1
|
Spiliotis K, Appali R, Fontes Gomes AK, Payonk JP, Adrian S, van Rienen U, Starke J, Köhling R. Utilising activity patterns of a complex biophysical network model to optimise intra-striatal deep brain stimulation. Sci Rep 2024; 14:18919. [PMID: 39143173 PMCID: PMC11324959 DOI: 10.1038/s41598-024-69456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
A large-scale biophysical network model for the isolated striatal body is developed to optimise potential intrastriatal deep brain stimulation applied to, e.g. obsessive-compulsive disorder. The model is based on modified Hodgkin-Huxley equations with small-world connectivity, while the spatial information about the positions of the neurons is taken from a detailed human atlas. The model produces neuronal spatiotemporal activity patterns segregating healthy from pathological conditions. Three biomarkers were used for the optimisation of stimulation protocols regarding stimulation frequency, amplitude and localisation: the mean activity of the entire network, the frequency spectrum of the entire network (rhythmicity) and a combination of the above two. By minimising the deviation of the aforementioned biomarkers from the normal state, we compute the optimal deep brain stimulation parameters, regarding position, amplitude and frequency. Our results suggest that in the DBS optimisation process, there is a clear trade-off between frequency synchronisation and overall network activity, which has also been observed during in vivo studies.
Collapse
Affiliation(s)
- Konstantinos Spiliotis
- Institute of Mathematics, University of Rostock, Rostock, Germany.
- Laboratory of Mathematics and Informatics (ISCE), Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | | | - Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Simon Adrian
- Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Department of Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Dillon AP, Moslehi S, Brouse B, Keremane S, Philliber S, Griffiths W, Rowland C, Smith JH, Taylor RP. Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes. Bioengineering (Basel) 2024; 11:823. [PMID: 39199781 PMCID: PMC11351692 DOI: 10.3390/bioengineering11080823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Exploring how neurons in the mammalian body interact with the artificial interface of implants can be used to learn about fundamental cell behavior and to refine medical applications. For fundamental and applied research, it is crucial to determine the conditions that encourage neurons to maintain their natural behavior during interactions with non-natural interfaces. Our previous investigations quantified the deterioration of neuronal connectivity when their dendrites deviate from their natural fractal geometry. Fractal resonance proposes that neurons will exhibit enhanced connectivity if an implant's electrode geometry is matched to the fractal geometry of the neurons. Here, we use in vitro imaging to quantify the fractal geometry of mouse retinal neurons and show that they change during interaction with the electrode. Our results demonstrate that it is crucial to understand these changes in the fractal properties of neurons for fractal resonance to be effective in the in vivo mammalian system.
Collapse
Affiliation(s)
- Aiden P. Dillon
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Saba Moslehi
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Bret Brouse
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Saumya Keremane
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Biology, Institute of Neurobiology, University of Oregon, Eugene, OR 97403, USA
| | - Sam Philliber
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Willem Griffiths
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Conor Rowland
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Julian H. Smith
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Richard P. Taylor
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Spiliotis K, Köhling R, Just W, Starke J. Data-driven and equation-free methods for neurological disorders: analysis and control of the striatum network. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1399347. [PMID: 39171120 PMCID: PMC11335688 DOI: 10.3389/fnetp.2024.1399347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
The striatum as part of the basal ganglia is central to both motor, and cognitive functions. Here, we propose a large-scale biophysical network for this part of the brain, using modified Hodgkin-Huxley dynamics to model neurons, and a connectivity informed by a detailed human atlas. The model shows different spatio-temporal activity patterns corresponding to lower (presumably normal) and increased cortico-striatal activation (as found in, e.g., obsessive-compulsive disorder), depending on the intensity of the cortical inputs. By applying equation-free methods, we are able to perform a macroscopic network analysis directly from microscale simulations. We identify the mean synaptic activity as the macroscopic variable of the system, which shows similarity with local field potentials. The equation-free approach results in a numerical bifurcation and stability analysis of the macroscopic dynamics of the striatal network. The different macroscopic states can be assigned to normal/healthy and pathological conditions, as known from neurological disorders. Finally, guided by the equation-free bifurcation analysis, we propose a therapeutic close loop control scheme for the striatal network.
