1
|
Zheng S, Chen X, Fang J, Li Y, Xiao X, Zhang X, Zhang L, Cheng Y, Hao L. The role of insulin-like growth factor-1 in lactation. Gene 2025; 962:149577. [PMID: 40404070 DOI: 10.1016/j.gene.2025.149577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/21/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Generally, Insulin-like growth factor 1 (IGF-1) is believed to regulate lactation activity by promoting cell proliferation and differentiation. With the advancement of research, IGF-1 has been discovered to play an important role in different stages of lactation. In actual animal production, lactation ability directly affects milk yield and milk quality, which not only affects the survival and future growth of pups, but also is an important economic trait of some animals. In this paper, it is introduced that IGF-1 plays an important role in the whole lactation process, and what factors are involved in the regulation of IGF-1 in this process and how to improve lactation ability through IGF-1 in animal production, providing a theoretical basis for further exploration of IGF-1 in lactation, and also brings a theoretical foundation for the improvement of animal lactation ability.
Collapse
Affiliation(s)
- Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - JiaY Fang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yi Li
- College of Animal Science, Jilin University, Changchun 130062, China
| | - XingY Xiao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - XunM Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - LiB Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - YunY Cheng
- College of Public Health, Jilin University, Changchun 130061, China
| | - LinL Hao
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Fejzo M, Wang X, Zöllner J, Pujol-Gualdo N, Laisk T, Finer S, van Heel DA, Brumpton B, Bhatta L, Hveem K, Jasper EA, Velez Edwards DR, Hellwege JN, Edwards T, Jarvik GP, Luo Y, Khan A, MacGibbon K, Gao Y, Ge G, Averbukh I, Soon E, Angelo M, Magnus P, Johansson S, Njølstad PR, Vaudel M, Shu C, Mancuso N. Multi-ancestry GWAS of severe pregnancy nausea and vomiting identifies risk loci associated with appetite, insulin signaling, and brain plasticity. RESEARCH SQUARE 2024:rs.3.rs-5487737. [PMID: 39764105 PMCID: PMC11702859 DOI: 10.21203/rs.3.rs-5487737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
While most pregnancies are affected by nausea and vomiting, hyperemesis gravidarum (HG) is at the severe end of the clinical spectrum and is associated with dehydration, undernutrition, and adverse maternal, fetal, and child outcomes. Herein we performed a multi-ancestry genome-wide association study (GWAS) of severe nausea and vomiting of pregnancy of 10,974 cases and 461,461 controls across European, Asian, African, and Latino ancestries. We identified ten significantly associated loci, of which six were novel (SLITRK1, SYN3, IGSF11, FSHB, TCF7L2, and CDH9), and confirmed previous genome-wide significant associations with risk genes GDF15, IGFBP7, PGR, and GFRAL. In a spatiotemporal analysis of placental development, GDF15 and TCF7L2 were expressed primarily in extra villous trophoblast, and using a weighted linear model of maternal, paternal, and fetal effects, we confirmed opposing effects for GDF15 between maternal and fetal genotype. Conversely, IGFBP7 and PGR were primarily expressed in developing maternal spiral arteries during placentation, with effects limited to the maternal genome. Risk loci were found to be under significant evolutionary selection, with the strongest effects on nausea and vomiting mid-pregnancy. Selected loci were associated with abnormal pregnancy weight gain, pregnancy duration, birth weight, head circumference, and pre-eclampsia. Potential roles for candidate genes in appetite, insulin signaling, and brain plasticity provide new pathways to explore etiological mechanisms and novel therapeutic avenues.
