1
|
Wang C, Yin Z, Wang Y, Liu Y, Zhao S, Dai X, Wang R, Su L, Chen H, Zheng L, Zhai Y. The Selection and Validation of Reference Genes for RT-qPCR Analysis of the Predatory Natural Enemy Orius nagaii (Hemiptera: Anthocoridae). INSECTS 2024; 15:936. [PMID: 39769538 PMCID: PMC11678729 DOI: 10.3390/insects15120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Orius nagaii is a highly effective natural enemy for controlling thrips, tetranychids, aphids, and various Lepidoptera pests. Nevertheless, the molecular mechanisms underlying its interactions with host pests remain unclear. Screening for optimal reference genes is a prerequisite for using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to investigate the interrelationship. Here, ten commonly used reference genes (Act, GAPDH, β-Tub, EF1-α, RPS10, RPS15, RPL6, RPL13, RPL32, and HSP90) were selected, and their expression stability across developmental stages, tissues, temperatures, and host conditions were evaluated using RefFinder, which uses multiple analytical approaches (NormFinder, geNorm, the ΔCt method, and BestKeeper). The findings suggested that the most reliable normalization can be achieved by selecting the two reference genes for all conditions, with the optimal pairs being RPS10 and RPL32 for the developmental stage, RPS10 and RPS15 for tissue, RPS10 and RPS15 for the host, and EF1-α and RPL13 for temperature. Also, the best and least stable reference genes were chosen to compare the relative transcript levels of the TBX1 in various tissues, which exhibited considerable variation. Our findings will significantly enhance the reliability of RT-qPCR and provide a foundation for further research on the expression patterns of crucial genes that are implicated in the interaction between O. nagaii and its host pests.
Collapse
Affiliation(s)
- Chengxing Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yu Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Engineering Research Center of Resource Insects, Jinan 250100, China
| |
Collapse
|
2
|
Yuan F, Xie Z, Li Z, Lian P, Wei C. Screening of reference genes for gene expression study in different tissues from the transcriptome data of the vector leafhopper Psammotettix striatus. Gene 2024; 927:148696. [PMID: 38878986 DOI: 10.1016/j.gene.2024.148696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Selecting appropriate reference genes is crucial for ensuring the accuracy and reliability of gene expression study using reverse transcription-quantitative PCR (RT-qPCR). To screen the optimal reference genes for analyzing gene expression in different tissues of the vector leafhopper Psammotettix striatus which causes extensive damage to a wide range of crops by vectoring multiple plant pathogenic microorganisms, the transcriptome data from Malpighian tubules (MTs) of P. striatus were mined. Twenty alternative candidate reference genes were initially selected for screening, among which seven genes with diverse Gene Ontology (GO) annotations were choosed as candidate reference genes, i.e., ribosomal protein L7A (RPL7A), ribosomal protein S28 (RPS28), ribosomal protein L22 (RPL22), ribosomal protein LP2 (RPLP2), H3 histone family 3A (H3F3A), elongation factor 1γ (EF-1γ), and elongation factor 1α (EF-1α). Gene expression levels in different tissues of P. striatus adults were examined using RT-qPCR, and their expression stability was analyzed using multiple reference gene screening software. This study revealed EF-1α as the most abundantly expressed gene, while RPL22 exhibited the lowest expression levels. EF-1α showed the most stable expression, whereas RPS28 showed the least stability. Various software tools confirmed EF-1α as the most stable single reference gene, and EF-1α and RPLP2 an optimal combination. This study provides a foundation for future investigation of the transmission of pathogenic microorganisms mediated by the vector leafhoppers, the function of the MTs, the biosynthesis of brochosomes, the coevolutionary processes and nutritional interactions of symbionts and host insects, and the gene expression study of other sap-sucking insects.
Collapse
Affiliation(s)
- Feimin Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Xie
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zi Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengcheng Lian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Kong W, Lv X, Ran X, Mukangango M, Eric Derrick B, Qiu B, Guo C. Comprehensive Assessment of Reference Gene Expression within the Whitefly Dialeurodes citri Using RT-qPCR. Genes (Basel) 2024; 15:318. [PMID: 38540377 PMCID: PMC10970672 DOI: 10.3390/genes15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 06/14/2024] Open
Abstract
The citrus whitefly, Dialeurodes citri, is a destructive pest that infests citrus plants. It is a major vector in transmitting plant viruses such as citrus yellow vein clearing virus (CYVCV), which has caused severe economic losses worldwide, and therefore efficient control of this pest is economically important. However, the scope of genetic studies primarily focused on D. citri is restricted, something that has potentially limited further study of efficient control options. To explore the functionalities of D. citri target genes, screening for specific reference genes using RT-qPCR under different experimental conditions is essential for the furtherance of biological studies concerning D. citri. The eight candidate reference genes were evaluated by dedicated algorithms (geNorm, Normfinder, BestKeeper and ΔCt method) under five specific experimental conditions (developmental stage, sex, tissue, population and temperature). In addition, the RefFinder software, a comprehensive evaluation platform integrating all of the above algorithms, ranked the expression stability of eight candidate reference genes. The results showed that the best reference genes under different experimental settings were V-ATP-A and RPS18 at different developmental stages; α-tubulin, 18S and V-ATP-A in both sexes; EF1A and α-tubulin in different tissues; Actin and Argk under different populations; and RPS18 and RPL13 in different temperatures. The validation of selected reference genes was further identified using heat shock protein (Hsp) 70 as a reporter gene. Our study, for the first time, provides a detailed compilation of internal reference genes for D. citri that are suitable for RT-qPCR analysis, which is robust groundwork for comprehensive investigation of the functional target genes of D. citri.
Collapse
Affiliation(s)
- Weizhen Kong
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolu Lv
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiaotong Ran
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Marguerite Mukangango
- College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda; (M.M.); (B.E.D.)
| | - Bugenimana Eric Derrick
- College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda; (M.M.); (B.E.D.)
| | - Baoli Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Changfei Guo
- Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; (W.K.); (X.L.); (X.R.)
| |
Collapse
|
4
|
Ni Y, Zhang Q, Li W, Cao L, Feng R, Zhao Z, Zhao X. Selection and validation of reference genes for normalization of gene expression in Floccularia luteovirens. Fungal Biol 2024; 128:1596-1606. [PMID: 38341265 DOI: 10.1016/j.funbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Floccularia luteovirens is one of the rare edible fungi with high nutritional value found on the Qinghai-Tibet Plateau. However, research at the molecular level on this species is currently constrained due to the lack of reliable reference genes for this species. Thirteen potential reference genes (ACT, GAPDH, EF-Tu, SAMDC, UBI, CLN1, β-TUB, γ-TUB, GTP, H3, UBC, UBC-E2, and GTPBP1) were chosen for the present study, and their expression under various abiotic conditions was investigated. Stability of gene expression was tested using GeNorm, NormFinder, BestKeeper, Delta-Ct, and RefFinder. The results showed that the most suitable reference genes for salt treatment were ACT and EF-Tu. Under drought stress, γ-TUB and UBC-E2 would be suitable for normalization. Under oxidative stress, the reference genes H3 and GAPDH worked well. Under heat stress, the reference genes EF-Tu and γ-TUB were suggested. Under extreme pH stress, UBC-E2 and H3 were appropriate reference genes. Under cadmium stress, the reference genes ACT and UBC-E2 functioned well. In different tissues, H3 and GTPBP1 were appropriate reference genes. The optimal internal reference genes when analyzing all samples were H3 and SAMDC. The expression level of HSP90 was studied to further validate the applicability of the genes identified in this study.