Collapse
Affiliation(s)
- Konstantinos Spiliotis
- Institute of Mathematics, University of Rostock, Rostock, Germany
- Laboratory of Mathematics and Informatics (ISCE), Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Wolfram Just
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Hoffmann C, Cho E, Zalesky A, Di Biase MA. From pixels to connections: exploring in vitro neuron reconstruction software for network graph generation. Commun Biol 2024; 7:571. [PMID: 38750282 PMCID: PMC11096190 DOI: 10.1038/s42003-024-06264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.
Collapse
Affiliation(s)
- Cassandra Hoffmann
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia.
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, Australia
| | - Andrew Zalesky
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Maria A Di Biase
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Stem Cell Disease Modelling Lab, Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
5
|
Spiliotis K, Butenko K, Starke J, van Rienen U, Köhling R. Towards an optimised deep brain stimulation using a large-scale computational network and realistic volume conductor model. J Neural Eng 2024; 20:066045. [PMID: 37988747 DOI: 10.1088/1741-2552/ad0e7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Objective. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target.Approach. We develop a large-scale biophysical network, paired with a realistic volume conductor model, to estimate theoretically efficacious stimulation protocols. Based on previously published anatomically defined structural connectivity, a biophysical basal ganglia-thalamo-cortical neuronal network is constructed using Hodgkin-Huxley dynamics. We define a new biomarker describing the thalamic spatiotemporal activity as a ratio of spiking vs. burst firing. The per cent activation of the different pathways is adapted in the simulation to minimise the differences of the biomarker with respect to its value under healthy conditions.Main results.This neuronal network reproduces spatiotemporal patterns that emerge in Parkinson's disease. Simulations of the fibre per cent activation for the defined biomarker propose desensitisation of pallido-thalamic synaptic efficacy, induced by high-frequency signals, as one possible crucial mechanism for DBS action. Based on this activation, we define both an optimal electrode position and stimulation protocol using pathway activation modelling.Significance. A key advantage of this research is that it combines different approaches, i.e. the spatiotemporal pattern with the electric field and axonal response modelling, to compute the optimal DBS protocol. By correlating the inherent network dynamics with the activation of white matter fibres, we obtain new insights into the DBS therapeutic action.
Collapse
Affiliation(s)
| | - Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Department of Ageing of Individuals and Society, University of Rostock, Rostock, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
6
|
Adegoke MA, Teter O, Meaney DF. Flexibility of in vitro cortical circuits influences resilience from microtrauma. Front Cell Neurosci 2022; 16:991740. [PMID: 36589287 PMCID: PMC9803265 DOI: 10.3389/fncel.2022.991740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Small clusters comprising hundreds to thousands of neurons are an important level of brain architecture that correlates single neuronal properties to fulfill brain function, but the specific mechanisms through which this scaling occurs are not well understood. In this study, we developed an in vitro experimental platform of small neuronal circuits (islands) to probe the importance of structural properties for their development, physiology, and response to microtrauma. Methods Primary cortical neurons were plated on a substrate patterned to promote attachment in clusters of hundreds of cells (islands), transduced with GCaMP6f, allowed to mature until 10-13 days in vitro (DIV), and monitored with Ca2+ as a non-invasive proxy for electrical activity. We adjusted two structural factors-island size and cellular density-to evaluate their role in guiding spontaneous activity and network formation in neuronal islands. Results We found cellular density, but not island size, regulates of circuit activity and network function in this system. Low cellular density islands can achieve many states of activity, while high cellular density biases islands towards a limited regime characterized by low rates of activity and high synchronization, a property we summarized as "flexibility." The injury severity required for an island to lose activity in 50% of its population was significantly higher in low-density, high flexibility islands. Conclusion Together, these studies demonstrate flexible living cortical circuits are more resilient to microtrauma, providing the first evidence that initial circuit state may be a key factor to consider when evaluating the consequences of trauma to the cortex.
