1
|
Chandrasekhar T, Reddy PCO, Swapna B, Veeranjaneya Reddy L, Anuprasanna V, Dakshayani L, Ramachandra Reddy P, Reddy MC. Algae: the game-changers in biohydrogen sector. Crit Rev Biotechnol 2025; 45:509-529. [PMID: 39142834 DOI: 10.1080/07388551.2024.2387176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 08/16/2024]
Abstract
Biohydrogen (H2) is an efficient form of renewable energy generated from various biological organisms. Specifically, primitive plants such as algae which are photosynthetic organisms can produce several commercial products, including biofuels due to their simple form, short life span, efficient photosynthetic capacity, and ability to grow in non-potable water sources. But these algae are often neglected and considered waste. Several studies have revealed the importance and role of algal species in generating biofuels, especially biohydrogen. Considerable research has been conducted in order to understand hydrogen production from algal sources. This review emphasizes the photolysis of water-based hydrogen production in algae apart from the metabolites fermentation process. The influence of physico-chemical factors, including oxygen scavengers, nanoparticles, and hydrogenases, was highlighted in this review to enhance H2 production from algal species. Also, several algal species used for hydrogen production are summarized in detail. Overall, this review intends to summarize the developments in hydrogen production from algal species keeping in view of excellent prospects. This knowledge certainly would provide a good opportunity for the industrial production of hydrogen using algal species, which is one of the most concerned areas in the energy sector.
Collapse
Affiliation(s)
| | | | - Battana Swapna
- Department of Botany, Vikrama Simhapuri University College, Kavali, India
| | | | | | - Lomada Dakshayani
- Department of Genetics & Genomics, Yogi Vemana University, Kadapa, India
| | | | - Madhava C Reddy
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, India
| |
Collapse
|
2
|
Dammak M, Ben Hlima H, Fendri I, Smaoui S, Abdelkafi S. Tetraselmis species for environmental sustainability: biology, water bioremediation, and biofuel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34247-0. [PMID: 39060891 DOI: 10.1007/s11356-024-34247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With increasing demand of fossil fuels and water pollution and their environmental impacts, marine green microalgae have gained special attention in both scientific and industrial fields. This is due to their fast growth in non-arable lands with high photosynthetic activity, their metabolic plasticity, as well as their high CO2 capture capacity. Tetraselmis species, green and eukaryotic microalgae, are not only considered as a valuable source of biomolecules including pigments, lipids, and starch but also widely used in biotechnological applications. Tetraselmis cultivation for high-value biomolecules and industrial use was demonstrated to be a non-cost-effective strategy because of its low demand in nutrients, such as phosphorus and nitrogen. Recently, phycoremediation of wastewater rich in nutrients, chemicals, and heavy metals has become an efficient and economic-alternative that allows the detoxification of waters and induces mechanisms in algal cells for biomolecules rich-energy synthesis to regulate their metabolic pathways. This review aims to shed light on Tetraselmis species for their different culture conditions and metabolites bioaccumulation, as well as their human health and environmental applications. Additionally, phycoremediation of contaminants associated to biofuel production in Tetraselmis cells and their different intracellular and extracellular mechanisms have also been investigated.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Biotechnologie des Plantes Appliquée À l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
3
|
Goswami RK, Agrawal K, Mehariya S, Verma P. Current perspective on wastewater treatment using photobioreactor for Tetraselmis sp.: an emerging and foreseeable sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61905-61937. [PMID: 34618318 DOI: 10.1007/s11356-021-16860-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Urbanization is a revolutionary and necessary step for the development of nations. However, with development emanates its drawback i.e., generation of a huge amount of wastewater. The existence of diverse types of nutrient loads and toxic compounds in wastewater can reduce the pristine nature of the ecosystem and adversely affects human and animal health. The conventional treatment system reduces most of the chemical contaminants but their removal efficiency is low. Thus, microalgae-based biological wastewater treatment is a sustainable approach for the removal of nutrient loads from wastewater. Among various microalgae, Tetraselmis sp. is a robust strain that can remediate industrial, municipal, and animal-based wastewater and reduce significant amounts of nutrient loads and heavy metals. The produced biomass contains lipids, carbohydrates, and pigments. Among them, carbohydrates and lipids can be used as feedstock for the production of bioenergy products. Moreover, the usage of a photobioreactor (PBR) system improves biomass production and nutrient removal efficiency. Thus, the present review comprehensively discusses the latest studies on Tetraselmis sp. based wastewater treatment processes, focusing on the use of different bioreactor systems to improve pollutant removal efficiency. Moreover, the applications of Tetraselmis sp. biomass, advancement and research gap such as immobilized and co-cultivation have also been discussed. Furthermore, an insight into the harvesting of Tetraselmis biomass, effects of physiological, and nutritional parameters for their growth has also been provided. Thus, the present review will broaden the outlook and help to develop a sustainable and feasible approach for the restoration of the environment.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | | | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
4
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
6
|
Srivastava N, Srivastava M, Mishra PK, Kausar MA, Saeed M, Gupta VK, Singh R, Ramteke PW. Advances in nanomaterials induced biohydrogen production using waste biomass. BIORESOURCE TECHNOLOGY 2020; 307:123094. [PMID: 32249026 DOI: 10.1016/j.biortech.2020.123094] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Recent advances on biohydrogen production using different types of waste biomass with the implementation of nanomaterials are summarized. Inspired by exceptional physicochemical and catalytic properties of nanomaterials, the present review focuses on several approaches including impact of nanomaterials on cellulosic biohydrogen production, possible pretreatment technology, as well as improved enzyme & sugar production in order to enhance the biohydrogen yield. Particularly, impacts of nanomaterial are elaborated in detail on different pathways of biohydrogen production (e.g. dark fermentation, photo-fermentation and hybrid-fermentation) using variety of waste biomass. Additionally, emphases are made on the feasibility of nanomaterials for making the biohydrogen production process more economical and sustainable and hence to develop advanced techniques for biohydrogen production using waste biomass.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Mohd Adnan Kausar
- Department of Biochemistry College of Medicine, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Saeed
- Department of Biology College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia; ERA Chair for Food (By-) Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - P W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences (Formerly Allahabad Agricultural Institute), Allahabad 221007, Uttar Pradesh, India.