Collapse
Affiliation(s)
- Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China; Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China.
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| | - Luping Cao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China; Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China.
| | - Zhiqiang Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China; Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China.
| | - Xu Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China; Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China.
| |
Collapse
|
5
|
Yetkin S, Alotaibi H. Selection and validation of novel stable reference genes for qPCR analysis in EMT and MET. Exp Cell Res 2023; 428:113619. [PMID: 37146958 DOI: 10.1016/j.yexcr.2023.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
Quantitative real-time polymerase chain reaction is a powerful tool for quantifying gene expression. The relative quantification relies on normalizing the data to reference genes or internal controls not modulated by the experimental conditions. The most widely used internal controls occasionally show changed expression patterns in different experimental settings, such as the mesenchymal to epithelial transition. Thus, identifying appropriate internal controls is of utmost importance. We analyzed multiple RNA-Seq datasets using a combination of statistical approaches such as percent relative range and coefficient of variance to define a list of candidate internal control genes, which was then validated experimentally and by using in silico analyses as well. We identified a group of genes as strong internal control candidates with high stability compared to the classical ones. We also presented evidence for the superiority of the percent relative range method for calculating expression stability in data sets with larger sample sizes. We used multiple methods to analyze data collected from several RNA-Seq datasets; we identified Rbm17 and Katna1 as the most stable reference genes in EMT/MET studies. The percent relative range approach surpasses other methods when analyzing datasets of larger sample sizes.
Collapse
Affiliation(s)
- Seray Yetkin
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey
| | - Hani Alotaibi
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey.
| |
Collapse
|
6
|
Guo L, Zhang Z, Xu W, Ma J, Liang N, Li C, Chu D. Expression profile of CYP402C1 and its role in resistance to imidacloprid in the whitefly, Bemisia tabaci. INSECT SCIENCE 2023; 30:146-160. [PMID: 35603806 DOI: 10.1111/1744-7917.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cosmopolitan insect pest causing serious damage to crop production. Cytochromes P450 (CYPs) of B. tabaci are widely known to be involved in the metabolic resistance to a variety of insecticides, continuously increasing the difficulty in controlling this pest. In this study, four P450 genes (CYP6CM1, CYP6CX1, CYP6CX3, and CYP402C1) in B. tabaci exhibited correlations with the resistance to imidacloprid. We have focused on trying to understand the function and metabolism capacity of CYP402C1. The expression profiles of CYP402C1 were examined by reverse transcription quantitative real-time PCR and fluorescence in situ hybridizations. Its role in resistance to imidacloprid was investigated by RNA interference, transgenic Drosophila melanogaster, and heterologous expression. The results showed that CYP402C1 was highly expressed in the active feeding stages of B. tabaci, such as nymphs and female adults. CYP402C1 was mainly expressed in midguts of nymphs and adults, especially in the filter chamber. Knockdown of CYP402C1 significantly decreased the resistance of B. tabaci to imidacloprid by 3.96-fold (50% lethal concentration: 186.46 versus 47.08 mg/L). Overexpression of CYP402C1 in a transgenic D. melanogaster line (Gal4 > UAS-CYP402C1) significantly increased the resistance to imidacloprid from 12.68- to 14.92-fold (129.01 and 151.80 mg/L versus 1925.14 mg/L). The heterologous expression of CYP402C1 showed a metabolism ability of imidacloprid (imidacloprid decreased by 12.51% within 2 h). This study provides new insights for CYP402C1 function in B. tabaci and will help develop new strategies in B. tabaci control and its insecticide resistance.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhuang Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Jiangya Ma
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Ni Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Reference genes selection for expression studies in Maconellicoccus hirsutus (Green) (Pseudococcidae: Hemiptera) under specific experimental conditions. Mol Biol Rep 2023; 50:1221-1230. [PMID: 36436078 DOI: 10.1007/s11033-022-08120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Maconellicoccus hirsutus is a destructive pest which causes severe losses of agricultural and horticultural crops. For the management of M. hirsutus, many insecticides have been used and it has been exposed to insufficient dosage or uneven spray coverage which resulted in the development of insecticide resistance. Xenobiotic metabolism can be better understood with the help of gene expression studies by unveiling the underlying molecular mechanisms. The qRT-PCR is the simplest method to analyse gene expression, however, it highly relies on suitable reference genes concerning the different experimental conditions. METHODS AND RESULTS We evaluated the stability of five reference genes in two sets of experimental conditions viz. developmental stages (nymphs and adults) and agrochemical stress (GA3 and Buprofezin sprayed) against M. hirsutus, using different softwares-NormFinder, geNorm, BestKeeper, and RefFinder. The study revealed that ATP51a and GAPDH can be used as reference genes for gene expression studies when exposed to Gibberellic acid. Additionally, the study revealed that the ideal pair of reference genes for data validation in M. hirsutus treated with Buprofezin was GAPDH and β-tubulin. The ideal reference gene combination for various developmental stages was found to be 28S and Actin. CONCLUSION According to the study, GAPDH can be utilized as a reliable reference gene in the agrochemical (GA3 and Buprofezin) exposure set. The genes can be utilized as a suitable reference for qRT-PCR gene expression studies of xenobiotic metabolism to understand the underlying molecular mechanism, which will help further to design suitable management strategies.