Collapse
Affiliation(s)
- Modupe A. Adegoke
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia Teter
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - David F. Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: David F. Meaney,
| |
Collapse
|
7
|
Antonello PC, Varley TF, Beggs J, Porcionatto M, Sporns O, Faber J. Self-organization of in vitro neuronal assemblies drives to complex network topology. eLife 2022; 11:74921. [PMID: 35708741 PMCID: PMC9203058 DOI: 10.7554/elife.74921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent self-organization plays an important role in the formation of specific and stereotyped connectivity patterns in neural circuits. By combining neuronal cultures, and tools with approaches from network neuroscience and information theory, we can study how complex network topology emerges from local neuronal interactions. We constructed effective connectivity networks using a transfer entropy analysis of spike trains recorded from rat embryo dissociated hippocampal neuron cultures between 6 and 35 days in vitro to investigate how the topology evolves during maturation. The methodology for constructing the networks considered the synapse delay and addressed the influence of firing rate and population bursts as well as spurious effects on the inference of connections. We found that the number of links in the networks grew over the course of development, shifting from a segregated to a more integrated architecture. As part of this progression, three significant aspects of complex network topology emerged. In agreement with previous in silico and in vitro studies, a small-world architecture was detected, largely due to strong clustering among neurons. Additionally, the networks developed in a modular topology, with most modules comprising nearby neurons. Finally, highly active neurons acquired topological characteristics that made them important nodes to the network and integrators of modules. These findings leverage new insights into how neuronal effective network topology relates to neuronal assembly self-organization mechanisms.
Collapse
Affiliation(s)
- Priscila C Antonello
- Department of Biochemistry - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Thomas F Varley
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States.,Department of Informatics, Computing, and Engineering, Indiana University, Bloomington, United States
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, United States
| | - Marimélia Porcionatto
- Department of Biochemistry - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Jean Faber
- Department of Neurology and Neurosurgery - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Moslehi S, Rowland C, Smith JH, Watterson WJ, Miller D, Niell CM, Alemán BJ, Perez MT, Taylor RP. Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLoS One 2022; 17:e0265685. [PMID: 35385490 PMCID: PMC8985931 DOI: 10.1371/journal.pone.0265685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Controlled assembly of retinal cells on artificial surfaces is important for fundamental cell research and medical applications. We investigate fractal electrodes with branches of vertically-aligned carbon nanotubes and silicon dioxide gaps between the branches that form repeating patterns spanning from micro- to milli-meters, along with single-scaled Euclidean electrodes. Fluorescence and electron microscopy show neurons adhere in large numbers to branches while glial cells cover the gaps. This ensures neurons will be close to the electrodes’ stimulating electric fields in applications. Furthermore, glia won’t hinder neuron-branch interactions but will be sufficiently close for neurons to benefit from the glia’s life-supporting functions. This cell ‘herding’ is adjusted using the fractal electrode’s dimension and number of repeating levels. We explain how this tuning facilitates substantial glial coverage in the gaps which fuels neural networks with small-world structural characteristics. The large branch-gap interface then allows these networks to connect to the neuron-rich branches.
Collapse
Affiliation(s)
- Saba Moslehi
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Conor Rowland
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Julian H. Smith
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - William J. Watterson
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - David Miller
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, United States of America
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Benjamín J. Alemán
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, United States of America
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, United States of America
| | - Maria-Thereza Perez
- Division of Ophthalmology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- * E-mail: (RPT); (MTP)
| | - Richard P. Taylor
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (RPT); (MTP)
| |
Collapse
|
9
|
Spiliotis K, Starke J, Franz D, Richter A, Köhling R. Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model. BIOLOGICAL CYBERNETICS 2022; 116:93-116. [PMID: 34894291 PMCID: PMC8866393 DOI: 10.1007/s00422-021-00909-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.