Collapse
Affiliation(s)
- Marlena Fejzo
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Xinran Wang
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Julia Zöllner
- UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - David A van Heel
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ben Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Division of Mental Health Care, St Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Department of Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elizabeth A Jasper
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Digna R Velez Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Jacklyn N Hellwege
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Todd Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Atlas Khan
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Kimber MacGibbon
- Hyperemesis Education and Research Foundation, Clackamas, OR 97089 USA
| | - Yuan Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Gaoxiang Ge
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Chang Shu
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Nicholas Mancuso
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| |
Collapse
|
3
|
Fejzo M, Wang X, Zöllner J, Pujol-Gualdo N, Laisk T, Finer S, van Heel DA, Brumpton B, Bhatta L, Hveem K, Jasper EA, Velez Edwards DR, Hellwege JN, Edwards T, Jarvik GP, Luo Y, Khan A, MacGibbon K, Gao Y, Ge G, Averbukh I, Soon E, Angelo M, Magnus P, Johansson S, Njølstad PR, Vaudel M, Shu C, Mancuso N. Multi-ancestry GWAS of severe pregnancy nausea and vomiting identifies risk loci associated with appetite, insulin signaling, and brain plasticity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.19.24317559. [PMID: 39606329 PMCID: PMC11601681 DOI: 10.1101/2024.11.19.24317559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While most pregnancies are affected by nausea and vomiting, hyperemesis gravidarum (HG) is at the severe end of the clinical spectrum and is associated with dehydration, undernutrition, and adverse maternal, fetal, and child outcomes. Herein we performed a multi-ancestry genome-wide association study (GWAS) of severe nausea and vomiting of pregnancy of 10,974 cases and 461,461 controls across European, Asian, African, and Latino ancestries. We identified ten significantly associated loci, of which six were novel (SLITRK1, SYN3, IGSF11, FSHB, TCF7L2, and CDH9), and confirmed previous genome-wide significant associations with risk genes GDF15, IGFBP7, PGR, and GFRAL. In a spatiotemporal analysis of placental development, GDF15 and TCF7L2 were expressed primarily in extra villous trophoblast, and using a weighted linear model of maternal, paternal, and fetal effects, we confirmed opposing effects for GDF15 between maternal and fetal genotype. Conversely, IGFBP7 and PGR were primarily expressed in developing maternal spiral arteries during placentation, with effects limited to the maternal genome. Risk loci were found to be under significant evolutionary selection, with the strongest effects on nausea and vomiting mid-pregnancy. Selected loci were associated with abnormal pregnancy weight gain, pregnancy duration, birth weight, head circumference, and pre-eclampsia. Potential roles for candidate genes in appetite, insulin signaling, and brain plasticity provide new pathways to explore etiological mechanisms and novel therapeutic avenues.
Collapse
Affiliation(s)
- Marlena Fejzo
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Xinran Wang
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Julia Zöllner
- UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - David A van Heel
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ben Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Division of Mental Health Care, St Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Department of Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elizabeth A Jasper
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Digna R Velez Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Jacklyn N Hellwege
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Todd Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Atlas Khan
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Kimber MacGibbon
- Hyperemesis Education and Research Foundation, Clackamas, OR 97089 USA
| | - Yuan Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Gaoxiang Ge
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Chang Shu
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Nicholas Mancuso
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J, Gong M, Chi X, Oh Y, Roba-Oshin M, Coletta E, Feletou M, Gramolini AO, Kim KH, Coutinho T, Januzzi JL, Tyl B, Ziegler A, Liu PP. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1195-1214. [PMID: 39196168 PMCID: PMC11358005 DOI: 10.1038/s44161-022-00181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.
Collapse
Affiliation(s)
- Liyong Zhang
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Smyth
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Alice Blet
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Qiujiang Du
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jordan Bernick
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Gong
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Xu Chi
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Michel Feletou
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Anthony O Gramolini
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thais Coutinho
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Benoit Tyl
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Andre Ziegler
- Roche Diagnostics International, Ltd., Rotkreuz, Switzerland
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Burkholder A, Akrobetu D, Pandiri AR, Ton K, Kim S, Labow BI, Nuzzi LC, Firriolo JM, Schneider SS, Fenton SE, Shaw ND. Investigation of the adolescent female breast transcriptome and the impact of obesity. Breast Cancer Res 2020; 22:44. [PMID: 32393308 PMCID: PMC7216667 DOI: 10.1186/s13058-020-01279-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
Background Early life environmental exposures affect breast development and breast cancer risk in adulthood. The breast is particularly vulnerable during puberty when mammary epithelial cells proliferate exponentially. In overweight/obese (OB) women, inflammation increases breast aromatase expression and estrogen synthesis and promotes estrogen-receptor (ER)-positive breast cancer. In contrast, recent epidemiological studies suggest that obesity during childhood decreases future breast cancer risk. Studies on environmental exposures and breast cancer risk have thus far been limited to animal models. Here, we present the first interrogation of the human adolescent breast at the molecular level and investigate how obesity affects the immature breast. Methods We performed RNA-seq in 62 breast tissue samples from adolescent girls/young women (ADOL; mean age 17.8 years) who underwent reduction mammoplasty. Thirty-one subjects were non-overweight/obese (NOB; mean BMI 23.4 kg/m2) and 31 were overweight/obese (OB; BMI 32.1 kg/m2). We also compared our data to published mammary transcriptome datasets from women (mean age 39 years) and young adult mice, rats, and macaques. Results The ADOL breast transcriptome showed limited (30%) overlap with other species, but 88% overlap with adult women for the 500 most highly expressed genes in each dataset; only 43 genes were shared by all groups. In ADOL, there were 120 differentially expressed genes (DEG) in OB compared with NOB samples (padj < 0.05). Based on these DEG, Ingenuity Pathway Analysis (IPA) identified the cytokines CSF1 and IL-10 and the chemokine receptor CCR2 as among the most highly activated upstream regulators, suggesting increased inflammation in the OB breast. Classical ER targets (e.g., PR, AREG) were not differentially expressed, yet IPA identified the ER and PR and growth factors/receptors (VEGF, HGF, HER3) and kinases (AKT1) involved in hormone-independent ER activation as activated upstream regulators in OB breast tissue. Conclusions These studies represent the first investigation of the human breast transcriptome during late puberty/young adulthood and demonstrate that obesity is associated with a transcriptional signature of inflammation which may augment estrogen action in the immature breast microenvironment. We anticipate that these studies will prompt more comprehensive cellular and molecular investigations of obesity and its effect on the breast during this critical developmental window.