| |
Collapse
|
7
|
Baxter BK. Great Salt Lake microbiology: a historical perspective. Int Microbiol 2018; 21:79-95. [PMID: 30810951 PMCID: PMC6133049 DOI: 10.1007/s10123-018-0008-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/28/2022]
Abstract
Over geologic time, the water in the Bonneville basin has risen and fallen, most dramatically as freshwater Lake Bonneville lost enormous volume 15,000-13,000 years ago and became the modern day Great Salt Lake. It is likely that paleo-humans lived along the shores of this body of water as it shrunk to the present margins, and native peoples inhabited the surrounding desert and wetlands in recent times. Nineteenth century Euro-American explorers and pioneers described the geology, geography, and flora and fauna of Great Salt Lake, but their work attracted white settlers to Utah, who changed the lake immeasurably. Human intervention in the 1950s created two large sub-ecosystems, bisected by a railroad causeway. The north arm approaches ten times the salinity of sea water, while the south arm salinity is a meager four times that of the oceans. Great Salt Lake was historically referred to as sterile, leading to the nickname "America's Dead Sea." However, the salty brine is teaming with life, even in the hypersaline north arm. In fact, scientists have known that this lake contains a diversity of microscopic lifeforms for more than 100 years. This essay will explore the stories of the people who observed and researched the salty microbiology of Great Salt Lake, whose discoveries demonstrated the presence of bacteria, archaea, algae, and protozoa that thrive in this lake. These scientists documented the lake's microbiology as the lake changed, with input from human waste and the creation of impounded areas. Modern work on the microbiology of Great Salt Lake has added molecular approaches and illuminated the community structures in various regions, and fungi and viruses have now been described. The exploration of Great Salt Lake by scientists describing these tiny inhabitants of the brine illuminate the larger terminal lake with its many facets, anthropomorphic challenges, and ever-changing shorelines.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT, 84105, USA.
| |
Collapse
|
8
|
Sawyer A, Winkler M. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. PHOTOSYNTHESIS RESEARCH 2017; 134:307-316. [PMID: 28620699 DOI: 10.1007/s11120-017-0409-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 05/10/2023]
Abstract
Ferredoxins are soluble iron sulphur proteins which function as electron donors in a number of metabolic pathways in a broad range of organisms. In photosynthetic organisms, PETF, or ferredoxin 1 (FDX1), is the most studied ferredoxin due to its essential role in photosynthesis, where it transfers electrons from photosystem I to ferredoxin-NADP+ oxidoreductase. However, PETF can also transfer electrons to a large number of other proteins. One important PETF electron acceptor found in green microalgae is the biologically and biotechnologically important [FeFe]-hydrogenase HYDA, which catalyses the production of molecular hydrogen (H2) from protons and electrons. The interaction between PETF and HYDA is of considerable interest, as PETF is the primary electron donor to HYDA and electron supply is one of the main limiting factors for H2 production on a commercial scale. Although there is no three dimensional structure of the PETF-HYDA complex available, protein variants, nuclear magnetic resonance titration studies, molecular dynamics and modelling have provided considerable insight into the residues essential for forming and maintaining the interaction. In this review, we discuss the most recent findings with regard to ferredoxin-HYDA interactions and the evolution of the various Chlamydomonas reinhardtii ferredoxin isoforms. Finally, we provide an outlook on new PETF-based biotechnological approaches for improved H2 production efficiencies.
Collapse
Affiliation(s)
- Anne Sawyer
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Martin Winkler
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| |
Collapse
|
9
|
Oey M, Sawyer AL, Ross IL, Hankamer B. Challenges and opportunities for hydrogen production from microalgae. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1487-99. [PMID: 26801871 PMCID: PMC5066674 DOI: 10.1111/pbi.12516] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 05/11/2023]
Abstract
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2 ) emissions by 50-80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast-track the coordinated development and deployment of efficient cost-effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2 ) is the most advanced CO2 -free fuel and provides a 'common' energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon-based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar-driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next-generation systems and how these fit into an evolving H2 economy.
Collapse
Affiliation(s)
- Melanie Oey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | | | - Ian Lawrence Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
10
|
Davies F, D’Adamo S, Posewitz M. HPLC Analysis of Secreted Organic Acids. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses 2015; 7:3937-53. [PMID: 26193304 PMCID: PMC4517135 DOI: 10.3390/v7072806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm) DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.). First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae). Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes), and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.
Collapse
|
12
|
Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri. PLoS One 2015; 10:e0125324. [PMID: 25927230 PMCID: PMC4416025 DOI: 10.1371/journal.pone.0125324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/19/2015] [Indexed: 01/13/2023] Open
Abstract
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Collapse
Affiliation(s)
- Adam J. Cornish
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robin Green
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Katrin Gärtner
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Saundra Mason
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric L. Hegg
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|