Collapse
|
8
|
Li K, Liu J, Geng Z, Xu W, Zhang Z, Chu D, Guo L. Resistance to dinotefuran in Bemisia tabaci in China: status and characteristics. PEST MANAGEMENT SCIENCE 2023; 79:833-844. [PMID: 36264629 DOI: 10.1002/ps.7251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bemisia tabaci (Gennadius) is a serious agricultural pest worldwide. Neonicotinoids are the most important new class of synthetic insecticides used in the management of B. tabaci. However, B. tabaci populations have developed resistance to various active ingredients in neonicotinoids following long-term and widespread application. RESULTS Dinotefuran exhibited high toxicity against most B. tabaci field populations. One population (Din-R) with a high level of resistance to dinotefuran (255.6-fold) was first identified in the field. The Din-R population exhibited medium to high levels of resistance to all the tested neonicotinoid insecticides and a high level of resistance to spinetoram. Genetic inheritance analysis revealed that resistance to dinotefuran was incompletely recessive and polygenic. The synergist piperonyl butoxide significantly increased the toxicity of dinotefuran to Din-R. P450 activity in the Din-R population was 2.19-fold higher than in the susceptible population. RNA-sequencing analysis showed that 12 P450 genes were significantly upregulated in the Din-R population, of which CYP6DW5, CYP6JM1 and CYP306A1 were found to exhibit more than 3.00-fold higher expression in Din-R when using a reverse transcription quantitative real-time polymerase chain reaction. Expression of eight P450 genes was obviously induced by dinotefuran, and CYP6DW5 showed the highest expression level. After knockdown of CYP6DW5 in Din-R, the toxicity of dinotefuran increased significantly. CONCLUSION P450 had a crucial role in dinotefuran resistance in B. tabaci, and CYP6DW5 was involved in the resistance. These results provide important information for the management of resistance in B. tabaci and improve our understanding of the resistance mechanism of dinotefuran. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaixin Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Jiantao Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ziqiong Geng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Zhuang Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
9
|
Liu Z, Xiao J, Xia Y, Wu Q, Zhao C, Li D. Selection and validation of reference genes for RT-qPCR-based analyses of Anastatus japonicus Ashmead (Hymenoptera: Helicopteridae). Front Physiol 2022; 13:1046204. [PMID: 36338494 PMCID: PMC9626802 DOI: 10.3389/fphys.2022.1046204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
RT-qPCR remains a vital approach for molecular biology studies aimed at quantifying gene expression in a range of physiological or pathological settings. However, the use of appropriate reference genes is essential to attain meaningful RT-qPCR results. Anastatus japonicus Ashmead (Hymenoptera: Helicopteridae) is an important egg parasitoid wasp and natural enemy of fruit bugs and forest caterpillars. While recent transcriptomic studies have analyzed gene expression profiles in A. japonicus specimens, offering a robust foundation for functional research focused on this parasitoid, no validated A. japonicus reference genes have yet been established, hampering further research efforts. Accordingly, this study sought to address this issue by screening for the most stable internal reference genes in A. japonicus samples to permit reliable RT-qPCR analyses. The utility of eight candidate reference genes (ACTIN, TATA, GAPDH, TUB, RPL13, RPS6, EF1α, RPS3a) was assessed under four different conditions by comparing developmental stages (larvae, pupae, adults), tissues (abdomen, chest, head), sex (male or female adults), or diapause states (diapause induction for 25, 35, 45, or 55 days, or diapause termination). RefFinder was used to calculate gene stability based on the integration of four algorithms (BestKeeper, Normfinder, geNorm, and ΔCt method) to determine the optimal RT-qPCR reference gene. Based on this approach, RPS6 and RPL13 were found to be the most reliable reference genes when assessing different stages of development, while ACTIN and EF1α were optimal when comparing adults of different sexes, RPL13 and EF1α were optimal when analyzing different tissues, and TATA and ACTIN were optimal for different diapause states. These results provide a valuable foundation for future RT-qPCR analyses of A. japonicus gene expression and function under a range of experimental conditions.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junjiang Xiao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yue Xia
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qifeng Wu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Can Zhao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Can Zhao, Dunsong Li,
| | - Dunsong Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Can Zhao, Dunsong Li,
| |
Collapse
|
10
|
Wang H, Chen Q, Liu L, Zhou Y, Wang H, Li Z, Liu J. Identification of Endogenous Genes for Normalizing Titer Variation of Citrus Tristeza Virus in Aphids at Different Post-acquisition Feeding Times. THE PLANT PATHOLOGY JOURNAL 2022; 38:287-295. [PMID: 35953048 PMCID: PMC9372102 DOI: 10.5423/ppj.oa.01.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Citrus tristeza virus (CTV) is efficiently transmitted in a semi-persistent manner by the brown citrus aphid (Toxoptera citricida (Kirkaldy)). Currently, the most sensitive method for detecting plant viruses in insect vectors is reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In this study, the elongation factor-1 alpha (EF-1α) gene and acidic p0 ribosomal protein (RPAP0) gene were confirmed to be suitable reference genes for RT-qPCR normalization in viruliferous T. citricida aphids using the geNorm, NormFinder, and BestKeeper tools. Then the relative CTV titer in aphids (T. citricida) at different post-acquisition feeding times on healthy plants was quantified by RT-qPCR using EF-1α and RPAP0 as reference genes. The relative CTV titer retained in the aphids gradually decreased with increasing feeding time. During the first 0.5 h of feeding time on healthy plants, the remaining CTV titer in aphids showed about 80% rapid loss for the highly transmissible isolate CT11A and 40% loss for the poorly transmissible isolate CTLJ. The relative CTV titer in aphids during more than 12 h post-acquisition times for CT11A was significantly lower than at the other feeding times, which is similar to the trend found for CTLJ. To our knowledge, this is the first report about the relative titer variation of CTV remaining in T. citricida at different post-acquisition feeding times on healthy plants.
Collapse
Affiliation(s)
- Hongsu Wang
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041,
China
| | - Qi Chen
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| | - Luqin Liu
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| | - Yan Zhou
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| | - Huanhuan Wang
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| | - Zhongan Li
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| | - Jinxiang Liu
- Citrus Research Institute, Southwest University, Chongqing 400712,
China
- National Citrus Engineering Research Center, Chongqing 400712,
China
| |
Collapse
|
11
|
Lee J, Kim YH, Kim K, Kim D, Lee SH, Kim S. Selection of stable reference genes for quantitative real-time PCR in the Varroa mite, Varroa destructor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21905. [PMID: 35393698 DOI: 10.1002/arch.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
To investigate the acaricide toxicity and resistance mechanisms in the Varroa mite, it is essential to understand the genetic responses of Varroa mites to acaricides, which are usually evaluated by transcriptional profiling based on quantitative real-time polymerase chain reaction (qPCR). In this study, to select reference genes showing consistent expression patterns regardless of the acaricide treatment or the type of tissue, Varroa mites treated with each of the three representative acaricides (coumaphos, fluvalinate, and amitraz) were processed for transcriptomic analysis, from which eight genes (NADH dehydrogenase [NADHD], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], eukaryotic translation elongation factor 1 α 1 [eEF1A1], eukaryotic translation elongation factor 2 [eEF2], ribosomal protein L5 [RpL5], Actin, tubulin α-1D chain [α-tubulin], and Rab1) were selected as candidates. The transcription profiles of these genes, depending on the treatment of the three acaricides or across different tissues (cuticle, legs, gut/fat bodies, and synganglion), were analyzed using qPCR with four validation programs, BestKeeper, geNorm, NormFinder, and RefFinder. Following acaricide treatment, eEF1A1 and NADHD showed the least variation in their expression levels, whereas the expression levels of α-tubulin and RpL5 were the most stable across different tissue groups. Rab1/GAPDH and Actin/eEF2 showed the least stable expression patterns following acaricide treatments and across different tissues, respectively, requiring precautions for use. When vitellogenin gene expression was analyzed by different reference genes, its expression profiles varied significantly depending on the reference genes, highlighting the importance of proper reference gene use. Thus, it is recommended using eEF1A1 and NADHD as reference genes for the comparison of the effects of acaricide on the whole body, whereas α-tubulin and RpL5 are recommended for investigating the tissue-specific expression profiles of target genes.
Collapse
Affiliation(s)
- Joonhee Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Kyungmun Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Dongwon Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Si Hyeock Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Zhang Z, Ren M, Liu X, Zhou X, Yang J. Selection of Reference Genes for RT-qPCR Analysis in the Hawthorn Spider Mite, Amphitetranychus viennensis (Acarina: Tetranychidae), Under Acaricide Treatments. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:662-670. [PMID: 35297479 DOI: 10.1093/jee/toac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 05/26/2023]
Abstract
Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ∆Ct methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhonghuan Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY,USA
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
13
|
Selection and Validation of Reliable Reference Genes for qRT-PCR Normalization of Bursaphelenchus xylophilus from Different Temperature Conditions and Developmental Stages. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a powerful technique for studying gene expression. The key to quantitative accuracy depends on the stability of the reference genes used for data normalization under different experimental conditions. Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causal agent of the devastating pine wilt disease (PWD). Extensive and prompt research is needed to understand the molecular mechanism of PWD, but identification of the reference PWN genes for standardized qRT-PCR has not been reported yet. We have analyzed eight candidate reference genes of PWN across different temperature conditions and developmental stages. Delta Ct method, GeNorm, NormFinder, BestKeeper, and RefFinder algorithms were used to evaluate the stability of expression of these genes. Finally, we use arginine kinase gene (AK) in different temperatures and heat shock protein 90 (HSP90) in different developmental stages to confirm the stability of these genes. UBCE and EF1γ were most stable across different temperature treatments, whereas EF1γ and Actin were most stable across different developmental stages. In general, these results indicate that EF1γ is the most stable gene for qRT-PCR under different conditions. The systematic analysis of qRT-PCR reference gene selection will be helpful for future functional analysis and exploration of B. xylophilus genetic resources.