Collapse
Affiliation(s)
| | - Jens Starke
- Institute of Mathematics, University of Rostock, 18057 Rostock, Germany
| | - Denise Franz
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Laing CR, Bläsche C, Means S. Dynamics of Structured Networks of Winfree Oscillators. Front Syst Neurosci 2021; 15:631377. [PMID: 33643004 PMCID: PMC7902706 DOI: 10.3389/fnsys.2021.631377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
Winfree oscillators are phase oscillator models of neurons, characterized by their phase response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to study large heterogeneous networks of Winfree oscillators, deriving low-dimensional differential equations which describe the evolution of the expected state of networks of oscillators. We consider the effects of correlations between an oscillator's in-degree and out-degree, and between the in- and out-degrees of an “upstream” and a “downstream” oscillator (degree assortativity). We also consider correlated heterogeneity, where some property of an oscillator is correlated with a structural property such as degree. We finally consider networks with parameter assortativity, coupling oscillators according to their intrinsic frequencies. The results show how different types of network structure influence its overall dynamics.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Christian Bläsche
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Shawn Means
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
11
|
Ludl AA, Soriano J. Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits. Front Comput Neurosci 2020; 14:77. [PMID: 32982710 PMCID: PMC7488194 DOI: 10.3389/fncom.2020.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effective connectivity, in biologically-realistic neuronal networks. We considered μ-sized obstacles placed in mm-sized networks. Three main obstacle shapes were explored, namely crosses, circles and triangles of isosceles profile. They occupied either a small area fraction of the substrate or populated it entirely in a periodic manner. From the point of view of structure, all obstacles promoted short length-scale connections, shifted the in- and out-degree distributions toward lower values, and increased the modularity of the networks. The capacity of obstacles to shape distinct structural traits depended on their density and the ratio between axonal length and substrate diameter. For high densities, different features were triggered depending on obstacle shape, with crosses trapping axons in their vicinity and triangles funneling axons along the reverse direction of their tip. From the point of view of dynamics, obstacles reduced the capacity of networks to spontaneously activate, with triangles in turn strongly dictating the direction of activity propagation. Effective connectivity networks, inferred using transfer entropy, exhibited distinct modular traits, indicating that the presence of obstacles facilitated the formation of local effective microcircuits. Our study illustrates the potential of physical constraints to shape structural blueprints and remodel collective activity, and may guide investigations aimed at mimicking organizational traits of biological neuronal circuits.
Collapse
Affiliation(s)
- Adriaan-Alexander Ludl
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| |
Collapse
|
12
|
Yin C, Xiao X, Balaban V, Kandel ME, Lee YJ, Popescu G, Bogdan P. Network science characteristics of brain-derived neuronal cultures deciphered from quantitative phase imaging data. Sci Rep 2020; 10:15078. [PMID: 32934305 PMCID: PMC7492189 DOI: 10.1038/s41598-020-72013-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022] Open
Abstract
Understanding the mechanisms by which neurons create or suppress connections to enable communication in brain-derived neuronal cultures can inform how learning, cognition and creative behavior emerge. While prior studies have shown that neuronal cultures possess self-organizing criticality properties, we further demonstrate that in vitro brain-derived neuronal cultures exhibit a self-optimization phenomenon. More precisely, we analyze the multiscale neural growth data obtained from label-free quantitative microscopic imaging experiments and reconstruct the in vitro neuronal culture networks (microscale) and neuronal culture cluster networks (mesoscale). We investigate the structure and evolution of neuronal culture networks and neuronal culture cluster networks by estimating the importance of each network node and their information flow. By analyzing the degree-, closeness-, and betweenness-centrality, the node-to-node degree distribution (informing on neuronal interconnection phenomena), the clustering coefficient/transitivity (assessing the “small-world” properties), and the multifractal spectrum, we demonstrate that murine neurons exhibit self-optimizing behavior over time with topological characteristics distinct from existing complex network models. The time-evolving interconnection among murine neurons optimizes the network information flow, network robustness, and self-organization degree. These findings have complex implications for modeling neuronal cultures and potentially on how to design biological inspired artificial intelligence.
