1
|
Shamseldin MM, Read KA, Hall JM, Tuazon JA, Brown JM, Guo M, Gupta YA, Deora R, Oestreich KJ, Dubey P. The adjuvant BcfA activates antigen presenting cells through TLR4 and supports T FH and T H1 while attenuating T H2 gene programming. Front Immunol 2024; 15:1439418. [PMID: 39267766 PMCID: PMC11390363 DOI: 10.3389/fimmu.2024.1439418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Adjuvants added to subunit vaccines augment antigen-specific immune responses. One mechanism of adjuvant action is activation of pattern recognition receptors (PRRs) on innate immune cells. Bordetella colonization factor A (BcfA); an outer membrane protein with adjuvant function, activates TH1/TH17-polarized immune responses to protein antigens from Bordetella pertussis and SARS CoV-2. Unlike other adjuvants, BcfA does not elicit a TH2 response. Methods To understand the mechanism of BcfA-driven TH1/TH17 vs. TH2 activation, we screened PRRs to identify pathways activated by BcfA. We then tested the role of this receptor in the BcfA-mediated activation of bone marrow-derived dendritic cells (BMDCs) using mice with germline deletion of TLR4 to quantify upregulation of costimulatory molecule expression and cytokine production in vitro and in vivo. Activity was also tested on human PBMCs. Results PRR screening showed that BcfA activates antigen presenting cells through murine TLR4. BcfA-treated WT BMDCs upregulated expression of the costimulatory molecules CD40, CD80, and CD86 and produced IL-6, IL-12/23 p40, and TNF-α while TLR4 KO BMDCs were not activated. Furthermore, human PBMCs stimulated with BcfA produced IL-6. BcfA-stimulated murine BMDCs also exhibited increased uptake of the antigen DQ-OVA, supporting a role for BcfA in improving antigen presentation to T cells. BcfA further activated APCs in murine lungs. Using an in vitro TH cell polarization system, we found that BcfA-stimulated BMDC supernatant supported TFH and TH1 while suppressing TH2 gene programming. Conclusions Overall, these data provide mechanistic understanding of how this novel adjuvant activates immune responses.
Collapse
Affiliation(s)
- Mohamed M. Shamseldin
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University-Ain Helwan, Helwan, Egypt
| | - Kaitlin A. Read
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jesse M. Hall
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Tuazon
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jessica M. Brown
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Myra Guo
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Yash A. Gupta
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Rajendar Deora
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kenneth J. Oestreich
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Purnima Dubey
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
3
|
Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics 2022; 14:pharmaceutics14071358. [PMID: 35890254 PMCID: PMC9316852 DOI: 10.3390/pharmaceutics14071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cell lysates (TCLs) are a good immunogenic source of tumor-associated antigens. Since whole necrotic TCLs can enhance the maturation and antigen-presenting ability of dendritic cells (DCs), multiple strategies for the exogenous delivery of TCLs have been investigated as novel cancer immunotherapeutic solutions. The TCL-mediated induction of DC maturation and the subsequent immunological response could be improved by utilizing various material-based carriers. Enhanced antitumor immunity and cancer vaccination efficacy could be eventually achieved through the in vivo administration of TCLs. Therefore, (1) important engineering methodologies to prepare antigen-containing TCLs, (2) current therapeutic approaches using TCL-mediated DC activation, and (3) the significant sequential mechanism of DC-based signaling and stimulation in adaptive immunity are summarized in this review. More importantly, the recently reported developments in biomaterial-based exogenous TCL delivery platforms and co-delivery strategies with adjuvants for effective cancer vaccination and antitumor effects are emphasized.