Collapse
|
14
|
Fu H, Huang T, Yin C, Xu Z, Li C, Liu C, Wu T, Song F, Feng F, Yang F. Selection and Validation of Reference Genes for RT-qPCR Normalization in Bradysia odoriphaga (Diptera: Sciaridae) Under Insecticides Stress. Front Physiol 2022; 12:818210. [PMID: 35087425 PMCID: PMC8786907 DOI: 10.3389/fphys.2021.818210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most serious root maggot pest which causes substantial damage to the Chinese chive. Organophosphate (OP) and neonicotinoid insecticides are widely used chemical pesticides and play important roles in controlling B. odoriphaga. However, a strong selection pressure following repeated pesticide applications has led to the development of resistant populations of this insect. To understand the insecticide resistance mechanism in B. odoriphaga, gene expression analysis might be required. Appropriate reference gene selection is a critical prerequisite for gene expression studies, as the expression stability of reference genes can be affected by experimental conditions, resulting in biased or erroneous results. The present study shows the expression profile of nine commonly used reference genes [elongation factor 1α (EF-1α), actin2 (ACT), elongation factor 2α (EF-2α), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein L10 (RPL10), ribosomal protein S3 (RPS3), ubiquitin-conjugating enzyme (UBC), and α-tubulin (TUB)] was systematically analyzed under insecticide stress. Moreover, we also evaluated their expression stability in other experimental conditions, including developmental stages, sexes, and tissues. Five programs (NormFinder, geNorm, BestKeeper, RefFinder, and ΔCt) were used to validate the suitability of candidate reference genes. The results revealed that the most appropriate sets of reference genes were RPL10 and ACT across phoxim; ACT and TUB across chlorpyrifos and chlorfluazuron; EF1α and TUB across imidacloprid; EF1α and EF2α across developmental stages; RPL10 and TUB across larvae; EF1α and ACT across tissues, and ACT and G6PDH across sex. These results will facilitate the standardization of RT-qPCR and contribute to further research on B. odoriphaga gene function under insecticides stress.
Collapse
Affiliation(s)
- Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Tubiao Huang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Cheng Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhenhua Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chao Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunguang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Fujuan Feng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
15
|
Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5294-5303. [PMID: 34310017 DOI: 10.1002/ps.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is mainly vectored by Bemisia tabaci in China, which has a worldwide distribution, and greatly reduces the yields of tomato and other vegetables. At present, control of ToCV has been focused mainly by the use of insecticides to control whitefly populations. Transcriptome sequencing showed high expression of the B. tabaci Bta11975 gene, an α-glucosidase (AGLU) during ToCV acquisition by whitefly Mediterranean (MED) species. To investigate the role of Bta11975 gene in ToCV acquisition and transmission by B. tabaci MED, we used RNA interference (RNAi) to reduce the expression of the Bta11975 gene. RESULTS The relative expression of the Bta11975 gene was correlated with the ToCV content in B. tabaci. The AGLU is highly expressed in primary salivary gland and gut. After the Bta11975 gene was silenced, the gene expression of B. tabaci was reduced and B. tabaci mortality was increased. Besides, ToCV acquisition by B. tabaci at 48 and 72 h AAP was reduced, and ToCV transmission was significantly reduced by 25 or 50 of B. tabaci. CONCLUSIONS These results indicate that suppression of expression of the Bta11975 gene in B. tabaci MED by RNAi can reduce acquisition and transmission of ToCV by B. tabaci MED.
Collapse
Affiliation(s)
- DingYiHui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - LiPing Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - XiaoBin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
16
|
Jureckova K, Raschmanova H, Kolek J, Vasylkivska M, Branska B, Patakova P, Provaznik I, Sedlar K. Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data. Front Microbiol 2021; 12:640054. [PMID: 33815328 PMCID: PMC8012504 DOI: 10.3389/fmicb.2021.640054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression analysis through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) depends on correct data normalization by reference genes with stable expression. Although Clostridium beijerinckii NRRL B-598 is a promising Gram-positive bacterium for the industrial production of biobutanol, validated reference genes have not yet been reported. In this study, we selected 160 genes with stable expression based on an RNA sequencing (RNA-Seq) data analysis, and among them, seven genes (zmp, rpoB1, rsmB, greA, rpoB2, topB2, and rimO) were selected for experimental validation by RT-qPCR and gene ontology (GO) enrichment analysis. According to statistical analyses, zmp and greA were the most stable and suitable reference genes for RT-qPCR normalization. Furthermore, our methodology can be useful for selection of the reference genes in other strains of C. beijerinckii and it also suggests that the RNA-Seq data can be used for the initial selection of novel reference genes, however, their validation is required.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Hana Raschmanova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
17
|
Li X, Gong P, Wang B, Wang C, Li M, Zhang Y, Li X, Gao H, Ju J, Zhu X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci Rep 2020; 10:21951. [PMID: 33319828 PMCID: PMC7738536 DOI: 10.1038/s41598-020-78974-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 11/05/2020] [Indexed: 11/09/2022] Open
Abstract
Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) is one of the most common aphid pests of winter cereals. To facilitate accurate gene expression analyses with qRT-PCR assays, the expression stability of candidate reference genes under specific experimental conditions must be verified before they can be used to normalize target gene expression levels. In this study, 10 candidate reference genes in M. dirhodum were analyzed by qRT-PCR under various experimental conditions. Their expression stability was evaluated with delta Ct, BestKeeper, geNorm, and NormFinder methods, and the final stability ranking was determined with RefFinder. The results indicate that the most appropriate sets of internal controls were SDHB and RPL8 across geographic population; RPL8, Actin, and GAPDH across developmental stage; SDHB and NADH across body part; RPL8 and Actin across wing dimorphism and temperature; RPL4 and EF1A across starvation stress; AK and RPL4 across insecticide treatments; RPL8 and NADH across antibiotic treatments; RPL8, RPL4, Actin, and NADH across all samples. The results of this study provide useful insights for establishing a standardized qRT-PCR procedure for M. dirhodum and may be relevant for identifying appropriate reference genes for molecular analyses of related insects.
Collapse
Affiliation(s)
- Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China.,School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Bingting Wang
- College of Life Science, Hebei Normal University, Road Nan er huan dong No.20, Shijiazhuang, 050024, Hebei, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Mengyi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Ürümqi, 830091, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Road Nan er huan dong No.20, Shijiazhuang, 050024, Hebei, China.