Collapse
Affiliation(s)
- Chenzhong Yin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Xiongye Xiao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Valeriu Balaban
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Mikhail E Kandel
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Young Jae Lee
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.,Neuroscience Program, University of Illinois at Urbana Champaign, 208 N Wright St., Urbana, IL, 61801, USA
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90007, USA.
| |
Collapse
|
13
|
Tlaie A, Leyva I, Sendiña-Nadal I. High-order couplings in geometric complex networks of neurons. Phys Rev E 2019; 100:052305. [PMID: 31869909 DOI: 10.1103/physreve.100.052305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/29/2022]
Abstract
We explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where traveling synchronization waves are observed from a first-neighbors-based coupling to evaluate the changes induced when higher-order dynamical interactions are included. We observe that the traveling-wave phenomenon gets enhanced by these interactions, allowing the activity to travel further in the system without generating pathological full synchronization states. This scheme could be a step toward a simple phenomenological modelization of neuroglial networks.
Collapse
Affiliation(s)
- A Tlaie
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Applied Mathematics and Statistics, ETSIT Aeronáuticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - I Leyva
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - I Sendiña-Nadal
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Spontaneous Functional Recovery after Focal Damage in Neuronal Cultures. eNeuro 2019; 7:ENEURO.0254-19.2019. [PMID: 31818830 PMCID: PMC6984807 DOI: 10.1523/eneuro.0254-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/02/2022] Open
Abstract
Damage in biological neuronal networks triggers a complex functional reorganization whose mechanisms are still poorly understood. To delineate this reorganization process, here we investigate the functional alterations of in vitro rat cortical circuits following localized laser ablation. The analysis of the functional network configuration before and after ablation allowed us to quantify the extent of functional alterations and the characteristic spatial and temporal scales along recovery. We observed that damage precipitated a fast rerouting of information flow that restored network’s communicability in about 15 min. Functional restoration was led by the immediate neighbors around trauma but was orchestrated by the entire network. Our in vitro setup exposes the ability of neuronal circuits to articulate fast responses to acute damage, and may serve as a proxy to devise recovery strategies in actual brain circuits. Moreover, this biological setup can become a benchmark to empirically test network theories about the spontaneous recovery in dynamical networks.
Collapse
|
15
|
Faci-Lázaro S, Soriano J, Gómez-Gardeñes J. Impact of targeted attack on the spontaneous activity in spatial and biologically-inspired neuronal networks. CHAOS (WOODBURY, N.Y.) 2019; 29:083126. [PMID: 31472487 DOI: 10.1063/1.5099038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We study the structural and dynamical consequences of damage in spatial neuronal networks. Inspired by real in vitro networks, we construct directed networks embedded in a two-dimensional space and follow biological rules for designing the wiring of the system. As a result, synthetic cultures display strong metric correlations similar to those observed in real experiments. In its turn, neuronal dynamics is incorporated through the Izhikevich model adopting the parameters derived from observation in real cultures. We consider two scenarios for damage, targeted attacks on those neurons with the highest out-degree and random failures. By analyzing the evolution of both the giant connected component and the dynamical patterns of the neurons as nodes are removed, we observe that network activity halts for a removal of 50% of the nodes in targeted attacks, much lower than the 70% node removal required in the case of random failures. Notably, the decrease of neuronal activity is not gradual. Both damage scenarios portray "boosts" of activity just before full silencing that are not present in equivalent random (Erdös-Rényi) graphs. These boosts correspond to small, spatially compact subnetworks that are able to maintain high levels of activity. Since these subnetworks are absent in the equivalent random graphs, we hypothesize that metric correlations facilitate the existence of local circuits sufficiently integrated to maintain activity, shaping an intrinsic mechanism for resilience.
