1
|
Huang Y, Zhu Z, Li W, Ge Y, Li Y, Wang J, Peng X, Lin L, Li J, Liu CY, Li L. ELK4 exerts opposite roles in cytokine/chemokine production and degranulation in activated mast cells. Front Immunol 2023; 14:1171380. [PMID: 37529050 PMCID: PMC10389778 DOI: 10.3389/fimmu.2023.1171380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/14/2023] [Indexed: 08/03/2023] Open
Abstract
The proliferative potential of mast cells after activation for 3-4h was found to be decreased, which suggests that mast cell degranulation and cell proliferation are differentially regulated. ELK4, a member of the ternary complex factor (TCF) subfamily of Ets transcription factors, is one of the downstream effectors of MAPK signaling that is critical for cell proliferation. And Elk4 has been identified to be vital for macrophage activation in response to zymosan and the transcriptional response to 12-O-tetrade canoyl phorbol-13-acetate (TPA) stimulation in fibroblast. However, the effect of ELK4 on the mast cell transcriptional response to FcϵRI and GPCR mediated activation and its potential functional significance in mast cells remain unclear. Here, we showed that ELK4 expression is downregulated in activated mast cells. Elk4 knockout suppresses cell proliferation and impedes the cell cycle in bone marrow-derived mast cells (BMMCs), which is associated with decreased transcription of cell cycle genes. Additionally, the transcriptional activation of cytokines and chemokines is diminished while mast cell degranulation is enhanced in Elk4 knockout BMMCs. Mechanistically, ELK4 might positively modulate Hdc, Ccl3 and Ccl4 transcription by interacting with MITF and negatively regulate the transcription of degranulation-related genes by complexing with SIRT6. Overall, our study identifies a new physiological role of the transcription factor ELK4 in mast cell proliferation and activation.
Collapse
Affiliation(s)
- Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhehui Zhu
- Department of Colorectal Surgery, Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Leyden GM, Greenwood MP, Gaborieau V, Han Y, Amos CI, Brennan P, Murphy D, Davey Smith G, Richardson TG. Disentangling the aetiological pathways between body mass index and site-specific cancer risk using tissue-partitioned Mendelian randomisation. Br J Cancer 2023; 128:618-625. [PMID: 36434155 PMCID: PMC9938133 DOI: 10.1038/s41416-022-02060-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.
Collapse
Affiliation(s)
- Genevieve M Leyden
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK.
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
| | - Michael P Greenwood
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
3
|
A Fully-Human Antibody Specifically Targeting a Membrane-Bound Fragment of CADM1 Potentiates the T Cell-Mediated Death of Human Small-Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23136895. [PMID: 35805896 PMCID: PMC9266846 DOI: 10.3390/ijms23136895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1–4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.
Collapse
|
4
|
High-valency Anti-CD99 Antibodies Toward the Treatment of T Cell Acute Lymphoblastic Leukemia. J Mol Biol 2022; 434:167402. [PMID: 34958778 PMCID: PMC8897262 DOI: 10.1016/j.jmb.2021.167402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that currently requires intensive chemotherapy. While childhood T-ALL is associated with high cure rates, adult T-ALL is not, and both are associated with significant short- and long-term morbidities. Thus, less toxic and effective strategies to treat T-ALL are needed. CD99 is overexpressed on T-ALL blasts at diagnosis and at relapse. Although targeting CD99 with cytotoxic antibodies has been proposed, the molecular features required for their activity are undefined. We identified human antibodies that selectively bound to the extracellular domain of human CD99, and the most potent clone, 10A1, shared an epitope with a previously described cytotoxic IgM antibody. We engineered clone 10A1 in bivalent, trivalent, tetravalent, and dodecavalent formats. Increasing the antibody valency beyond two had no effects on binding to T-ALL cells. In contrast, a valency of ≥3 was required for cytotoxicity, suggesting a mechanism of action in which an antibody clusters ≥3 CD99 molecules to induce cytotoxicity. We developed a human IgG-based tetravalent version of 10A1 that exhibited cytotoxic activity to T-ALL cells but not to healthy peripheral blood cells. The crystal structure of the 10A1 Fab in complex with a CD99 fragment revealed that the antibody primarily recognizes a proline-rich motif (PRM) of CD99 in a manner reminiscent of SH3-PRM interactions. This work further validates CD99 as a promising therapeutic target in T-ALL and defines a pathway toward the development of a selective therapy against T-ALL.
