1
|
Yan W, Li Y, Louis EJ, Kyriacou CP, Hu Y, Cordell RL, Xie X. Quantitative genetic analysis of attractiveness of yeast products to Drosophila. Genetics 2024; 227:iyae048. [PMID: 38560786 PMCID: PMC11151935 DOI: 10.1093/genetics/iyae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here, we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested fly responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, namely PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds [assessed by gas chromatography-mass spectrometry (GC-MS)] and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci, while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.
Collapse
Affiliation(s)
- Weiru Yan
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yishen Li
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Yue Hu
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Rebecca L Cordell
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
De Guidi I, Serre C, Noble J, Ortiz-Julien A, Blondin B, Legras JL. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foad050. [PMID: 38124683 PMCID: PMC11090286 DOI: 10.1093/femsyr/foad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.
Collapse
Affiliation(s)
- Irene De Guidi
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Céline Serre
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | | | - Bruno Blondin
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Jean-Luc Legras
- SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
3
|
Kessi-Pérez EI, Acuña E, Bastías C, Fundora L, Villalobos-Cid M, Romero A, Khaiwal S, De Chiara M, Liti G, Salinas F, Martínez C. Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains. Biol Res 2023; 56:43. [PMID: 37507753 PMCID: PMC10385942 DOI: 10.1186/s40659-023-00453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting in considerable economic losses for the wine industry. In the present work, we took advantage of the "1002 Yeast Genomes Project" population, the most complete catalogue of the genetic variation in the species and a powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have potential applications for the genetic improvement of industrial yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Eric Acuña
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Bastías
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Leyanis Fundora
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Manuel Villalobos-Cid
- Departamento de Ingeniería Informática, Program for the Development of Sustainable Production Systems (PDSPS), Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrés Romero
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sakshi Khaiwal
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | | | - Gianni Liti
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Francisco Salinas
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
4
|
A Saccharomyces eubayanus haploid resource for research studies. Sci Rep 2022; 12:5976. [PMID: 35396494 PMCID: PMC8993842 DOI: 10.1038/s41598-022-10048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Collapse
|
5
|
Abstract
Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism among natural yeast populations has been reported, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq (assay for transposase accessible chromatin) and RNA-seq (transcriptome sequencing). We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the nitrogen catabolite repression regulatory pathway and demonstrates a cis × environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility, and allelic differences in transcription factor binding in response to low nitrogen culture conditions. IMPORTANCE Historically, coding variants were prioritized when searching for causal mechanisms driving adaptation of natural populations to stressful environments. However, the recent focus on noncoding variants demonstrated their ubiquitous role in adaptation. Here, we performed genome-wide regulatory variation profiles between two divergent yeast strains when facing nitrogen nutritional stress. The open chromatin availability of several regulatory regions changes in response to nitrogen scarcity. Importantly, we describe regulatory events that deviate between strains. Our results demonstrate a widespread variation in gene expression regulation between naturally occurring populations in response to stressful environments.
Collapse
|
6
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
7
|
Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL's Driven Breeding Program. J Fungi (Basel) 2021; 7:304. [PMID: 33921151 PMCID: PMC8071496 DOI: 10.3390/jof7040304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. Breeding programs that take advantage of this characteristic are widely used for selecting starters for wine industry, especially in the recent years when winemakers need to adapt their production to climate change. The aim of this work was to evaluate a marker assisted selection (MAS) program to improve malic acid consumption capacity of Saccharomyces cerevisiae in grape juice. Optimal individuals of two unrelated F1-hybrids were crossed to get a new genetic background carrying many "malic consumer" loci. Then, eleven quantitative trait loci (QTLs) already identified were used for implementing the MAS breeding program. By this method, extreme individuals able to consume more than 70% of malic acid in grape juice were selected. These individuals were tested in different enological matrixes and compared to their original parental strains. They greatly reduced the malic acid content at the end of alcoholic fermentation, they appeared to be robust to the environment, and they accelerated the ongoing of malolactic fermentations by Oenococcus oeni. This study illustrates how MAS can be efficiently used for selecting industrial Saccharomyces cerevisiae strains with outlier properties for winemaking.
Collapse
Affiliation(s)
- Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
- CNRS, GMGM UMR 7156, Université de Strasbourg, 67000 Strasbourg, France
| | - Margaux Bernard
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Maitena Muro
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRAe, Bordeaux INP, ISVV, Université de Bordeaux, 33882 Villenave d’Ornon, France; (C.V.); (E.P.); (M.B.); (M.M.)
- Biolaffort, 33000 Bordeaux, France
| |
Collapse
|
8
|
Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 2020; 96:103685. [PMID: 33494889 DOI: 10.1016/j.fm.2020.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023]
Abstract
Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.