Collapse
|
4
|
González-Fernández C, Basauri A, Fallanza M, Bringas E, Oostenbrink C, Ortiz I. Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review. J Chem Inf Model 2021; 61:4839-4851. [PMID: 34559524 PMCID: PMC8549069 DOI: 10.1021/acs.jcim.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Lipopolysaccharide
(LPS) is the primary component of the outer
leaflet of Gram-negative bacterial outer membranes. LPS elicits an
overwhelming immune response during infection, which can lead to life-threatening
sepsis or septic shock for which no suitable treatment is available
so far. As a result of the worldwide expanding multidrug-resistant
bacteria, the occurrence and frequency of sepsis are expected to increase;
thus, there is an urge to develop novel strategies for treating bacterial
infections. In this regard, gaining an in-depth understanding about
the ability of LPS to both stimulate the host immune system and interact
with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis
drugs, vaccines and LPS sequestration and detection methods. Molecular
dynamics (MD) simulations, which are understood as being a computational
microscope, have proven to be of significant value to understand LPS-related
phenomena, driving and optimizing experimental research studies. In
this work, a comprehensive review on the methods that can be combined
with MD simulations, recently applied in LPS research, is provided.
We focus especially on both enhanced sampling methods, which enable
the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from
outlining several strategies for surmounting LPS-caused infections,
this work reports the current state-of-the-art of the methods applied
with MD simulations for moving a step forward in the development of
such strategies.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
5
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Wui SR, Ko A, Ryu JI, Sim E, Lim SJ, Park SA, Kim KS, Kim H, Youn H, Lee NG. The Effect of a TLR4 Agonist/Cationic Liposome Adjuvant on Varicella-Zoster Virus Glycoprotein E Vaccine Efficacy: Antigen Presentation, Uptake, and Delivery to Lymph Nodes. Pharmaceutics 2021; 13:pharmaceutics13030390. [PMID: 33804176 PMCID: PMC8001429 DOI: 10.3390/pharmaceutics13030390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adjuvant CIA09, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes and the toll-like receptor 4 agonist de-O-acylated lipooligosaccharide (dLOS), has been shown to enhance antibody and cellular immune responses to varicella-zoster virus (VZV) glycoprotein E (gE), recombinant tuberculosis vaccine antigen, and inactivated Japanese encephalitis vaccine. In this study, we investigated its modes of action using VZV gE as a model antigen. Liposomes adsorbed gE and cooperatively with dLOS promoted endocytosis-mediated cellular uptake of gE by mouse dendritic cells in vitro. CIA09 increased the stability and cellular uptake of the antigen at the muscle site of injection, and induced immune cell recruitment and cytokine and chemokine production, which led to efficient antigen delivery to draining lymph nodes. Mouse bone marrow-derived dendritic cells, pulsed with CIA09-adjuvanted gE, efficiently presented gE to antigen-specific T cells, inducing Th1-type biased immunity, as shown by high IFN-γ production. The data indicate that liposomes and dLOS cooperate in the adjuvant activity of CIA09 by promoting antigen uptake and delivery to lymph nodes as well as antigen presentation to T cells.
Collapse
Affiliation(s)
- Seo Ri Wui
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Ara Ko
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Ji In Ryu
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Eojin Sim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | - Soo Jeong Lim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
| | | | - Kwang Sung Kim
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
- R & D Center, EyeGene, Goyang 10551, Korea;
| | - Ha Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.K.); (H.Y.)
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyewon Youn
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (H.K.); (H.Y.)
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Korea
| | - Na Gyong Lee
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea; (S.R.W.); (A.K.); (J.I.R.); (E.S.); (S.J.L.); (K.S.K.)
- Correspondence: ; Tel.: +82-2-3408-3765; Fax: +82-2-3408-3334
| |
Collapse
|
7
|
Shirmohammadi M, Soleimanjahi H, Kianmehr Z, Karimi H, Kaboudanian Ardestani S. Brucella abortus RB51 lipopolysaccharide influence as an adjuvant on the therapeutic efficacy of HPV16 L1 and HPV16 E7 DNA vaccines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:92-97. [PMID: 33643576 PMCID: PMC7894634 DOI: 10.22038/ijbms.2020.51043.11608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Human papillomavirus (HPV) is a primary contributing agent of cervical cancer. Eradication of HPV-related infections requires therapeutic strategies. We used Brucella abortus RB51 rough lipopolysaccharide (R-LPS) as an adjuvant along with two HPV16 therapeutic DNA vaccines, pcDNA3-E7 and pcDNA3-L1, for improving DNA vaccine efficacy. MATERIALS AND METHODS For evaluation of the B. abortus LPS adjuvant efficacy in combination with DNA vaccines to induce cellular immune responses, C57BL/6 mice were immunized with the DNA vaccines, with or without R-LPS adjuvant. IFN-γ and IL-4 cytokines assay was carried out for assessment of cellular and humoral immune responses. RESULTS Findings indicated that vaccination with pcDNA3-E7 or pcDNA3-L1 alone could induce strong cellular immune responses, but stronger antigen-specific T-cell immune responses were shown by co-administration of HPV16 E7 and HPV16 L1 DNA vaccines along with R-LPS adjuvant. CONCLUSION Overall, B. abortus R-LPS through enhancement of T-cell immune responses can be considered an efficient vaccine adjuvant in future studies and trials.