Collapse
|
5
|
Yuan J, Kihara T, Kimura N, Hashikura Y, Ohkouchi M, Isozaki K, Takahashi T, Nishida T, Ito A, Hirota S. Differential Expression of CADM1 in Gastrointestinal Stromal Tumors of Different Sites and with Different Gene Abnormalities. Pathol Oncol Res 2021; 27:602008. [PMID: 34257559 PMCID: PMC8262239 DOI: 10.3389/pore.2021.602008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Gastrointestinal stromal tumor (GIST), the most common mesenchymal tumor of the human gastrointestinal tract, differentiating toward the interstitial cell of Cajal (ICC), arises predominantly in the stomach and small intestine. Small intestinal GISTs appear to have worse prognosis than gastric GISTs. In a pilot study of a cDNA expression chip using several GISTs, we found that Cell Adhesion Molecule 1 (CADM1), which could contribute to tumor growth and infiltration, is expressed more strongly in small intestinal GISTs than gastric GISTs. In the present study, we examined CADM1 expression in GISTs of different sites and with different gene abnormalities using a large number of gastric and small intestinal GISTs. First, immunoblotting confirmed significantly higher CADM1 expression in small intestinal GISTs with exon 11 c-kit mutation than gastric GISTs with exon 11 c-kit mutation. Real-time PCR also revealed that small intestinal GISTs with exon 11 c-kit mutation showed significantly higher CADM1 mRNA than gastric GISTs with exon 11 c-kit mutation. Although most small intestinal GISTs showed high CADM1 mRNA expression regardless of gene abnormality types, different CADM1 expression was detected between gastric GISTs with c-kit mutation and those with PDGFRA mutation. Immunohistochemistry showed that many small intestinal GISTs were CADM1-positive but most gastric GISTs CADM1-negative or -indefinite. In the normal gastric and small intestinal walls, immunoreactivity of CADM1 was detected only in nerves, but neither in gastric ICCs nor small intestinal ICCs, indicating that the high CADM1expression in small intestinal GISTs might be acquired during tumorigenesis. Different CADM1 expression between gastric and small intestinal GISTs might be related to different prognoses between them. Further functional experiments are needed to elucidate the role of CADM1 on GIST biology, and there is a possibility that targeting therapy against CADM1 has a preventive effect for tumor spreading in small intestinal GISTs.
Collapse
Affiliation(s)
- Jiayin Yuan
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuka Hashikura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mizuka Ohkouchi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koji Isozaki
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Takahashi
- Departtment of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshirou Nishida
- Japan Community Healthcare Organization (JCHO) Osaka Hospital, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
6
|
Srebotnik Kirbis I, Prosen L, Strojan Flezar M. Time-related changes in cell morphology and biomarker immunoreactivity for cells stored in a buffer-based cell medium. Cytopathology 2021; 32:513-518. [PMID: 33861498 DOI: 10.1111/cyt.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Buffer-based cell media (BBCM) are a valuable tool in the post-collection processing of cytology samples, though with poorly defined effects on cell properties. In this study, time-related changes in cell morphology and biomarker immunoreactivity were evaluated for cells stored at room temperature in a BBCM prepared with bovine serum albumin (BSA) and ethylene diamine tetraacetic acid (EDTA). METHODS Cytospins were prepared at five consecutive 24-hour intervals (0, 24, 48, 72, 96) from three human cell lines (MCF7, SK-MEL-28, FaDu) suspended and stored in BBCM. Preservation of cell morphology was evaluated on Papanicolaou-stained cytospins from the percentages of apoptotic cells. Preservation of immunoreactivity was evaluated for cytokeratins, oestrogen receptors, Ki67, and melanoma markers from the percentages of cells positive for the corresponding immunocytochemical reactions. RESULTS Cell morphology was well preserved for the majority of cells of the three lines stored for 24 and 48 hours (93%, 97%, 98% and 62%, 81%, 88%, respectively), while the majority of cells were apoptotic after 72 and 96 hours (70%, 47%, 39% and 77%, 70%, 59%, respectively). The immunoreactivity of cytokeratins remained unchanged during the entire 96 hours, while that of melanoma markers (S100, HMB45, Melan-A) decreased by 27%, 2%, and 3%, respectively. The immunoreactivity of oestrogen receptors and Ki67 decreased by 29% and 17% after the first 24 hours, and was completely lost after 96 hours. CONCLUSIONS A BBCM with the addition of BSA and EDTA facilitates good preservation of cell morphology and immunoreactivity of biomarkers for up to 48 hours at room temperature.