Collapse
|
9
|
Lahue C, Madden AA, Dunn RR, Smukowski Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 2020; 11:584718. [PMID: 33262788 PMCID: PMC7686800 DOI: 10.3389/fgene.2020.584718] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been instrumental in the fermentation of foods and beverages for millennia. In addition to fermentations like wine, beer, cider, sake, and bread, S. cerevisiae has been isolated from environments ranging from soil and trees, to human clinical isolates. Each of these environments has unique selection pressures that S. cerevisiae must adapt to. Bread dough, for example, requires S. cerevisiae to efficiently utilize the complex sugar maltose; tolerate osmotic stress due to the semi-solid state of dough, high salt, and high sugar content of some doughs; withstand various processing conditions, including freezing and drying; and produce desirable aromas and flavors. In this review, we explore the history of bread that gave rise to modern commercial baking yeast, and the genetic and genomic changes that accompanied this. We illustrate the genetic and phenotypic variation that has been documented in baking strains and wild strains, and how this variation might be used for baking strain improvement. While we continue to improve our understanding of how baking strains have adapted to bread dough, we conclude by highlighting some of the remaining open questions in the field.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Anne A. Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Generation of a Non-Transgenic Genetically Improved Yeast Strain for Wine Production from Nitrogen-Deficient Musts. Microorganisms 2020; 8:microorganisms8081194. [PMID: 32781606 PMCID: PMC7464103 DOI: 10.3390/microorganisms8081194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is the main species responsible for the process that involves the transformation of grape must into wine, with the initial nitrogen in the grape must being vital for it. One of the main problems in the wine industry is the deficiency of nitrogen sources in the grape must, leading to stuck or sluggish fermentations, and generating economic losses. In this scenario, an alternative is the isolation or generation of yeast strains with low nitrogen requirements for fermentation. In the present study, we carry out a genetic improvement program using as a base population a group of 70 strains isolated from winemaking environments mainly in Chile and Argentina (F0), making from it a first and second filial generation (F1 and F2, respectively) based in different families and hybrids. It was found that the trait under study has a high heritability, obtaining in the F2 population strains that consume a minor proportion of the nitrogen sources present in the must. Among these improved strains, strain "686" specially showed a marked drop in the nitrogen consumption, without losing fermentative performance, in synthetic grape must at laboratory level. When using this improved strain to produce wine from a natural grape must (supplemented and non-supplemented with ammonium) at pilot scale under wine cellar conditions, a similar fermentative capacity was obtained between this strain and a widely used commercial strain (EC1118). However, when fermented in a non-supplemented must, improved strain "686" showed the presence of a marked floral aroma absent for EC1118 strain, this difference being probably a direct consequence of its different pattern in amino acid consumption. The combination of the capacity of improved strain "686" to ferment without nitrogen addition and produce floral aromas may be of commercial interest for the wine industry.
Collapse
|
11
|
Kessi-Pérez EI, Ponce B, Li J, Molinet J, Baeza C, Figueroa D, Bastías C, Gaete M, Liti G, Díaz-Barrera A, Salinas F, Martínez C. Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Front Microbiol 2020; 11:1204. [PMID: 32612585 PMCID: PMC7307137 DOI: 10.3389/fmicb.2020.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic fermentation is fundamentally an adaptation process, in which the yeast Saccharomyces cerevisiae outperforms its competitors and takes over the fermentation process itself. Although wine yeast strains appear to be adapted to the stressful conditions of alcoholic fermentation, nitrogen limitations in grape must cause stuck or slow fermentations, generating significant economic losses for the wine industry. One way to discover the genetic bases that promote yeast adaptation to nitrogen-deficient environments are selection experiments, where a yeast population undergoes selection under conditions of nitrogen restriction for a number of generations, to then identify by sequencing the molecular characteristics that promote this adaptation. In this work, we carried out selection experiments in bioreactors imitating wine fermentation under nitrogen-limited fermentation conditions (SM60), using the heterogeneous SGRP-4X yeast population, to then sequence the transcriptome and the genome of the population at different time points of the selection process. The transcriptomic results showed an overexpression of genes from the NA strain (North American/YPS128), a wild, non-domesticated isolate. In addition, genome sequencing and allele frequency results allowed several QTLs to be mapped for adaptation to nitrogen-limited fermentation. Finally, we validated the ECM38 allele of NA strain as responsible for higher growth efficiency under nitrogen-limited conditions. Taken together, our results revealed a complex pattern of molecular signatures favouring adaptation of the yeast population to nitrogen-limited fermentations, including differential gene expression, allele frequency changes and loss of the mitochondrial genome. Finally, the results suggest that wild alleles from a non-domesticated isolate (NA) may have a relevant role in the adaptation to the assayed fermentation conditions, with the consequent potential of these alleles for the genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jing Li
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Baeza
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - David Figueroa
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Camila Bastías