Collapse
Affiliation(s)
- Masoumeh Shirmohammadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
8
|
Choi YR, Kim KS, Bandu R, Kim H, Lee JE, Shin B, Cho YJ, Park JM, Lee H, Kim KP. Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry‐based Structural Analysis of Deacylated Lipooligosaccharides From Escherichia coli. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yu Ri Choi
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient MaterialsKyung Hee University Yongin 17104 Republic of Korea
| | - Kwang Sung Kim
- R&D center, EyeGene Goyang 10551 Republic of Korea
- Department of Integrated Bioscience and BiotechnologySejong University Seoul 05006 Republic of Korea
| | - Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient MaterialsKyung Hee University Yongin 17104 Republic of Korea
| | - Hyoseon Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient MaterialsKyung Hee University Yongin 17104 Republic of Korea
| | - Jae Eun Lee
- R&D center, EyeGene Goyang 10551 Republic of Korea
| | | | - Yang Je Cho
- R&D center, EyeGene Goyang 10551 Republic of Korea
| | - Jong Moon Park
- College of PharmacyGachon University Incheon 21936 Republic of Korea
| | - Hookeun Lee
- College of PharmacyGachon University Incheon 21936 Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient MaterialsKyung Hee University Yongin 17104 Republic of Korea
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Gregg KA, Harberts E, Gardner FM, Pelletier MR, Cayatte C, Yu L, McCarthy MP, Marshall JD, Ernst RK. A lipid A-based TLR4 mimetic effectively adjuvants a Yersinia pestis rF-V1 subunit vaccine in a murine challenge model. Vaccine 2018; 36:4023-4031. [PMID: 29861179 DOI: 10.1016/j.vaccine.2018.05.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
Vaccination can significantly reduce worldwide morbidity and mortality to infectious diseases, thereby reducing the health burden as a result of microbial infections. Effective vaccines contain three components: a delivery system, an antigenic component of the pathogen, and an adjuvant. With the growing use of purely recombinant or synthetic antigens, there is a need to develop novel adjuvants that enhance the protective efficacy of a vaccine against infection. Using a structure-activity relationship (SAR) model, we describe here the synthesis of a novel TLR4 ligand adjuvant compound, BECC438, by bacterial enzymatic combinatorial chemistry (BECC). This compound was identified using an in vitro screening pipeline consisting of (i) NFκB activation and cytokine production by immortalized cell lines, (ii) cytokine production by primary human PBMCs, and (iii) upregulation of surface costimulatory markers by primary human monocyte-derived dendritic cells. Using this SAR screening regimen, BECC438 was shown to produce an innate immune activation profile comparable to the well-characterized TLR4 agonist adjuvant compound, phosphorylated hexa-acyl disaccharide (PHAD). To evaluate the in vivo adjuvant activity of BECC438, we used the known protective Yersinia pestis (Yp) antigen, rF1-V, in a murine prime-boost vaccination schedule followed by lethal challenge. In addition to providing protection from lethal challenge, BECC438 stimulated production of higher levels of rF1-V-specific total IgG as compared to PHAD after both prime and boost vaccinations. Similar to PHAD, BECC438 elicited a balanced IgG1/IgG2c response, indicative of active TH2/TH1-driven immunity. These data demonstrate that the novel BECC-derived TLR4L adjuvant, BECC438, elicits cytokine profiles in vitro similar to PHAD, induces high antigen-specific immune titers and a TH1-associated IgG2c immune titer skew, and protects mice against a lethal Yp challenge.