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
18
|
Guo CF, Pan HP, Zhang LH, Ou D, Lu ZT, Khan MM, Qiu BL. Comprehensive Assessment of Candidate Reference Genes for Gene Expression Studies Using RT-qPCR in Tamarixia radiata, a Predominant Parasitoid of Diaphorina citri. Genes (Basel) 2020; 11:E1178. [PMID: 33050374 PMCID: PMC7601638 DOI: 10.3390/genes11101178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Tamarixia radiata (Waterston) is a predominant parasitoid of the Asian citrus psyllid (ACP), a destructive citrus pest and vector of huanglongbing (HLB) disease in the fields of southern China. To explore the functioning of target genes in T. radiata, the screening of specific reference genes is critical for carrying out the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) under different experimental conditions. However, no reference gene(s) for T. radiata has yet been reported. Here, we selected seven housekeeping genes of T. radiate and evaluated their stability under the six conditions (developmental stage, sex, tissue, population, temperature, diet) by using RefFinder software, which contains four different programs (geNorm, ΔCt, BestKeeper, and NormFinder). Pairwise variation was analyzed by geNorm software to determine the optimal number of reference genes during the RT-qPCR analysis. The results reveal better reference genes for differing research foci: 18S and EF1A for the developmental stage; PRS18 and EF1A for sex, PRS18 and RPL13 for different tissues (head, thorax, abdomen); EF1A and ArgK between two populations; β-tubulin and EF1A for different temperatures (5, 15, 25, 35 °C); and ArgK and PRS18 for different feeding diets. Furthermore, when the two optimal and two most inappropriate reference genes were chosen in different temperatures and tissue treatments, respectively, the corresponding expression patterns of HSP70 (as the reporter gene) differed substantially. Our study provides, for the first time, a more comprehensive list of optimal reference genes from T. radiata for use in RT-qPCR analysis, which should prove beneficial for subsequent functional investigations of target gene(s) in this natural enemy of ACP.
Collapse
Affiliation(s)
- Chang-Fei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
| | - Hui-Peng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
| | - Li-He Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
| | - Zi-Tong Lu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (C.-F.G.); (H.-P.P.); (L.-H.Z.); (D.O.); (Z.-T.L.); (M.M.K.)
- Engineering Research Center of Biocontrol, Ministry of Education, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
19
|
Wei ZH, Liu M, Hu C, Yang XQ. Overexpression of Glutathione S-Transferase Genes in Field λ-Cyhalothrin-Resistant Population of Cydia pomonella: Reference Gene Selection and Expression Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5825-5834. [PMID: 32348133 DOI: 10.1021/acs.jafc.0c01367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Analysis of the glutathione S-transferase (GST) gene expression in an insecticide-resistant strain of Cydia pomonella using real-time quantitative polymerase chain reaction is a key step toward more mechanism studies that require suitable reference genes with stable expression. Here, nine commonly used reference genes were selected, and their expression stabilities were analyzed. Results showed that EF-1α was the most stable reference gene in all of the experimental sets. The combinations of EF-1α and 18S, EF-1α and RPL12, and EF-1α and GAPDH were sufficient for normalization of gene expression analysis accurately in developmental stages, tissues, and larvae exposed to sublethal dose of λ-cyhalothrin, respectively. Additionally, the suitability of particular reference genes was verified by analyzing the spatiotemporal and insecticide-induced expression profiles of CpGSTe3, CpGSTd3, and CpGSTd4, which were overexpressed in a λ-cyhalothrin-resistant population from northeast China. These genes were used to confer the practicability of reference genes chosen in this study.
Collapse
Affiliation(s)
- Zi-Han Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Miao Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| |
Collapse
|
20
|
Reference gene selection for quantitative real-time PCR (qRT-PCR) expression analysis in Galium aparine L. PLoS One 2020; 15:e0226668. [PMID: 32017769 PMCID: PMC6999859 DOI: 10.1371/journal.pone.0226668] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/03/2019] [Indexed: 02/02/2023] Open
Abstract
To accurately evaluate expression levels of target genes, stable internal reference genes is required for normalization of quantitative real-time PCR (qRT-PCR) data. However, there have been no systematical investigation on the stability of reference genes used in the bedstraw weed, Galium aparine L. (BGA). In this study, the expression profiles of seven traditionally used reference genes, namely 18S, 28S, ACT, GAPDH, EF1α, RPL7 and TBP in BGA were assessed under both biotic (developmental time and tissue), and abiotic (temperature, regions and herbicide) conditions. Four analytical algorithms (geNorm, Normfinder, BestKeeper and the ΔCt method) were used to analyze the suitability of these genes as internal reference genes. RefFinder, a comprehensive analytical software, was used to rank the overall stability of the candidate genes. The optimal normalization internal control genes were ranked as: 28S and RPL7 were best for all the different experimental conditions (developmental stages, tissues, temperature, regions and herbicide treatment); 28S and RPL7 for developmental stages; TBP and GAPDH for different tissues; 28S and GAPDH were relatively stable for different temperature; 28S and TBP were suitable for herbicide treatment. A specific set of reference genes were recommended for each experimental condition in BGA.
Collapse
|
21
|
Freitas FCP, Depintor TS, Agostini LT, Luna-Lucena D, Nunes FMF, Bitondi MMG, Simões ZLP, Lourenço AP. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 2019; 9:17692. [PMID: 31776359 PMCID: PMC6881334 DOI: 10.1038/s41598-019-53544-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Collapse
Affiliation(s)
- Flávia C P Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Thiago S Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas T Agostini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. .,Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
22
|
Reding K, Chen M, Lu Y, Cheatle Jarvela AM, Pick L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 2019; 146:dev181453. [PMID: 31444220 PMCID: PMC6765130 DOI: 10.1242/dev.181453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/12/2019] [Indexed: 01/21/2023]
Abstract
The discovery of pair-rule genes (PRGs) in Drosophila revealed the existence of an underlying two-segment-wide prepattern directing embryogenesis. The milkweed bug Oncopeltus fasciatus, a hemimetabolous insect, is a more representative arthropod: most of its segments form sequentially after gastrulation. Here, we report the expression and function of orthologs of the complete set of nine Drosophila PRGs in Oncopeltus Seven Of-PRG-orthologs are expressed in stripes in the primordia of every segment, rather than every other segment; Of-runt is PR-like and several orthologs are also expressed in the segment addition zone. RNAi-mediated knockdown of Of-odd-skipped, paired and sloppy-paired impacted all segments, with no indication of PR-like register. We confirm that Of-E75A is expressed in PR-like stripes, although it is not expressed in this way in Drosophila, demonstrating the existence of an underlying PR-like prepattern in Oncopeltus These findings reveal that a switch occurred in regulatory circuits, leading to segment formation: while several holometabolous insects are 'Drosophila-like', using PRG orthologs for PR patterning, most Of-PRGs are expressed segmentally in Oncopeltus, a more basally branching insect. Thus, an evolutionarily stable phenotype - segment formation - is directed by alternate regulatory pathways in diverse species.
Collapse
Affiliation(s)
- Katie Reding
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Mengyao Chen
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Yong Lu
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Alys M Cheatle Jarvela
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| | - Leslie Pick
- Department of Entomology, 4291 Fieldhouse Drive, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Bin S, Pu X, Shu B, Kang C, Luo S, Tang Y, Wu Z, Lin J. Selection of Reference Genes for Optimal Normalization of Quantitative Real-Time Polymerase Chain Reaction Results for Diaphorina citri Adults. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:355-363. [PMID: 30289505 DOI: 10.1093/jee/toy297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), can cause direct damage to citrus trees and is the main vector for the devastating disease, citrus greening disease or huanglongbing. Most molecular studies on this important insect pest use real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to quantify gene expression, including analyzing molecular basis for insecticide resistance in field populations. One critical factor to cause inaccuracy in RT-qPCR results is the lack of appropriate internal reference genes for optimal data normalization. In this study, the expression levels of 10 selected reference genes were evaluated in different tissue samples of psyllid adults and in the insects treated with different temperatures and insecticides. Data were analyzed using different computational algorithms, including Delta Ct, BestKeeper, NormFinder, geNorm, and RefFinder. According to our results, at least two reference genes should be used for the normalization of RT-qPCR data in this insect. The best choices of reference genes for different samples are as follows: ACT1 and Ferritin for different tissue samples, RPS20 and Ferritin for samples treated with different temperatures, TBP and EF1α for samples treated with imidacloprid, and Ferritin and TBP for samples treated with beta-cypermethrin. The reference genes identified in this study should be useful for future studies to analyze the expression patterns of target genes, especially for genes linked with temperature adaptability and insecticide resistance in this insect species in the future.