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Marco Gaete
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Alvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
12
|
Molinet J, Salinas F, Guillamón JM, Martínez C. GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 2020; 11:519. [PMID: 32523604 PMCID: PMC7261904 DOI: 10.3389/fgene.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
The TORC1 pathway coordinates cell growth in response to nitrogen availability present in the medium, regulating genes related to nitrogen transport and metabolism. Therefore, the adaptation of Saccharomyces cerevisiae to changes in nitrogen availability implies variations in the activity of this signaling pathway. In this sense, variations in nitrogen detection and signaling pathway are one of the main causes of differences in nitrogen assimilation during alcoholic fermentation. Previously, we demonstrated that allelic variants in the GTR1 gene underlying differences in ammonium and amino acids consumption between Wine/European (WE) and West African (WA) strains impact the expression of nitrogen transporters. The GTR1 gene encodes a GTPase that participates in the EGO complex responsible for TORC1 activation in response to amino acids availability. In this work, we assessed the role of the GTR1 gene on nitrogen consumption under fermentation conditions, using a high sugar concentration medium with nitrogen limitation and in the context of the WE and WA genetic backgrounds. The gtr1Δ mutant presented a reduced TORC1 activity and increased expression levels of nitrogen transporters, which in turn favored ammonium consumption, but decreased amino acid assimilation. Furthermore, to identify the SNPs responsible for differences in nitrogen consumption during alcoholic fermentation, we studied the polymorphisms present in the GTR1 gene. We carried out swapping experiments for the promoter and coding regions of GTR1 between the WE and WA strains. We observed that polymorphisms in the coding region of the WA GTR1 gene are relevant for TORC1 activity. Altogether, our results highlight the role of the GTR1 gene on nitrogen consumption in S. cerevisiae under fermentation conditions.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Manuel Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
13
|
Volatile Compound Screening Using HS-SPME-GC/MS on Saccharomyces eubayanus Strains under Low-Temperature Pilsner Wort Fermentation. Microorganisms 2020; 8:microorganisms8050755. [PMID: 32443420 PMCID: PMC7285299 DOI: 10.3390/microorganisms8050755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/01/2022] Open
Abstract
The recent isolation of the yeast Saccharomyces eubayanus has opened new avenues in the brewing industry. Recent studies characterized the production of volatile compounds in a handful set of isolates, utilizing a limited set of internal standards, representing insufficient evidence into the ability of the species to produce new and diverse aromas in beer. Using Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME-GC-MS), we characterized for the first time the production of volatile compounds in 10 wild strains under fermentative brewing conditions and compared them to a commercial lager yeast. S. eubayanus produces a higher number of volatile compounds compared to lager yeast, including acetate and ethyl esters, together with higher alcohols and phenols. Many of the compounds identified in S. eubayanus are related to fruit and floral flavors, which were absent in the commercial lager yeast ferment. Interestingly, we found a significant strain × temperature interaction, in terms of the profiles of volatile compounds, where some strains produced significantly greater levels of esters and higher alcohols. In contrast, other isolates preferentially yielded phenols, depending on the fermentation temperature. This work demonstrates the profound fermentation product differences between different S. eubayanus strains, highlighting the enormous potential of this yeast to produce new styles of lager beers.
Collapse
|
14
|
Kessi-Pérez EI, Molinet J, Martínez C. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biol Res 2020; 53:2. [PMID: 31918759 PMCID: PMC6950849 DOI: 10.1186/s40659-019-0270-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae, with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
15
|
Villalobos-Cid M, Salinas F, Kessi-Pérez EI, De Chiara M, Liti G, Inostroza-Ponta M, Martínez C. Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms 2019; 8:E32. [PMID: 31877949 PMCID: PMC7022669 DOI: 10.3390/microorganisms8010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Massive sequencing projects executed in Saccharomyces cerevisiae have revealed in detail its population structure. The recent "1002 yeast genomes project" has become the most complete catalogue of yeast genetic diversity and a powerful resource to analyse the evolutionary history of genes affecting specific phenotypes. In this work, we selected 22 nitrogen associated genes and analysed the sequence information from the 1011 strains of the "1002 yeast genomes project". We constructed a total evidence (TE) phylogenetic tree using concatenated information, which showed a 27% topology similarity with the reference (REF) tree of the "1002 yeast genomes project". We also generated individual phylogenetic trees for each gene and compared their topologies, identifying genes with similar topologies (suggesting a shared evolutionary history). Furthermore, we pruned the constructed phylogenetic trees to compare the REF tree topology versus the TE tree and the individual genes trees, considering each phylogenetic cluster/subcluster within the population, observing genes with cluster/subcluster topologies of high similarity to the REF tree. Finally, we used the pruned versions of the phylogenetic trees to compare four strains considered as representatives of S. cerevisiae clean lineages, observing for 15 genes that its cluster topologies match 100% the REF tree, supporting that these strains represent main lineages of yeast population. Altogether, our results showed the potential of tree topologies comparison for exploring the evolutionary history of a specific group of genes.