Collapse
Affiliation(s)
- Kelsey A Gregg
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Erin Harberts
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Francesca M Gardner
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mark R Pelletier
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Li Yu
- Statistical Sciences, MedImmune, Gaithersburg, MD, USA
| | | | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA.
| |
Collapse
|
11
|
Comparison of the adjuvanticity of two adjuvant formulations containing de-O-acylated lipooligosaccharide on Japanese encephalitis vaccine in mice. Arch Pharm Res 2017; 41:219-228. [DOI: 10.1007/s12272-017-0985-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
|
12
|
A De- O-acylated Lipooligosaccharide-Based Adjuvant System Promotes Antibody and Th1-Type Immune Responses to H1N1 Pandemic Influenza Vaccine in Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3713656. [PMID: 27891512 PMCID: PMC5116492 DOI: 10.1155/2016/3713656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
Vaccine adjuvants are agents that are used to promote immune responses to vaccine antigens and thereby to enhance the protective efficacy of the vaccines. In this study, we investigated the adjuvant activity of CIA06, an adjuvant system that is composed of a toll-like receptor 4 agonist de-O-acylated lipooligosaccharide (dLOS) and aluminum hydroxide, on the H1N1 pandemic influenza vaccine Greenflu-S® in mice. CIA06 significantly enhanced influenza-specific serum IgG, hemagglutination-inhibition, and virus-neutralizing antibody titers, which eliminated vaccine dose-dependency in the antibody response. Mice immunized with the CIA06-adjuvanted Greenflu-S showed Th1-type-predominant cytokine profiles, and both CD4+ and CD8+ T cell responses were induced. Immunization of mice with the CIA06-adjuvanted vaccine reduced the mortality and morbidity of mice upon lethal challenges with influenza virus, and no excessive inflammatory responses were observed in the lung tissues of the immunized mice after viral infection. These data suggest that the dLOS-based adjuvant system CIA06 can be used to promote the immune responses to influenza vaccine or to spare antigen dose without causing harmful inflammatory responses.
Collapse
|
13
|
Contreras M, Moreno-Cid JA, Domingos A, Canales M, Díez-Delgado I, Pérez de la Lastra JM, Sánchez E, Merino O, Zavala RL, Ayllón N, Boadella M, Villar M, Gortázar C, de la Fuente J. Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin-Anaplasma marginale MSP1a chimeric antigen. Ticks Tick Borne Dis 2015. [PMID: 26219233 DOI: 10.1016/j.ttbdis.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ticks are vectors of diseases that affect humans and animals worldwide. Tick vaccines have been proposed as a cost-effective and environmentally sound alternative for tick control. Recently, the Rhipicephalus microplus Subolesin (SUB)-Anaplasma marginale MSP1a chimeric antigen was produced in Escherichia coli as membrane-bound and exposed protein and used to protect vaccinated cattle against tick infestations. In this research, lipidomics and proteomics characterization of the E. coli membrane-bound SUB-MSP1a antigen showed the presence of components with potential adjuvant effect. Furthermore, vaccination with membrane-free SUB-MSP1a and bacterial membranes containing SUB-MSP1a showed that bacterial membranes enhance the immunogenicity of the SUB-MSP1a antigen in animal models. R. microplus female ticks were capillary-fed with sera from pigs orally immunized with membrane-free SUB, membrane bound SUB-MSP1a and saline control. Ticks ingested antibodies added to the blood meal and the effect of these antibodies on reduction of tick weight was shown for membrane bound SUB-MSP1a but not SUB when compared to control. Using the simple and cost-effective process developed for the purification of membrane-bound SUB-MSP1a, endotoxin levels were within limits accepted for recombinant vaccines. These results provide further support for the development of tick vaccines using E. coli membranes exposing chimeric antigens such as SUB-MSP1a.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Juan A Moreno-Cid
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Ana Domingos
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Mario Canales
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Iratxe Díez-Delgado
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - José M Pérez de la Lastra
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Emilio Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Octávio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.
| | - Rigoberto López Zavala
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000 Ciudad Victoria, Tamaulipas, Mexico.