Collapse
Affiliation(s)
- Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Cong Kang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Shaoming Luo
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Yu Tang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Yingdong Teaching Building, Guangzhou, China
| |
Collapse
|
24
|
Lü J, Chen S, Guo M, Ye C, Qiu B, Yang C, Pan H. Selection of appropriate reference genes for RT-qPCR analysis in Propylea japonica (Coleoptera: Coccinellidae). PLoS One 2018; 13:e0208027. [PMID: 30481225 PMCID: PMC6258549 DOI: 10.1371/journal.pone.0208027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique commonly used in molecular biology to analyze RNA expression. The selection of suitable reference genes for data normalization is a precondition for credible measurements of gene expression levels using RT-qPCR. Propylea japonica is one of the most common pests of many crop systems throughout East Asia, and has often been used in the testing of non-target impacts during environmental risk assessments of genetically engineered plants. The present study assessed the suitability of nine frequently used reference genes for comparisons of P. japonica gene expression. Expression stability was compared across developmental stages, sex, a range of tissues, and following exposure to different temperatures. Data were analyzed using RefFinder, which integrated the results obtained using NormFinder, geNorm, BestKeeper, and the ΔCt method. This led to the identification of unique sets of reference genes for each experimental condition: ribosomal protein S18 (RPS18) and elongation factor 1 α (EF1A) for developmental stage comparisons, RPS18 and EF1A for sex comparisons, EF1A and ribosomal protein L4 for tissue comparisons, and RPS18 and EF1A for analyses of temperature-mediated effects. These reference genes will help to enhance the accuracy of RT-qPCR analyses of P. japonica gene expression. This work represents an initial move towards building a standardized system for RT-qPCR analysis of P. japonica, providing a basis for the ecological risk assessment of RNAi-based insect control products.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Cuiyi Ye
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- * E-mail: (HPP); (CXY)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province/Engineering Technology Research Center of Agricultural Pest Biocontrol in Guangdong Province, South China Agricultural University, Guangzhou, China
- * E-mail: (HPP); (CXY)
| |
Collapse
|
25
|
Lü J, Chen S, Guo M, Ye C, Qiu B, Wu J, Yang C, Pan H. Selection and Validation of Reference Genes for RT-qPCR Analysis of the Ladybird Beetle Henosepilachna vigintioctomaculata. Front Physiol 2018; 9:1614. [PMID: 30483159 PMCID: PMC6243213 DOI: 10.3389/fphys.2018.01614] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a momentous technique for quantifying expression levels of the targeted genes across various biological processes. Selection and validation of appropriate reference genes for RT-qPCR analysis are a pivotal precondition for reliable expression measurement. Henosepilachna vigintioctopunctata is one of the most serious insect pests that attack Solanaceae plants in Asian countries. Recently, the transcriptomes of H. vigintioctopunctata were sequenced, promoting gene functional studies of this insect pest. Unfortunately, the reference genes for H. vigintioctopunctata have not been selected and validated. Here, a total of 7 commonly used reference genes, namely, Actin, GAPDH, RPL13, RPL6, RPL32, RPS18, and ATPB, were selected and assessed for suitability under four experimental conditions, namely, developmental stage, tissue, temperature, and host plant, using RefFinder, which integrates four different analytical tools (Normfinder, geNorm, the ΔCt method, and BestKeeper). The results displayed that RPL13 and RPS18 were the best suitable reference genes for each experimental condition. The relative transcript levels of 2 target genes, lov and TBX1, varied greatly according to normalization with the two most- and least-suited reference genes. Our results will be helpful for improving the accuracy of the RT-qPCR analysis for future functional investigations of target gene expression in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Cuiyi Ye
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Lü J, Yang C, Zhang Y, Pan H. Selection of Reference Genes for the Normalization of RT-qPCR Data in Gene Expression Studies in Insects: A Systematic Review. Front Physiol 2018; 9:1560. [PMID: 30459641 PMCID: PMC6232608 DOI: 10.3389/fphys.2018.01560] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 02/03/2023] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying expression levels of targeted genes during various biological processes in numerous areas of clinical and biological research. Selection of appropriate reference genes for RT-qPCR normalization is an elementary prerequisite for reliable measurements of gene expression levels. Here, by analyzing datasets published between 2008 and 2017, we summarized the current trends in reference gene selection for insect gene expression studies that employed the most widely used SYBR Green method for RT-qPCR normalization. We curated 90 representative papers, mainly published in 2013–2017, in which a total of 78 insect species were investigated in 100 experiments. Furthermore, top five journals, top 10 frequently used reference genes, and top 10 experimental factors have been determined. The relationships between the numbers of the reference genes, experimental factors, analysis tools on the one hand and publication date (year) on the other hand was investigated by linear regression. We found that the more recently the paper was published, the more experimental factors it tended to explore, and more analysis tools it used. However, linear regression analysis did not reveal a significant correlation between the number of reference genes and the study publication date. Taken together, this meta-analysis will be of great help to researchers that plan gene expression studies in insects, especially the non-model ones, as it provides a summary of appropriate reference genes for expression studies, considers the optimal number of reference genes, and reviews the average number of experimental factors and analysis tools per study.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Nagy NA, Németh Z, Juhász E, Póliska S, Rácz R, Kosztolányi A, Barta Z. Evaluation of potential reference genes for real-time qPCR analysis in a biparental beetle, Lethrus apterus (Coleoptera: Geotrupidae). PeerJ 2017; 5:e4047. [PMID: 29201562 PMCID: PMC5710163 DOI: 10.7717/peerj.4047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
Hormones play an important role in the regulation of physiological, developmental and behavioural processes. Many of these mechanisms in insects, however, are still not well understood. One way to investigate hormonal regulation is to analyse gene expression patterns of hormones and their receptors by real-time quantitative polymerase chain reaction (RT-qPCR). This method, however, requires stably expressed reference genes for normalisation. In the present study, we evaluated 11 candidate housekeeping genes as reference genes in samples of Lethrus apterus, an earth-boring beetle with biparental care, collected from a natural population. For identifying the most stable genes we used the following computational methods: geNorm, NormFinder, BestKeeper, comparative delta Ct method and RefFinder. Based on our results, the two body regions sampled (head and thorax) differ in which genes are most stably expressed. We identified two candidate reference genes for each region investigated: ribosomal protein L7A and RP18 in samples extracted from the head, and ribosomal protein L7A and RP4 extracted from the muscles of the thorax. Additionally, L7A and RP18 appear to be the best reference genes for normalisation in all samples irrespective of body region. These reference genes can be used to study the hormonal regulation of reproduction and parental care in Lethrus apterus in the future.