Collapse
Affiliation(s)
- Irena Srebotnik Kirbis
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Lara Prosen
- Lek Pharmaceuticals d.d., Sandoz Development Center, Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Sawada Y, Mashima E, Saito-Sasaki N, Nakamura M. The Role of Cell Adhesion Molecule 1 (CADM1) in Cutaneous Malignancies. Int J Mol Sci 2020; 21:E9732. [PMID: 33419290 PMCID: PMC7766610 DOI: 10.3390/ijms21249732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion ability is one of the components to establish cell organization and shows a great contribution to human body construction consisting of various types of cells mixture to orchestrate tissue specific function. The cell adhesion molecule 1 (CADM1) is a molecule of cell adhesion with multiple functions and has been identified as a tumor suppressor gene. CADM1 has multifunctions on the pathogenesis of malignancies, and other normal cells such as immune cells. However, little is known about the function of CADM1 on cutaneous cells and cutaneous malignancies. CADM1 plays an important role in connecting cells with each other, contacting cells to deliver their signal, and acting as a scaffolding molecule for other immune cells to develop their immune responses. A limited number of studies reveal the contribution of CADM1 on the development of cutaneous malignancies. Solid cutaneous malignancies, such as cutaneous squamous cell carcinoma and malignant melanoma, reduce their CADM1 expression to promote the invasion and metastasis of the tumor. On the contrary to these cutaneous solid tumors except for Merkel cell carcinoma, cutaneous lymphomas, such as adult-T cell leukemia/lymphoma, mycosis fungoides, and Sézary syndrome, increase their CADM1 expression for the development of tumor environment. Based on the role of CADM1 in the etiology of tumor development, the theory of CADM1 contribution will desirably be applied to skin tumors according to other organ malignancies, however, the characteristics of skin as a multicomponent peripheral organ should be kept in mind to conclude their prognoses.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (E.M.); (N.S.-S.); (M.N.)
| | | | | | | |
Collapse
|
8
|
Pastwińska J, Żelechowska P, Walczak-Drzewiecka A, Brzezińska-Błaszczyk E, Dastych J. The Art of Mast Cell Adhesion. Cells 2020; 9:E2664. [PMID: 33322506 PMCID: PMC7764012 DOI: 10.3390/cells9122664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion is one of the basic phenomena occurring in a living organism, affecting many other processes such as proliferation, differentiation, migration, or cell viability. Mast cells (MCs) are important elements involved in defending the host against various pathogens and regulating inflammatory processes. Due to numerous mediators, they are contributing to the modulation of many basic cellular processes in a variety of cells, including the expression and functioning of different adhesive molecules. They also express themselves many adhesive proteins, including ICAM-1, ICAM-3, VCAM-1, integrins, L-selectin, E-cadherin, and N-cadherin. These molecules enable MCs to interact with other cells and components of the extracellular matrix (ECM), creating structures such as adherens junctions and focal adhesion sites, and triggering a signaling cascade. A thorough understanding of these cellular mechanisms can create a better understanding of MC biology and reveal new goals for MC targeted therapy. This review will focus on the current knowledge of adhesion mechanisms with the involvement of MCs. It also provides insight into the influence of MCs or MC-derived mediators on the adhesion molecule expression in different cells.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| |
Collapse
|
9
|