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Mariana Boadella
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
14
|
Díaz-Zúñiga J, Melgar-Rodríguez S, Alvarez C, Monasterio G, Benítez A, Ciuchi P, Díaz C, Mardones J, Escobar A, Sanz M, Vernal R. T-lymphocyte phenotype and function triggered by Aggregatibacter actinomycetemcomitans is serotype-dependent. J Periodontal Res 2015; 50:824-35. [PMID: 25824938 DOI: 10.1111/jre.12270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Based on lipopolysaccharide (LPS) antigenicity, different Aggregatibacter actinomycetemcomitans serotypes have been described. Serotype b strains have demonstrated a stronger capacity to trigger cytokine production on dendritic cells (DCs). As DCs regulate the development of T-lymphocyte lineages, the objective of this investigation was to study the response of T lymphocytes after being stimulated with autologous DCs primed with different bacterial strains belonging to the most prevalent serotypes of A. actinomycetemcomitans in humans: a-c. MATERIAL AND METHODS Human DCs were primed with increasing multiplicity of infection (10(-1) -10(2) ) or the purified LPS (10-50 ng/mL) of A. actinomycetemcomitans serotypes a-c and then used to stimulate autologous naïve CD4(+) T lymphocytes. The T-helper (Th) type 1, Th2, Th17 and T-regulatory transcription factors T-bet, GATA-3, RORC2 and Foxp3, which are the master-switch genes implied in their specific differentiation, as well as T-cell phenotype-specific cytokine patterns were quantified by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, the intracellular expression of T-bet/interferon-γ, GATA-3/interleukin-4, RORC2/interleukin-17A and Foxp3/transforming growth factor-β1 was analysed by double staining and flow cytometry. RESULTS All the A. actinomycetemcomitans serotypes led to T-lymphocyte activation; however, when T lymphocytes were stimulated with DCs primed with the A. actinomycetemcomitans serotype b strain or their purified LPS, higher levels of Th1- and Th17-associated transcription factors and cytokines were detected compared with similar experiments with the other serotypes. CONCLUSION These results demonstrate that serotype b of A. actinomycetemcomitans has a higher capacity of trigger Th1 and Th17 phenotype and function and it was demonstrated that their LPS is a more potent immunogen compared with the other serotypes.
Collapse
Affiliation(s)
- J Díaz-Zúñiga
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - S Melgar-Rodríguez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - C Alvarez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - G Monasterio
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - A Benítez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - P Ciuchi
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - C Díaz
- Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - J Mardones
- Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - A Escobar
- Dental Sciences Institute, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - M Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| | - R Vernal
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
15
|
Kim KS, Park SA, Ko KN, Yi S, Cho YJ. Current status of human papillomavirus vaccines. Clin Exp Vaccine Res 2014; 3:168-75. [PMID: 25003090 PMCID: PMC4083069 DOI: 10.7774/cevr.2014.3.2.168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is a malignant neoplasm arising from cells that originate in the cervix uteri. It is the second most prevalent cancer among women. It can have several causes; an infection with some type of human papillomavirus (HPV) is the greatest risk factor for cervical cancer. Over 100 types of HPVs have been identified, and more than 40 types of HPVs are typically transmitted through sexual contact and infect the anogenital region. Among these, a number of HPVs types, containing types 16 and 18, are classified as "high-risk" HPVs that can cause cervical cancer. The HPVs vaccine prevents infection with certain species of HPVs associated with the development of cervical cancer, genital warts, and some less common cancers. Two HPVs vaccines are currently on the global market: quadrivalent HPVs vaccine and bivalent HPV vaccine that use virus-like particles as a vaccine antigen. This review discusses the current status of HPVs vaccines on the global market, clinical trials, and the future of HPVs vaccine development.
Collapse
|
16
|
Wang X, Quinn PJ, Yan A. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 2014; 90:408-27. [PMID: 24838025 PMCID: PMC4402001 DOI: 10.1111/brv.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|