Collapse
Affiliation(s)
- Nikoletta A Nagy
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Németh
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Edit Juhász
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rita Rácz
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - András Kosztolányi
- MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Barta
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.,MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Guo L, Liang P, Fang K, Chu D. Silence of inositol 1,4,5-trisphosphate receptor expression decreases cyantraniliprole susceptibility in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:162-169. [PMID: 29107242 DOI: 10.1016/j.pestbp.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Cyantraniliprole is the second active ingredient of anthranilic diamide insecticide, and the first to control a cross-spectrum of chewing and sucking pests such as sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). The inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are two families of Ca2+ release channels to raise the cytoplasmic free calcium concentration when it is activated by various extracellular stimuli. Previous study proved the over-expression of ryanodine receptor (RyR) was associated with the resistance to diamide insecticides, while the roles of IP3R in diamide resistance remain unknown. In this study, a full-length cDNA sequence of IP3R was cloned from B. tabaci through RT-PCR and rapid amplification of cDNA ends (RACE). The gene (named BtIP3R) is 9922bps long, with an open reading frame (ORF) of 8202bps, encoding a predicted IP3R of 2733 amino acids. The BtIP3R shares 47-78% identity with other insect IP3Rs. Quantitative real-time PCR (qRT-PCR) analysis showed that the BtIP3R was highly expressed in larva, pseudopupa, and female adult, while lowly expressed in egg and male adult. RNA interference (RNAi) by dietary introduction of double-stranded RNA (dsRNA) of BtIP3R significantly reduced the mRNA levels of the target gene in the adult, and dramatically decreased the susceptibility of adult B. tabaci to cyantraniliprole. The results shed light on further understanding of cyantraniliprole resistance mechanisms in B. tabaci as well as in other insects.
Collapse
Affiliation(s)
- Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Protection, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Kuan Fang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Protection, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Protection, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
29
|
Selection and validation of reference genes for qRT-PCR analysis during biological invasions: The thermal adaptability of Bemisia tabaci MED. PLoS One 2017; 12:e0173821. [PMID: 28323834 PMCID: PMC5360248 DOI: 10.1371/journal.pone.0173821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/26/2017] [Indexed: 11/19/2022] Open
Abstract
The Bemisia tabaci Mediterranean (MED) cryptic species has been rapidly invading to most parts of the world owing to its strong ecological adaptability, which is considered as a model insect for stress tolerance studies under rapidly changing environments. Selection of a suitable reference gene for quantitative stress-responsive gene expression analysis based on qRT-PCR is critical for elaborating the molecular mechanisms of thermotolerance. To obtain accurate and reliable normalization data in MED, eight candidate reference genes (β-act, GAPDH, β-tub, EF1-α, GST, 18S, RPL13A and α-tub) were examined under various thermal stresses for varied time periods by using geNorm, NormFinder and BestKeeper algorithms, respectively. Our results revealed that β-tub and EF1-α were the best reference genes across all sample sets. On the other hand, 18S and GADPH showed the least stability for all the samples studied. β-act was proved to be highly stable only in case of short-term thermal stresses. To our knowledge this was the first comprehensive report on validation of reference genes under varying temperature stresses in MED. The study could expedite particular discovery of thermotolerance genes in MED. Further, the present results can form the basis of further research on suitable reference genes in this invasive insect and will facilitate transcript profiling in other invasive insects.
Collapse
|
30
|
Morales MA, Mendoza BM, Lavine LC, Lavine MD, Walsh DB, Zhu F. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae. Int J Biol Sci 2016; 12:1129-39. [PMID: 27570487 PMCID: PMC4997057 DOI: 10.7150/ijbs.16319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest.
Collapse
Affiliation(s)
- Mariany Ashanty Morales
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Mark Daniel Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Douglas Bruce Walsh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Fang Zhu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
31
|
Ma KS, Li F, Liang PZ, Chen XW, Liu Y, Gao XW. Identification and Validation of Reference Genes for the Normalization of Gene Expression Data in qRT-PCR Analysis in Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew003. [PMID: 28076279 PMCID: PMC5778981 DOI: 10.1093/jisesa/iew003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/10/2016] [Indexed: 05/13/2023]
Abstract
To obtain accurate and reliable results from quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis, it is necessary to select suitable reference genes as standards for normalizing target gene expression data. QRT-PCR is a popular analytical methodology for studying gene expression and it has been used widely in studies of Aphis gossypii Glover in recent years. However, there is absence of study on the stability of the expression of reference genes in A. gossypii. In this study, eight commonly used candidate reference genes, including 18S, 28S, β-ACT, GAPDH, EF1α, RPL7, α-TUB, and TBP, were evaluated under various experimental conditions to assess their suitability for use in the normalization of qRT-PCR data. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated by performing normalizations of expression data for the HSP70 gene. The results showed the most suitable combinations of reference genes for the different experimental conditions. For experiments based on divergent developmental stages, EF1α, β-ACT, and RPL7 are the optimal reference gene combination, both EF1α and β-ACT are the optimal combination used in the experiments of different geographical populations, whereas for experiments of the temperature changes, the combination of GAPDH and RPL7 is optimal, both 18S and β-ACT are an optimal combination for feeding assay experiments. These research results should be useful for the selection of the suitable reference genes to obtain reliable qRT-PCR data in the gene expression study of A. gossypii.
Collapse
Affiliation(s)
- Kang-Sheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| | - Ping-Zhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| | - Xue-Wei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, People's Republic of China (; ; ; ; ; )
| |
Collapse
|
32
|
Yang C, Pan H, Noland JE, Zhang D, Zhang Z, Liu Y, Zhou X. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae). Sci Rep 2015; 5:18201. [PMID: 26656102 PMCID: PMC4674751 DOI: 10.1038/srep18201] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/11/2023] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for quantifying gene expression across various biological processes, of which requires a set of suited reference genes to normalize the expression data. Coleomegilla maculata (Coleoptera: Coccinellidae), is one of the most extensively used biological control agents in the field to manage arthropod pest species. In this study, expression profiles of 16 housekeeping genes selected from C. maculata were cloned and investigated. The performance of these candidates as endogenous controls under specific experimental conditions was evaluated by dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt method. In addition, RefFinder, a comprehensive platform integrating all the above-mentioned algorithms, ranked the overall stability of these candidate genes. As a result, various sets of suitable reference genes were recommended specifically for experiments involving different tissues, developmental stages, sex, and C. maculate larvae treated with dietary double stranded RNA. This study represents the critical first step to establish a standardized RT-qPCR protocol for the functional genomics research in a ladybeetle C. maculate. Furthermore, it lays the foundation for conducting ecological risk assessment of RNAi-based gene silencing biotechnologies on non-target organisms; in this case, a key predatory biological control agent.
Collapse
Affiliation(s)
- Chunxiao Yang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | | | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
| | - Zhanhong Zhang
- Hunan Vegetable Institute, Hunan Academy of Agricultural Sciences, Hunan, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Hunan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
33
|
Yang C, Li H, Pan H, Ma Y, Zhang D, Liu Y, Zhang Z, Zheng C, Chu D. Stable Reference Gene Selection for RT-qPCR Analysis in Nonviruliferous and Viruliferous Frankliniella occidentalis. PLoS One 2015; 10:e0135207. [PMID: 26244556 PMCID: PMC4526564 DOI: 10.1371/journal.pone.0135207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/19/2015] [Indexed: 12/27/2022] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for measuring and evaluating gene expression during variable biological processes. To facilitate gene expression studies, normalization of genes of interest relative to stable reference genes is crucial. The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), the main vector of tomato spotted wilt virus (TSWV), is a destructive invasive species. In this study, the expression profiles of 11 candidate reference genes from nonviruliferous and viruliferous F. occidentalis were investigated. Five distinct algorithms, geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder, were used to determine the performance of these genes. geNorm, NormFinder, BestKeeper, and RefFinder identified heat shock protein 70 (HSP70), heat shock protein 60 (HSP60), elongation factor 1 α, and ribosomal protein l32 (RPL32) as the most stable reference genes, and the ΔCt method identified HSP60, HSP70, RPL32, and heat shock protein 90 as the most stable reference genes. Additionally, two reference genes were sufficient for reliable normalization in nonviruliferous and viruliferous F. occidentalis. This work provides a foundation for investigating the molecular mechanisms of TSWV and F. occidentalis interactions.