Ozpinar EW, Frey AL, Arthur GK, Mora-Navarro C, Biehl A, Snider DB, Cruse G, Freytes DO. Dermal Extracellular Matrix-Derived Hydrogels as an In Vitro Substrate to Study Mast Cell Maturation. Tissue Eng Part A 2020; 27:1008-1022. [PMID: 33003982 DOI: 10.1089/ten.tea.2020.0142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MCs) are pro-inflammatory tissue-resident immune cells that play a key role in inflammation. MCs circulate in peripheral blood as progenitors and undergo terminal differentiation in the tissue microenvironment where they can remain for many years. This in situ maturation results in tissue- and species-specific MC phenotypes, culminating in significant variability in response to environmental stimuli. There are many challenges associated with studying mature tissue-derived MCs, particularly in humans. In cases where cultured MCs are able to differentiate in two-dimensional in vitro cultures, there remains an inability for full maturation. Extracellular matrix (ECM) scaffolds provide for a more physiologically relevant environment for cells in vitro and have been shown to modulate the response of other immune cells such as T cells, monocytes, and macrophages. To improve current in vitro testing platforms of MCs and to assess future use of ECM scaffolds for MC regulation, we studied the in vitro response of human MCs cultured on decellularized porcine dermis hydrogels (dermis extracellular matrix hydrogel [dECM-H]). This study investigated the effect of dECM-H on cellular metabolic activity, cell viability, and receptor expression compared to collagen type I hydrogel (Collagen-H). Human MCs showed different metabolic activity when cultured in the dECM-H and also upregulated immunoglobulin E (IgE) receptors associated with MC maturation/activation compared to collagen type I. These results suggest an overall benefit in the long-term culture of human MCs in the dECM-H compared to Collagen-H providing important steps toward a model that is more representative of in vivo conditions. Graphical abstract [Formula: see text] Impact statement Mast cells (MCs) are difficult to culture in vitro as current culture conditions and substrates fail to promote similar phenotypic features observed in vivo. Extracellular matrix (ECM)-based biomaterials offer three-dimensional, tissue-specific environments that more closely resemble in vivo conditions. Our study explores the use of dermal ECM hydrogels for MC culture and shows significant upregulation of metabolic activity, cell viability, and gene expression of markers associated with MC maturation or activation compared to collagen type I-hydrogel and tissue culture plastic controls at 7 days. These results are among the first to describe MC behavior in response to ECM hydrogels.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Greer K Arthur
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Population Heath and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Camilo Mora-Navarro
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andreea Biehl
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Douglas B Snider
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Tang R, Liu X, Peng Y, Ju W, Hao W, Peng X, Chen R. Nectin-like molecule 2, a necessary sexual maturation regulator, participates in congenital hypogonadotropic hypogonadism. Gene 2020; 754:144885. [PMID: 32535046 DOI: 10.1016/j.gene.2020.144885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Congenital hypogonadotropic hypogonadism (CHH) is a rare genetically heterogeneous disorder. We aimed to determine the prevalence and pathogenesis of NECL2 (Nectin-like molecule 2) variants in a cohort of female patients with CHH. METHODS We sequenced and determined the prevalence of NECL2 variants in 68 female patients with CHH and 243 healthy controls collected from an academic medical center. Further cellular and animal studies were performed to verify the pathogenicity of the mutations. Necl2 knockout female mice were generated, and their puberty development was observed. RESULTS A novel NECL2 variant (c.1052_1060del, p.Thr351_Thr353del) was detected in 4 of 68 (5.9%) patients with CHH. Its prevalence was significantly higher in CHH patients than in healthy controls (0%). At the cellular level, the necl2 variant leads to a decrease in gonadotropin-releasing hormone. In animal models, we found that the Necl2 protein was expressed in the hypothalamus, especially in the ventromedial hypothalamic nucleus of mice. Necl2 knockout female mice showed delayed puberty and an irregular estrous cycle, consistent with CHH patient phenotypes. CONCLUSIONS Our findings predict that NECL2 may be a new candidate gene for CHH and that the NECL2 protein plays a critical role in the progression of puberty development.
