collapse
|
44
|
Company N, Nadal A, Ruiz C, Pla M. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters. PLoS One 2014; 9:e109990. [PMID: 25387106 PMCID: PMC4227650 DOI: 10.1371/journal.pone.0109990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022] Open
Abstract
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
Collapse
Affiliation(s)
- Nuri Company
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Anna Nadal
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Cristina Ruiz
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Maria Pla
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
45
|
Puig M, Moragrega C, Ruz L, Montesinos E, Llorente I. Postinfection Activity of Synthetic Antimicrobial Peptides Against Stemphylium vesicarium in Pear. PHYTOPATHOLOGY 2014; 104:1192-200. [PMID: 24875384 DOI: 10.1094/phyto-02-14-0036-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brown spot of pear is a fungal disease of economic importance caused by Stemphylium vesicarium that affects the pear crops in Europe. Due to the characteristics of this disease and the moderate efficacy of available fungicides, the effectiveness of control measures is very limited; however, synthetic antimicrobial peptides (AMPs) may be a complement to these fungicides. In the present study, 12 AMPs of the CECMEL11 library were screened for fungicidal activity against S. vesicarium. In vitro experiments showed that eight AMPs significantly reduced the germination of conidia. The most effective peptides, BP15, BP22, and BP25, reduced fungal growth and sporulation at concentrations below 50 μM. Leaf assays showed that preventive application of BP15 and BP22 did not reduce infection; however, when the peptides were applied curatively, infection was significantly reduced. The use of a BP15 fluorescein 5-isothiocyanate conjugate revealed that the peptide binds to hyphae and germ tubes and produces malformations that irreversibly stop their development.
Collapse
|