Collapse
Affiliation(s)
- Sergio Faci-Lázaro
- GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jesús Gómez-Gardeñes
- GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
16
|
Baumgarten L, Bornholdt S. Critical excitation-inhibition balance in dense neural networks. Phys Rev E 2019; 100:010301. [PMID: 31499927 DOI: 10.1103/physreve.100.010301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/07/2022]
Abstract
The "edge of chaos" phase transition in artificial neural networks is of renewed interest in light of recent evidence for criticality in brain dynamics. Statistical mechanics traditionally studied this transition with connectivity k as the control parameter and an exactly balanced excitation-inhibition ratio. While critical connectivity has been found to be low in these model systems, typically around k=2, which is unrealistic for natural neural systems, a recent study utilizing the excitation-inhibition ratio as the control parameter found a new, nearly degree independent, critical point when connectivity is large. However, the new phase transition is accompanied by an unnaturally high level of activity in the network. Here we study random neural networks with the additional properties of (i) a high clustering coefficient and (ii) neurons that are solely either excitatory or inhibitory, a prominent property of natural neurons. As a result, we observe an additional critical point for networks with large connectivity, regardless of degree distribution, which exhibits low activity levels that compare well with neuronal brain networks.
Collapse
Affiliation(s)
- Lorenz Baumgarten
- Institut für Theoretische Physik, Universität Bremen, 28759 Bremen, Germany
| | - Stefan Bornholdt
- Institut für Theoretische Physik, Universität Bremen, 28759 Bremen, Germany
| |
Collapse
|
17
|
Argyropoulos G, Kasimatis T, Provata A. Chimera patterns and subthreshold oscillations in two-dimensional networks of fractally coupled leaky integrate-and-fire neurons. Phys Rev E 2019; 99:022208. [PMID: 30934230 DOI: 10.1103/physreve.99.022208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 11/07/2022]
Abstract
We discuss the effects that fractal coupling induces on chimera states in a network of leaky integrate-and-fire (LIF) oscillators arranged in a two-dimensional toroidal geometry. We provide evidence that the introduction of a hierarchical coupling topology in the form of a Sierpinski carpet gives rise to complex spatial structures such as multiple spots, stripe-and-grid chimeras, as well as traveling waves and subthreshold oscillations. Unlike in the case of typical nonlocal connectivity, when tuning the coupling strength to small positive values a spot chimera is formed with internal structure reminiscent of the fractal connectivity scheme. This is in line with previous results for one-dimensional networks, where hierarchical connectivity also induces chimeras with stratified spatial arrangements. In the case of negative coupling, cooperative effects produce subthreshold oscillating regions with traveling active islands crossing through them. Subthreshold oscillations and traveling waves are frequently reported in biological neural network experiments.
Collapse
Affiliation(s)
- G Argyropoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos," GR-15341 Athens, Greece.,School of Electrical and Computer Engineering, National Technical University of Athens, GR-15780 Athens, Greece
| | - T Kasimatis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos," GR-15341 Athens, Greece.,School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR-15780 Athens, Greece
| | - A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos," GR-15341 Athens, Greece
| |
Collapse
|
18
|
Makarov VV, Kirsanov DV, Frolov NS, Maksimenko VA, Li X, Wang Z, Hramov AE, Boccaletti S. Assortative mixing in spatially-extended networks. Sci Rep 2018; 8:13825. [PMID: 30218078 PMCID: PMC6138734 DOI: 10.1038/s41598-018-32160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022] Open
Abstract
We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph's degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures.
Collapse
Affiliation(s)
- Vladimir V Makarov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Daniil V Kirsanov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Nikita S Frolov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
- Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012, Saratov, Russia
| | - Vladimir A Maksimenko
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Xuelong Li
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, Shaanxi, China
| | - Zhen Wang
- School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Alexander E Hramov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia.
- Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012, Saratov, Russia.
| | - Stefano Boccaletti
- CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
19
|
Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, Perc M. Network science of biological systems at different scales: A review. Phys Life Rev 2018; 24:118-135. [DOI: 10.1016/j.plrev.2017.11.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
|
20
|
Uzuntarla M, Barreto E, Torres JJ. Inverse stochastic resonance in networks of spiking neurons. PLoS Comput Biol 2017; 13:e1005646. [PMID: 28692643 PMCID: PMC5524418 DOI: 10.1371/journal.pcbi.1005646] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron's intrinsic dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems.