Collapse
Affiliation(s)
- Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, 650118 Kunming, China
| | - Yajing Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Wenyi Ju
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Hao
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, 650118 Kunming, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
11
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
12
|
Yadav VK, Lee TY, Hsu JBK, Huang HD, Yang WCV, Chang TH. Computational analysis for identification of the extracellular matrix molecules involved in endometrial cancer progression. PLoS One 2020; 15:e0231594. [PMID: 32315343 PMCID: PMC7173926 DOI: 10.1371/journal.pone.0231594] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrence and poorly differentiated (grade 3 and above) and atypical cell type endometrial cancer (EC) have poor prognosis outcome. The mechanisms and characteristics of recurrence and distal metastasis of EC remain unclear. The extracellular matrix (ECM) of the reproductive tract in women undergoes extensive structural remodelling changes every month. Altered ECMs surrounding cells were believed to play crucial roles in a cancer progression. To decipher the associations between ECM and EC development, we generated a PAN-ECM Data list of 1516 genes including ECM molecules (ECMs), synthetic and degradation enzymes for ECMs, ECM receptors, and soluble molecules that regulate ECM and used RNA-Seq data from The Cancer Genome Atlas (TCGA) for the studies. The alterations of PAN-ECM genes by comparing the RNA-Seq expressions profiles of EC samples which have been grouped as tumorigenesis and metastasis group based on their pathological grading were identified. Differential analyses including functional enrichment, co-expression network, and molecular network analysis were carried out to identify the specific PAN-ECM genes that may involve in the progression of EC. Eight hundred and thirty-one and 241 PAN-ECM genes were significantly involved in tumorigenesis (p-value <1.571e-15) and metastasis (p-value <2.2e-16), respectively, whereas 140 genes were in the intersection of tumorigenesis and metastasis. Interestingly, 92 of the 140 intersecting PAN-ECM genes showed contrasting fold changes between the tumorigenesis and metastasis datasets. Enrichment analysis for the contrast PAN-ECM genes indicated pathways such as GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways were activated in metastasis but inhibited in tumorigenesis. The significantly activated ECM and ECM associated genes in GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways may play crucial roles in metastasis of EC. Our study provides a better understanding of the etiology and the progression of EC.
Collapse
Affiliation(s)
- Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Wei-Chung Vivian Yang
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| |
Collapse
|
13
|
Magadmi R, Meszaros J, Damanhouri ZA, Seward EP. Secretion of Mast Cell Inflammatory Mediators Is Enhanced by CADM1-Dependent Adhesion to Sensory Neurons. Front Cell Neurosci 2019; 13:262. [PMID: 31275114 PMCID: PMC6591473 DOI: 10.3389/fncel.2019.00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Judit Meszaros
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Reichard A, Asosingh K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytometry A 2018; 95:219-226. [PMID: 30523671 DOI: 10.1002/cyto.a.23690] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Preparing a single cell suspension is a critical step in any solid tissue flow cytometry experiment. Tissue dissection, enzymatic digestion, and mechanical dissociation are three significant steps leading to the degradation of the extracellular matrix and the isolation of single cells, allowing the generation of high-quality flow cytometry data. Cells and the extracellular matrix contain various proteins and other structures which must be considered when designing a tissue digestion protocol to preserve the viability of cells and the presence of relevant antigens while digesting matrix components and cleaving cell-cell junctions. Evaluation of the single cell suspension is essential before proceeding with the labeling of the cells as high viability and absence of cell debris and aggregates are critical for flow cytometry. The information presented should be used as a general guide of steps to consider when preparing a single cell suspension from solid tissues for flow cytometry experiments. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Andrew Reichard
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio.,Flow Cytometry Core, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
17
|
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 2017; 144:3177-3188. [PMID: 28705898 DOI: 10.1242/dev.149112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Branching morphogenesis creates arborized epithelial networks. In the mammalian kidney, an epithelial progenitor pool at ureteric branch tips (UBTs) creates the urine-transporting collecting system. Using region-specific mouse reporter strains, we performed an RNA-seq screen, identifying tip- and stalk-enriched gene sets in the developing collecting duct system. Detailed in situ hybridization studies of tip-enriched predictions identified UBT-enriched gene sets conserved between the mouse and human kidney. Comparative spatial analysis of their UBT niche expression highlighted distinct patterns of gene expression revealing novel molecular heterogeneity within the UBT progenitor population. To identify kidney-specific and shared programs of branching morphogenesis, comparative expression studies on the developing mouse lung were combined with in silico analysis of the developing mouse salivary gland. These studies highlight a shared gene set with multi-organ tip enrichment and a gene set specific to UBTs. This comprehensive analysis extends our current understanding of the ureteric branch tip niche.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Arthur G, Bradding P. New Developments in Mast Cell Biology: Clinical Implications. Chest 2016; 150:680-93. [PMID: 27316557 DOI: 10.1016/j.chest.2016.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.