Collapse
Affiliation(s)
- Manuel Villalobos-Cid
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia 5110566, Chile
| | - Eduardo I. Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | | | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Mario Inostroza-Ponta
- Departamento de Ingeniería Informática, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
16
|
Dahabieh MS, Thevelein JM, Gibson B. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends Biotechnol 2019; 38:241-253. [PMID: 31653446 DOI: 10.1016/j.tibtech.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Biological engineering has unprecedented potential to solve society's most pressing challenges. Engineering approaches must consider complex technical, economic, and social factors. This requires methods that confer gene/pathway-level functionality and organism-level robustness in rapid and cost-effective ways. This article compares foundational engineering approaches - bottom-up, gene-targeted engineering, and top-down, whole-genome engineering - and identifies significant complementarity between them. Cases drawn from engineering Saccharomyces cerevisiae exemplify the synergy of a combined approach. Indeed, multimodal engineering streamlines strain development by leveraging the complementarity of whole-genome and gene-targeted engineering to overcome the gap in design knowledge that restricts rational design. As biological engineers target more complex systems, this dual-track approach is poised to become an increasingly important tool to realize the promise of synthetic biology.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Renaissance BioScience, 410-2389 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
17
|
Kessi-Pérez EI, Salinas F, González A, Su Y, Guillamón JM, Hall MN, Larrondo LF, Martínez C. KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 2019; 10:1686. [PMID: 31417508 PMCID: PMC6685402 DOI: 10.3389/fmicb.2019.01686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic domain-conserved TORC1 signalling pathway connects growth with nutrient sufficiency, promoting anabolic processes such as ribosomal biogenesis and protein synthesis. In Saccharomyces cerevisiae, TORC1 is activated mainly by the nitrogen sources. Recently, this pathway has gotten renewed attention but now in the context of the alcoholic fermentation, due to its key role in nitrogen metabolism regulation. Although the distal and proximal effectors downstream TORC1 are well characterised in yeast, the mechanism by which TORC1 is activated by nitrogen sources is not fully understood. In this work, we took advantage of a previously developed microculture-based methodology, which indirectly evaluates TORC1 activation in a nitrogen upshift experiment, to identify genetic variants affecting the activation of this pathway. We used this method to phenotype a recombinant population derived from two strains (SA and WE) with different geographic origins, which show opposite phenotypes for TORC1 activation by glutamine. Using this phenotypic information, we performed a QTL mapping that allowed us to identify several QTLs for TORC1 activation. Using a reciprocal hemizygous analysis, we validated GUS1, KAE1, PIB2, and UTH1 as genes responsible for the natural variation in the TORC1 activation. We observed that reciprocal hemizygous strains for KAE1 (ATPase required for t6A tRNA modification) gene showed the greatest phenotypic differences for TORC1 activation, with the hemizygous strain carrying the SA allele (KAE1SA) showing the higher TORC1 activation. In addition, we evaluated the fermentative capacities of the hemizygous strains under low nitrogen conditions, observing an antagonistic effect for KAE1SA allele, where the hemizygous strain containing this allele presented the lower fermentation rate. Altogether, these results highlight the importance of the tRNA processing in TORC1 activation and connects this pathway with the yeasts fermentation kinetics under nitrogen-limited conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | | | - Ying Su
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
18
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
19
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
20
|
Oporto CI, Villarroel CA, Tapia SM, García V, Cubillos FA. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces Cerevisiae. Toxins (Basel) 2019; 11:toxins11070400. [PMID: 31295862 PMCID: PMC6669508 DOI: 10.3390/toxins11070400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a mycotoxin produced by a suite of fungi species. Patulin is toxic to humans and is a sporadic contaminant in products that were made from fungi-infected fruits. The baker yeast Saccharomyces cerevisiae (S. cerevisiae) has been shown to decrease patulin levels likely by converting it to the less harmful E-ascladiol, yet this capacity is dependent on the strain utilized. In this study we show that four representative strains of different S. cerevisiae lineages differ in their ability to tolerate and decrease patulin levels in solution, demonstrating that some strains are better suitable for patulin biocontrol. Indeed, we tested the biocontrol capacities of the best patulin-reducer strain (WE) in contaminated apple juice and demonstrated their potential role as an efficient natural biocontrol solution. To investigate the mechanisms behind the differences between strains, we explored transcriptomic changes of the top (WE strain) and worst (WA strain) patulin-biocontroller strains after being exposed to this toxin. Large and significant gene expression differences were found between these two strains, the majority of which represented genes associated with protein biosynthesis, cell wall composition and redox homeostasis. Interestingly, the WE isolate exhibited an overrepresentation of up-regulated genes involved in membrane components, suggesting an active role of the membrane towards patulin detoxification. In contrast, WA upregulated genes were associated with RNA metabolism and ribosome biogenesis, suggesting a patulin impact upon transcription and translation activity. These results suggest that different genotypes of S. cerevisiae encounter different stresses from patulin toxicity and that different rates of detoxification of this toxin might be related with the plasma membrane composition. Altogether, our data demonstrates the different molecular mechanisms in S. cerevisiae strains withstanding patulin exposure and opens new avenues for the selection of new patulin biocontroller strains.