Collapse
Affiliation(s)
- Muhammet Uzuntarla
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, Zonguldak, Turkey
| | - Ernest Barreto
- Department of Physics and Astronomy and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Joaquin J. Torres
- Department of Electromagnetism and Physics of Matter, and Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Liao X, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev 2017; 77:286-300. [PMID: 28389343 DOI: 10.1016/j.neubiorev.2017.03.018] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field.
Collapse
Affiliation(s)
- Xuhong Liao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Athanasios V Vasilakos
- Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, 97187 Lulea, Sweden
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
22
|
Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat Rev Neurosci 2017; 18:131-146. [PMID: 28148956 DOI: 10.1038/nrn.2016.182] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.
Collapse
Affiliation(s)
- Manuel Schröter
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Edward T Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Road, Fulbourn, Cambridge CB21 5HH, UK
| |
Collapse
|
23
|
Alagapan S, Franca E, Pan L, Leondopulos S, Wheeler BC, DeMarse TB. Structure, Function, and Propagation of Information across Living Two, Four, and Eight Node Degree Topologies. Front Bioeng Biotechnol 2016; 4:15. [PMID: 26973833 PMCID: PMC4770194 DOI: 10.3389/fbioe.2016.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/04/2016] [Indexed: 11/13/2022] Open
Abstract
In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.
Collapse
Affiliation(s)
- Sankaraleengam Alagapan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, FL , USA
| | - Eric Franca
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, FL , USA
| | - Liangbin Pan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, FL , USA
| | - Stathis Leondopulos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, FL , USA
| | - Bruce C Wheeler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of California San Diego, San Diego, CA, USA
| | - Thomas B DeMarse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Pediatric Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Sendiña-Nadal I, Danziger MM, Wang Z, Havlin S, Boccaletti S. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks. Sci Rep 2016; 6:21297. [PMID: 26887684 PMCID: PMC4758035 DOI: 10.1038/srep21297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.
Collapse
Affiliation(s)
- I. Sendiña-Nadal
- Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - M. M. Danziger
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - Z. Wang
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan
| | - S. Havlin
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | - S. Boccaletti
- CNR- Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
- The Italian Embassy in Israel, 25 Hamered st., 68125 Tel Aviv, Israel
| |
Collapse
|
25
|
Schmeltzer C, Kihara AH, Sokolov IM, Rüdiger S. Degree Correlations Optimize Neuronal Network Sensitivity to Sub-Threshold Stimuli. PLoS One 2015; 10:e0121794. [PMID: 26115374 PMCID: PMC4482728 DOI: 10.1371/journal.pone.0121794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
Information processing in the brain crucially depends on the topology of the neuronal connections. We investigate how the topology influences the response of a population of leaky integrate-and-fire neurons to a stimulus. We devise a method to calculate firing rates from a self-consistent system of equations taking into account the degree distribution and degree correlations in the network. We show that assortative degree correlations strongly improve the sensitivity for weak stimuli and propose that such networks possess an advantage in signal processing. We moreover find that there exists an optimum in assortativity at an intermediate level leading to a maximum in input/output mutual information.