Collapse
Affiliation(s)
- Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England.
| |
Collapse
|
20
|
Yokawa S, Furuno T, Suzuki T, Inoh Y, Suzuki R, Hirashima N. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells. Cell Biochem Biophys 2016; 74:391-8. [DOI: 10.1007/s12013-016-0737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
|
21
|
Zhang C, Caldwell TA, Mirbolooki MR, Duong D, Park EJ, Chi NW, Chessler SD. Extracellular CADM1 interactions influence insulin secretion by rat and human islet β-cells and promote clustering of syntaxin-1. Am J Physiol Endocrinol Metab 2016; 310:E874-85. [PMID: 27072493 PMCID: PMC4935136 DOI: 10.1152/ajpendo.00318.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/08/2016] [Indexed: 11/22/2022]
Abstract
Contact between β-cells is necessary for their normal function. Identification of the proteins mediating the effects of β-cell-to-β-cell contact is a necessary step toward gaining a full understanding of the determinants of β-cell function and insulin secretion. The secretory machinery of the β-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and β-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet β-cells. We found that CADM1 is a predominant CADM isoform in β-cells. In INS-1 cells and primary β-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on β-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Thomas A Caldwell
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - M Reza Mirbolooki
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Diana Duong
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California; and
| | - Eun Jee Park
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California
| | - Nai-Wen Chi
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Steven D Chessler
- Department of Medicine, University of California, Irvine, School of Medicine, Irvine, California;
| |
Collapse
|
22
|
Hu C, Cao H, Pan X, Li J, He J, Pan Q, Xin J, Yu X, Li J, Wang Y, Zhu D, Li L. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology. Cell Death Dis 2016; 7:e2141. [PMID: 26986509 PMCID: PMC4823931 DOI: 10.1038/cddis.2016.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.
Collapse
Affiliation(s)
- C Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - H Cao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J He
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Q Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Xin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - X Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - J Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Y Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - D Zhu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - L Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Lewis RJ, Chachi L, Newby C, Amrani Y, Bradding P. Bidirectional Counterregulation of Human Lung Mast Cell and Airway Smooth Muscle β2 Adrenoceptors. THE JOURNAL OF IMMUNOLOGY 2015; 196:55-63. [PMID: 26608913 DOI: 10.4049/jimmunol.1402232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 10/30/2015] [Indexed: 01/01/2023]
Abstract
Human lung mast cells (HLMCs) play a central role in asthma pathogenesis through their relocation to the airway smooth muscle (ASM) bundles. β2 adrenoceptor (β2-AR)-agonists are used to relieve bronchoconstriction in asthma, but may reduce asthma control, particularly when used as monotherapy. We hypothesized that HLMC and human ASM cell (HASMC) responsiveness to β2-AR agonists would be attenuated when HLMCs are in contact with HASMCs. Cells were cultured in the presence of the short-acting β2-agonist albuterol, and the long-acting β2-agonists formoterol and olodaterol. Constitutive and FcεRI-dependent HLMC histamine release, HASMC contraction, and β2-AR phosphorylation at Tyr(350) were assessed. Constitutive HLMC histamine release was increased in HLMC-HASMC coculture and this was enhanced by β2-AR agonists. Inhibition of FcεRI-dependent HLMC mediator release by β2-agonists was greatly reduced in HLMC-HASMC coculture. These effects were reversed by neutralization of stem cell factor (SCF) or cell adhesion molecule 1 (CADM1). β2-AR agonists did not prevent HASMC contraction when HLMCs were present, but this was reversed by fluticasone. β2-AR phosphorylation at Tyr(350) occurred within 5 min in both HLMCs and HASMCs when the cells were cocultured, and was inhibited by neutralizing SCF or CADM1. HLMC interactions with HASMCs via CADM1 and Kit inhibit the potentially beneficial effects of β2-AR agonists on these cells via phosphorylation of the β2-AR. These results may explain the potentially adverse effects of β2-ARs agonists when used for asthma therapy. Targeting SCF and CADM1 may enhance β2-AR efficacy, particularly in corticosteroid-resistant patients.
Collapse
Affiliation(s)
- Rebecca J Lewis
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Latifa Chachi
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Chris Newby
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
24
|
Mast cells in airway diseases and interstitial lung disease. Eur J Pharmacol 2015; 778:125-38. [PMID: 25959386 DOI: 10.1016/j.ejphar.2015.04.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Mast cells are major effector cells of inflammation and there is strong evidence that mast cells play a significant role in asthma pathophysiology. There is also a growing body of evidence that mast cells contribute to other inflammatory and fibrotic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. This review discusses the role that mast cells play in airway diseases and highlights how mast cell microlocalisation within specific lung compartments and their cellular interactions are likely to be critical for their effector function in disease.
Collapse
|