Collapse
Affiliation(s)
- Christian I Oporto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile.
| |
Collapse
|
21
|
Peltier E, Sharma V, Martí Raga M, Roncoroni M, Bernard M, Jiranek V, Gibon Y, Marullo P. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics 2018; 19:772. [PMID: 30409183 PMCID: PMC6225642 DOI: 10.1186/s12864-018-5145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background The ability of a genotype to produce different phenotypes according to its surrounding environment is known as phenotypic plasticity. Within different individuals of the same species, phenotypic plasticity can vary greatly. This contrasting response is caused by gene-by-environment interactions (GxE). Understanding GxE interactions is particularly important in agronomy, since selected breeds and varieties may have divergent phenotypes according to their growing environment. Industrial microbes such as Saccharomyces cerevisiae are also faced with a large range of fermentation conditions that affect their technological properties. Finding the molecular determinism of such variations is a critical task for better understanding the genetic bases of phenotypic plasticity and can also be helpful in order to improve breeding methods. Results In this study we implemented a QTL mapping program using two independent cross (~ 100 progeny) in order to investigate the molecular basis of yeast phenotypic response in a wine fermentation context. Thanks to whole genome sequencing approaches, both crosses were genotyped, providing saturated genetic maps of thousands of markers. Linkage analyses allowed the detection of 78 QTLs including 21 with significant interaction with the environmental conditions. Molecular dissection of a major QTL demonstrated that the sulfite pump Ssu1p has a pleiotropic effect and impacts the phenotypic plasticity of several traits. Conclusions The detection of QTLs and their interactions with environment emphasizes the complexity of yeast industrial traits. The validation of the interaction of SSU1 allelic variants with the nature of the fermented juice increases knowledge about the impact of the sulfite pump during fermentation. All together these results pave the way for exploiting and deciphering the genetic determinism of phenotypic plasticity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5145-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilien Peltier
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France. .,Biolaffort, Bordeaux, France.
| | - Vikas Sharma
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France
| | - Maria Martí Raga
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Tarragona, Spain
| | - Miguel Roncoroni
- Wine Science Programme, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Urrbrae, South Australia, 5064, Australia
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| |
Collapse
|
22
|
Kessi-Pérez EI, Salinas F, Molinet J, González A, Muñiz S, Guillamón JM, Hall MN, Larrondo LF, Martínez C. Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 2018; 36:65-74. [PMID: 30094872 DOI: 10.1002/yea.3351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 11/08/2022] Open
Abstract
Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed on the basis of the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless of the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | | | - Sara Muñiz
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
23
|
Tapia SM, Cuevas M, Abarca V, Delgado V, Rojas V, García V, Brice C, Martínez C, Salinas F, Larrondo LF, Cubillos FA. GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Front Microbiol 2018; 9:1460. [PMID: 30018610 PMCID: PMC6037841 DOI: 10.3389/fmicb.2018.01460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glycerol is one of the most important by-products of alcohol fermentation, and depending on its concentration it can contribute to wine flavor intensity and aroma volatility. Here, we evaluated the potential of utilizing the natural genetic variation of non-coding regions in budding yeast to identify allelic variants that could modulate glycerol phenotype during wine fermentation. For this we utilized four Saccharomyces cerevisiae strains (WE - Wine/European, SA – Sake, NA – North American, and WA – West African), which were previously profiled for genome-wide Allele Specific Expression (ASE) levels. The glycerol yields under Synthetic Wine Must (SWM) fermentations differed significantly between strains; WA produced the highest glycerol yields while SA produced the lowest yields. Subsequently, from our ASE database, we identified two candidate genes involved in alcoholic fermentation pathways, ADH3 and GPD1, exhibiting significant expression differences between strains. A reciprocal hemizygosity assay demonstrated that hemizygotes expressing GPD1WA, GPD1SA, ADH3WA and ADH3SA alleles had significantly greater glycerol yields compared to GPD1WE and ADH3WE. We further analyzed the gene expression profiles for each GPD1 variant under SWM, demonstrating that the expression of GPD1WE occurred earlier and was greater compared to the other alleles. This result indicates that the level, timing, and condition of expression differ between regulatory regions in the various genetic backgrounds. Furthermore, promoter