Collapse
Affiliation(s)
| | | | | | - Sten Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
de Santos-Sierra D, Sendiña-Nadal I, Leyva I, Almendral JA, Ayali A, Anava S, Sánchez-Ávila C, Boccaletti S. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling. Cytometry A 2014; 87:513-23. [DOI: 10.1002/cyto.a.22591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/27/2014] [Accepted: 10/28/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel de Santos-Sierra
- Centre for Biomedical Technology, Universidad Politécnica de Madrid; Madrid Spain
- Group of Biometrics, Biosignals and Security, Universidad Politécnica de Madrid; Madrid Spain
| | - Irene Sendiña-Nadal
- Centre for Biomedical Technology, Universidad Politécnica de Madrid; Madrid Spain
- Complex Systems Group, Universidad Rey Juan Carlos; Madrid Spain
| | - Inmaculada Leyva
- Centre for Biomedical Technology, Universidad Politécnica de Madrid; Madrid Spain
- Complex Systems Group, Universidad Rey Juan Carlos; Madrid Spain
| | - Juan A. Almendral
- Centre for Biomedical Technology, Universidad Politécnica de Madrid; Madrid Spain
- Complex Systems Group, Universidad Rey Juan Carlos; Madrid Spain
| | - Amir Ayali
- Department of Zoology; Tel Aviv University; Tel Aviv Israel
| | - Sarit Anava
- Department of Zoology; Tel Aviv University; Tel Aviv Israel
- Department of Neurobiology; Wise Faculty of Life Sciences & Sagol School, Tel Aviv University; Tel Aviv Israel
| | - Carmen Sánchez-Ávila
- Group of Biometrics, Biosignals and Security, Universidad Politécnica de Madrid; Madrid Spain
| | - Stefano Boccaletti
- Embassy of Italy in Tel Aviv; Tel Aviv Israel
- CNR-Istituto dei Sistemi Complessi; Florence Italy
| |
Collapse
|
27
|
Emergence of assortative mixing between clusters of cultured neurons. PLoS Comput Biol 2014; 10:e1003796. [PMID: 25188377 PMCID: PMC4154651 DOI: 10.1371/journal.pcbi.1003796] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/06/2014] [Indexed: 11/19/2022] Open
Abstract
The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a 'connectivity backbone' in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.
Collapse
|
28
|
di Volo M, Burioni R, Casartelli M, Livi R, Vezzani A. Heterogeneous mean field for neural networks with short-term plasticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022811. [PMID: 25215785 DOI: 10.1103/physreve.90.022811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 06/03/2023]
Abstract
We report about the main dynamical features of a model of leaky integrate-and-fire excitatory neurons with short-term plasticity defined on random massive networks. We investigate the dynamics by use of a heterogeneous mean-field formulation of the model that is able to reproduce dynamical phases characterized by the presence of quasisynchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks with a sufficiently large average in-degree.
Collapse
Affiliation(s)
- Matteo di Volo
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy and Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1-50019 Sesto Fiorentino, Italy and INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy
| | - Raffaella Burioni
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy and INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy
| | - Mario Casartelli
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy and INFN, Gruppo Collegato di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy
| | - Roberto Livi
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1-50019 Sesto Fiorentino, Italy and Dipartimento di Fisica, Università di Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy and Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10-50019 Sesto Fiorentino, Italy and INFN Sez. Firenze, via Sansone, 1-50019 Sesto Fiorentino, Italy
| | - Alessandro Vezzani
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G.P. Usberti, 7/A-43124, Parma, Italy and S3, CNR Istituto di Nanoscienze, Via Campi, 213A-41125 Modena, Italy
| |
Collapse
|
29
|
Song H, Chen CC, Sun JJ, Lai PY, Chan CK. Reconstruction of network structures from repeating spike patterns in simulated bursting dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012703. [PMID: 25122331 DOI: 10.1103/physreve.90.012703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Repeating patterns of spike sequences from a neuronal network have been proposed to be useful in the reconstruction of the network topology. Reverberations in a physiologically realistic model with various physical connection topologies (from random to scale free) have been simulated to study the effectiveness of the pattern-matching method in the reconstruction of network topology from network dynamics. Simulation results show that functional networks reconstructed from repeating spike patterns can be quite different from the original physical networks; even global properties, such as the degree distribution, cannot always be recovered. However, the pattern-matching method can be effective in identifying hubs in the network. Since the form of reverberations is quite different for networks with and without hubs, the form of reverberations together with the reconstruction by repeating spike patterns might provide a reliable method to detect hubs in neuronal cultures.
Collapse
Affiliation(s)
- Hao Song
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | - Chun-Chung Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | - Jyh-Jang Sun
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium
| | - Pik-Yin Lai
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China and Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
| | - C K Chan
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China and Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of China
| |
Collapse
|