Collapse
Affiliation(s)
- Chunxiao Yang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
| | - Hui Li
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yabin Ma
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
| | - Zhanhong Zhang
- Hunan Academy of Agricultural Sciences, Hunan Vegetable Institute, Changsha, Hunan, China
| | - Changying Zheng
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
- * E-mail: (DC); (CYZ)
| | - Dong Chu
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
- * E-mail: (DC); (CYZ)
| |
Collapse
|
34
|
Shang F, Wei DD, Jiang XZ, Wei D, Shen GM, Feng YC, Li T, Wang JJ. Reference Gene Validation for Quantitative PCR Under Various Biotic and Abiotic Stress Conditions in Toxoptera citricida (Hemiptera, Aphidiae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2040-2047. [PMID: 26470351 DOI: 10.1093/jee/tov184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 06/05/2023]
Abstract
The regulation of mRNA expression level is critical for gene expression studies. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) is commonly used to investigate mRNA expression level of genes under various experimental conditions. An important factor that determines the optimal quantification of qRT-PCR data is the choice of the reference gene for normalization. To advance gene expression studies in Toxoptera citricida (Kirkaldy), an important citrus pest and a main vector of the Citrus tristeza virus, we used five tools (GeNorm, NormFinder, BestKeeper, ΔCt methods, and RefFinder) to evaluate seven candidate reference genes (elongation factor-1 alpha [EF1α], beta tubulin [β-TUB], 18S ribosomal RNA [18S], RNA polymerase II large subunit (RNAP II), beta actin (β-ACT), alpha tubulin, and glyceraldhyde-3-phosphate dehydrogenase) under different biotic (developmental stages and wing dimorphism) and abiotic stress (thermal, starvation, and UV irradiation) conditions. The results showed that EF1α and 18S were the most stable genes under various biotic states, β-ACT and β-TUB during thermal stress, EF1α and RNAP II under starvation stress, and RNAP II, β-ACT, and EF1α under UV irradiation stress conditions. This study provides useful resources for the transcriptional profiling of genes in T. citricida and closely related aphid species.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Ting Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
35
|
Yang C, Pan H, Liu Y, Zhou X. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae). PLoS One 2015; 10:e0130593. [PMID: 26090683 PMCID: PMC4474611 DOI: 10.1371/journal.pone.0130593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/22/2015] [Indexed: 12/23/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs) is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A), ribosomal protein L11 (RPL11), ribosomal protein L14 (RPL14), ribosomal protein S8 (RPS8), ribosomal protein S23 (RPS23), NADH-ubiquinone oxidoreductase (NADH), vacuolar-type H+-ATPase (ATPase), heat shock protein 70 (HSP70), 18S ribosomal RNA (18S), and 12S ribosomal RNA (12S) from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact.
Collapse
Affiliation(s)
- Chunxiao Yang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, Hunan, China
- * E-mail: (XGZ); (YL)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
- * E-mail: (XGZ); (YL)
| |
Collapse
|
36
|
Ridgeway JA, Timm AE. Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae). PLoS One 2015; 10:e0129026. [PMID: 26030743 PMCID: PMC4450875 DOI: 10.1371/journal.pone.0129026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/04/2015] [Indexed: 12/02/2022] Open
Abstract
Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.
Collapse
Affiliation(s)
- Jaryd A. Ridgeway
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Alicia E. Timm
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
37
|
Pan H, Yang X, Siegfried BD, Zhou X. A Comprehensive Selection of Reference Genes for RT-qPCR Analysis in a Predatory Lady Beetle, Hippodamia convergens (Coleoptera: Coccinellidae). PLoS One 2015; 10:e0125868. [PMID: 25915640 PMCID: PMC4411045 DOI: 10.1371/journal.pone.0125868] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a reliable, rapid, and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate RT-qPCR data, normalization relative to stable reference genes is required. In this study, expression profiles of seven candidate reference genes, including β-actin (Actin), elongation factor 1 α (EF1A), glyceralde hyde-3-phosphate dehydro-genase (GAPDH), cyclophilins A (CypA), vacuolar-type H+-ATPase (ATPase), 28S ribosomal RNA (28S), and 18S ribosomal RNA (18S) from Hippodamia convergens were investigated. H. convergens is an abundant predatory species in the New World, and has been widely used as a biological control agent against sap-sucking insect pests, primarily aphids. A total of four analytical methods, geNorm, Normfinder, BestKeeper, and the ΔCt method, were employed to evaluate the performance of these seven genes as endogenous controls under diverse experimental conditions. Additionally, RefFinder, a comprehensive evaluation platform integrating the four above mentioned algorithms, ranked the overall stability of these candidate genes. A suite of reference genes were specifically recommended for each experimental condition. Among them, 28S, EF1A, and CypA were the best reference genes across different development stages; GAPDH, 28S, and CypA were most stable in different tissues. GAPDH and CypA were most stable in female and male adults and photoperiod conditions, 28S and EF1A were most stable under a range of temperatures, Actin and CypA were most stable under dietary RNAi condition. This work establishes a standardized RT-qPCR analysis in H. convergens. Additionally, this study lays a foundation for functional genomics research in H. convergens and sheds light on the ecological risk assessment of RNAi-based biopesticides on this non-target biological control agent.
Collapse
Affiliation(s)
- Huipeng Pan
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xiaowei Yang
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
38
|
Stably expressed housekeeping genes across developmental stages in the two-spotted spider mite, Tetranychus urticae. PLoS One 2015; 10:e0120833. [PMID: 25822495 PMCID: PMC4379063 DOI: 10.1371/journal.pone.0120833] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring mRNA expression. To facilitate gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to stable housekeeping genes is mandatory. In this study, ten housekeeping genes, including beta-actin (Actin) , elongation factor 1 α (EF1A) , glyceralde hyde-3-phosphate dehydrogenase (GAPDH) , ribosomal protein L13 (RPL13) , ribosomal protein 49 (RP49) , α-tubulin (Tubulin) , vacuolar-type H+-ATPase (v-ATPase) , succinate dehydrogenase subunit A (SDHA) , 28S ribosomal RNA (28S) , and 18S ribosomal RNA (18S) from the two-spotted spider mite, Tetranychus urticae, were selected as the candidate reference genes. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the performance of these candidates as endogenous controls across different developmental stages. In addition, RefFinder, which integrates the above-mentioned software tools, provided the overall ranking of the stability/suitability of these candidate reference genes. Among them, PRL13 and v-ATPase were the two most stable housekeeping genes across different developmental stages. This work is the first step toward establishing a standardized qRT-PCR analysis in T. urticae following the MIQE guideline. With the recent release of the T. urticae genome, results from this study provide a critical piece for the subsequent genomics and functional genomics research in this emerging model system.
Collapse
|