allele swapping demonstrated that these allele expression patterns were transposable across genetic backgrounds; however, glycerol yields did not differ between wild type and modified strains, suggesting a strong trans effect on GPD1 gene expression. In this line, Gpd1 protein levels in parental strains, particularly Gpd1pWE, did not necessarily correlate with gene expression differences, but rather with glycerol yield where low Gpd1pWE levels were detected. This suggests that GPD1WE is influenced by recessive negative post-transcriptional regulation which is absent in the other genetic backgrounds. This dissection of regulatory mechanisms in GPD1 allelic variants demonstrates the potential to exploit natural alleles to improve glycerol production in wine fermentation and highlights the difficulties of trait improvement due to alternative trans-regulation and gene-gene interactions in the different genetic background.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Mara Cuevas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile
| | - Valentina Abarca
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Verónica Delgado
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente Rojas
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claire Brice
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Luis F Larrondo
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| |
Collapse
|
24
|
Sardi M, Gasch AP. Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering. FEMS Yeast Res 2018. [PMID: 28637316 DOI: 10.1093/femsyr/fox042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Engineering microbes with new properties is an important goal in industrial engineering, to establish biological factories for production of biofuels, commodity chemicals and pharmaceutics. But engineering microbes to produce new compounds with high yield remains a major challenge toward economically viable production. Incorporating several modern approaches, including synthetic and systems biology, metabolic modeling and regulatory rewiring, has proven to significantly advance industrial strain engineering. This review highlights how comparative genomics can also facilitate strain engineering, by identifying novel genes and pathways, regulatory mechanisms and genetic background effects for engineering. We discuss how incorporating comparative genomics into the design-test-learn cycle of strain engineering can provide novel information that complements other engineering strategies.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, Madison, WI 53706, USA.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS One 2018; 13:e0192383. [PMID: 29432462 PMCID: PMC5809068 DOI: 10.1371/journal.pone.0192383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/20/2018] [Indexed: 11/25/2022] Open
Abstract
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.
Collapse
Affiliation(s)
- Claire Brice
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology (MII-SSB), Santiago, Chile
| | - Sylvie Dequin
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Carole Camarasa
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Ishii Y, Akasaka N, Sakoda H, Hidese R, Fujiwara S. Leucine responsive regulatory protein is involved in methionine metabolism and polyamine homeostasis in acetic acid bacterium Komagataeibacter europaeus. J Biosci Bioeng 2018; 125:67-75. [DOI: 10.1016/j.jbiosc.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/29/2023]
|
27
|
Quispe X, Tapia SM, Villarroel C, Oporto C, Abarca V, García V, Martínez C, Cubillos FA. Genetic basis of mycotoxin susceptibility differences between budding yeast isolates. Sci Rep 2017; 7:9173. [PMID: 28835621 PMCID: PMC5569051 DOI: 10.1038/s41598-017-09471-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/25/2017] [Indexed: 01/29/2023] Open
Abstract
Micophenolic acid (MPA) is an immunosuppressant mycotoxin which impairs yeast cell growth to variable degrees depending on the genetic background. Such variation could have emerged from several phenomena, including MPA gene resistance mutations and variations in copy number and localisation of resistance genes. To test this, we evaluated MPA susceptibility in four S. cerevisiae isolates and genetically dissected variation through the identification of Quantitative Trait Loci. Via linkage analysis we identified six QTLs, majority of which were located within subtelomeres and co-localised with IMD2, an inosine monophosphate dehydrogenase previously identified underlying MPA drug resistance in yeast cells. From chromosome end disruption and bioinformatics analysis, it was found that the subtelomere localisation of IMD2 within chromosome ends is variable depending on the strain, demonstrating the influence of IMD2 on the natural variation in yeast MPA susceptibility. Furthermore, GxE gene expression analysis of strains exhibiting opposite phenotypes indicated that ribosome biogenesis, RNA transport, and purine biosynthesis were impaired in strains most susceptible to MPA toxicity. Our results demonstrate that natural variation can be exploited to better understand the molecular mechanisms underlying mycotoxin susceptibility in eukaryote cells and demonstrate the role of subtelomeric regions in mediating interactions with the environment.
Collapse
Affiliation(s)
- Xtopher Quispe
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Sebastián M Tapia
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Carlos Villarroel
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Christian Oporto
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile
| | - Valentina Abarca
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile. .,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla, 114-D, Santiago, Chile. .,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res 2017; 17:3934655. [PMID: 28810701 DOI: 10.1093/femsyr/fox046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Bruno Fedrizzi
- Wine Science Programme, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Gardner
- Wine Science Programme, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
29
|
Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3-GENES GENOMES GENETICS 2017; 7:1693-1705. [PMID: 28592651 PMCID: PMC5473750 DOI: 10.1534/g3.117.042127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
Collapse
|
30
|
Martí-Raga M, Peltier E, Mas A, Beltran G, Marullo P. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2017; 7:399-412. [PMID: 27903630 PMCID: PMC5295589 DOI: 10.1534/g3.116.037283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023]
Abstract
Hybridization is known to improve complex traits due to heterosis and phenotypic robustness. However, these phenomena have been rarely explained at the molecular level. Here, the genetic determinism of Saccharomyces cerevisiae fermentation performance was investigated using a QTL mapping approach on an F1-progeny population. Three main QTL were detected, with positive alleles coming from both parental strains. The heterosis effect found in the hybrid was partially explained by three loci showing pseudooverdominance and dominance effects. The molecular dissection of those QTL revealed that the adaptation to second fermentation is related to pH, lipid, or osmotic regulation. Our results suggest that the stressful conditions of second fermentation have driven the selection of rare genetic variants adapted to maintain yeast cell homeostasis and, in particular, to low pH conditions.
Collapse
Affiliation(s)
- Maria Martí-Raga
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
| | - Emilien Peltier
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
- Biolaffort, 33100 Bordeaux, France
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Philippe Marullo
- Unité de recherche OEnologie, EA 4577, ISVV, Université Bordeaux, 33882 Villenave d'Ornon, France
- Biolaffort, 33100 Bordeaux, France
| |
Collapse
|
31
|
Thompson DA, Cubillos FA. Natural gene expression variation studies in yeast. Yeast 2016; 34:3-17. [PMID: 27668700 DOI: 10.1002/yea.3210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/06/2022] Open
Abstract
The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
32
|
Coi AL, Legras JL, Zara G, Dequin S, Budroni M. A set of haploid strains available for genetic studies ofSaccharomyces cerevisiaeflor yeasts. FEMS Yeast Res 2016; 16:fow066. [DOI: 10.1093/femsyr/fow066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
|
33
|
Cubillos FA. Exploiting budding yeast natural variation for industrial processes. Curr Genet 2016; 62:745-751. [PMID: 27085523 DOI: 10.1007/s00294-016-0602-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023]
Abstract
For the last two decades, the natural variation of the yeast Saccharomyces cerevisiae has been massively exploited with the aim of understanding ecological and evolutionary processes. As a result, many new genetic variants have been uncovered, providing a large catalogue of alleles underlying complex traits. These alleles represent a rich genetic resource with the potential to provide new strains that can cope with the growing demands of industrial fermentation processes. When surveyed in detail, several of these variants have proven useful in wine and beer industries by improving nitrogen utilisation, fermentation kinetics, ethanol production, sulphite resistance and aroma production. Here, I illustrate how allele-specific expression and polymorphisms within the coding region of GDB1 underlie fermentation kinetic differences in synthetic wine must. Nevertheless, the genetic basis of how GDB1 variants and other natural alleles interact in foreign genetic backgrounds remains unclear. Further studies in large sets of strains, recombinant hybrids and multiple parental pairs will broaden our knowledge of the molecular and genetic basis of trait adaptation for utilisation in applied and industrial processes.
Collapse
Affiliation(s)
- Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile. .,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile. .,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Martí-Raga M, Marullo P, Beltran G, Mas A. Nitrogen modulation of yeast fitness and viability during sparkling wine production. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae. PLoS One 2016; 11:e0151894. [PMID: 26991662 PMCID: PMC4798762 DOI: 10.1371/journal.pone.0151894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022] Open
Abstract
The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD) medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions.
Collapse
|
36
|
Kessi-Pérez EI, Araos S, García V, Salinas F, Abarca V, Larrondo LF, Martínez C, Cubillos FA. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res 2016; 16:fow021. [PMID: 26945894 DOI: 10.1093/femsyr/fow021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
Different natural yeast populations have faced dissimilar selective pressures due to the heterogeneous fermentation substrates available around the world; this increases the genetic and phenotypic diversity in Saccharomyces cerevisiae In this context, we expect prominent differences between isolates when exposed to a particular condition, such as wine or sake musts. To better comprehend the mechanisms underlying niche adaptation between two S. cerevisiae isolates obtained from wine and sake fermentation processes, we evaluated fermentative and fungicide resistance phenotypes and identify the molecular origin of such adaptive variation. Multiple regions were associated with fermentation rate under different nitrogen conditions and fungicide resistance, with a single QTL co-localizing in all traits. Analysis around this region identified RIM15 as the causative locus driving fungicide sensitivity, together with efficient nitrogen utilization and glycerol production in the wine strain. A null RIM15 variant confers a greater fermentation rate through the utilization of available glucose instead of its storage. However, this variant has a detrimental effect on fungicide resistance since complex sugars are not synthesized and transported into the membrane. Together, our results reveal the antagonist pleiotropic nature of a RIM15 null variant, positively affecting a series of fermentation related phenotypes, but apparently detrimental in the wild.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Sebastián Araos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Francisco Salinas
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| | - Valentina Abarca
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Francisco A Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile
| |
Collapse
|
37
|
Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep 2016; 6:21849. [PMID: 26898953 PMCID: PMC4761897 DOI: 10.1038/srep21849] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/27/2023] Open
Abstract
Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype.
Collapse
|
38
|
Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth. Appl Microbiol Biotechnol 2016; 100:3255-65. [DOI: 10.1007/s00253-015-7273-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
|
39
|
Masneuf-Pomarede I, Bely M, Marullo P, Albertin W. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Front Microbiol 2016; 6:1563. [PMID: 26793188 PMCID: PMC4707289 DOI: 10.3389/fmicb.2015.01563] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/23/2015] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.
Collapse
Affiliation(s)
- Isabelle Masneuf-Pomarede
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- Bordeaux Sciences AgroGradignan, France
| | - Marina Bely
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
| | - Philippe Marullo
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- BiolaffortBordeaux, France
| | - Warren Albertin
- ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 Institut National de la Recherche Agronomique, Bordeaux INP, University BordeauxVillenave d'Ornon, France
- ENSCBP, Bordeaux INPPessac, France
| |
Collapse
|
40
|
Pinu FR, Edwards PJ, Gardner RC, Villas-Boas SG. Nitrogen and carbon assimilation bySaccharomyces cerevisiaeduring Sauvignon blanc juice fermentation. FEMS Yeast Res 2014; 14:1206-22. [DOI: 10.1111/1567-1364.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- Farhana R. Pinu
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| | - Patrick J.B. Edwards
- Institute of Fundamental Sciences; Massey University; Palmerston North New Zealand
| | - Richard C. Gardner
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
- Wine Science Programme; School of Chemical Sciences; University of Auckland; Auckland New Zealand
| | - Silas G. Villas-Boas
- Centre for Microbial Innovation; School of Biological Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
41
|
Stern DL. Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test. Trends Genet 2014; 30:547-54. [PMID: 25278102 DOI: 10.1016/j.tig.2014.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022]
Abstract
The reciprocal hemizygosity test is a straightforward genetic test that can positively identify genes that have evolved to contribute to a phenotypic difference between strains or between species. The test involves a comparison between hybrids that are genetically identical throughout the genome except at the test locus, which is rendered hemizygous for alternative alleles from the two parental strains. If the two reciprocal hemizygotes display different phenotypes, then the two parental alleles must have evolved. New methods for targeted mutagenesis will allow application of the reciprocal hemizygosity test in many organisms. This review discusses the principles, advantages, and limitations of the test.
Collapse
Affiliation(s)
- David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
42
|
Ploidy-regulated variation in biofilm-related phenotypes in natural isolates of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2014; 4:1773-86. [PMID: 25060625 PMCID: PMC4169170 DOI: 10.1534/g3.114.013250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability of yeast to form biofilms contributes to better survival under stressful conditions. We see the impact of yeast biofilms and “flocs” (clumps) in human health and industry, where forming clumps enables yeast to act as a natural filter in brewing and forming biofilms enables yeast to remain virulent in cases of fungal infection. Despite the importance of biofilms in yeast natural isolates, the majority of our knowledge about yeast biofilm genetics comes from work with a few tractable laboratory strains. A new collection of sequenced natural isolates from the Saccharomyces Genome Resequencing Project enabled us to examine the breadth of biofilm-related phenotypes in geographically, ecologically, and genetically diverse strains of Saccharomyces cerevisiae. We present a panel of 31 haploid and 24 diploid strains for which we have characterized six biofilm-related phenotypes: complex colony morphology, complex mat formation, flocculation, agar invasion, polystyrene adhesion, and psuedohyphal growth. Our results show that there is extensive phenotypic variation between and within strains, and that these six phenotypes are primarily uncorrelated or weakly correlated, with the notable exception of complex colony and complex mat formation. We also show that the phenotypic strength of these strains varies significantly depending on ploidy, and the diploid strains demonstrate both decreased and increased phenotypic strength with respect to their haploid counterparts. This is a more complex view of the impact of ploidy on biofilm-related phenotypes than previous work with laboratory strains has suggested, demonstrating the importance and enormous potential of working with natural isolates of yeast.
Collapse
|
43
|
Brice C, Sanchez I, Bigey F, Legras JL, Blondin B. A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics 2014; 15:495. [PMID: 24947828 PMCID: PMC4073503 DOI: 10.1186/1471-2164-15-495] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022] Open
Abstract
Background In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation. Results By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance. Conclusions This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-495) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Blondin
- INRA, UMR1083 Science pour l'Œnologie, 2 Place Viala, F-34060 Montpellier, France.
| |
Collapse
|