Collapse
Affiliation(s)
- Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Dennis Akrobetu
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), NIEHS, Research Triangle Park, NC, USA
| | - Kiki Ton
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), NIEHS, Research Triangle Park, NC, USA
| | - Sue Kim
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA
| | - Brian I Labow
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura C Nuzzi
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph M Firriolo
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, DNTP, NIEHS, Research Triangle Park, NC, USA
| | - Natalie D Shaw
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
7
|
Alkuraya H, Patel N, Ibrahim N, Al Ghamdi B, Alsulaiman SM, Nowilaty SR, Abboud E, Alturki R, Alkharashi A, Eyaid W, Almasseri Z, Alzaidan H, Alotaibi MD, Abu El-Asrar AM, Alamro B, Helaby R, Elshaer A, Almontashiri NAM, Al-Hussaini AA, Alkuraya FS. Phenotypic delineation of the retinal arterial macroaneurysms with supravalvular pulmonic stenosis syndrome. Clin Genet 2019; 97:447-456. [PMID: 31730227 DOI: 10.1111/cge.13676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/28/2022]
Abstract
Retinal arterial macroaneurysms with supravalvular pulmonic stenosis (RAMSVPS), also known as Familial Retinal Arterial Macroaneurysms (FRAM) syndrome, is a very rare multisystem disorder. Here, we present a case series comprising ophthalmologic and systemic evaluation of patients homozygous for RAMSVPS syndrome causative IGFBP7 variant. New clinical details on 22 previously published and 8 previously unpublished patients are described. Age at first presentation ranged from 1 to 34 years. The classical feature of macroaneurysms and vascular beading involving the retinal arteries was universal. Follow up extending up to 14 years after initial diagnosis revealed recurrent episodes of bleeding and leakage from macroaneurysms in 55% and 59% of patients, respectively. The majority of patients who underwent echocardiography (18/23) showed evidence of heart involvement, most characteristically pulmonary (valvular or supravalvular) stenosis, often requiring surgical correction (12/18). Four patients died in the course of the study from complications of pulmonary stenosis, cerebral hemorrhage, and cardiac complications. Liver involvement (usually cirrhosis) was observed in eight patients. Cerebral vascular involvement was observed in one patient, and stroke was observed in two. We conclude that RAMSVPS is a recognizable syndrome characterized by a high burden of ocular and systemic morbidity, and risk of premature death. Recommendations are proposed for early detection and management of these complications.
Collapse
Affiliation(s)
- Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Nisha Patel
- Developmental Genetics Unit King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Developmental Genetics Unit King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bandar Al Ghamdi
- Heart Center, King Faisal Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sawsan R Nowilaty
- Vitreo-retinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Emad Abboud
- Posterior Segment Department, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramadan Alturki
- Department of Ophthalmology, Dr Sulaiman Al Habib Medical Group, Olaya Medical Complex, Riyadh, Saudi Arabia
| | - Abdullah Alkharashi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- King Abdulaziz Medical City, King Saud Bin Abdulaziz University-Health Science, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Zainab Almasseri
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed D Alotaibi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bandar Alamro
- Heart Center, King Faisal Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Developmental Genetics Unit King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amani Elshaer
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Faculty of Applied Medical Sciences, Taibah University, Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Abdulrahman A Al-Hussaini
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Pediatric Gastroenterology Division, Children's Specialized Hospital at King Fahad Medical City, Riyadh, Saudi Arabia.,Prince Abdullah bin Khalid Celiac Disease Research Chair, Department of Paediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Developmental Genetics Unit King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ji Z, Chao T, Zhang C, Liu Z, Hou L, Wang J, Wang A, Wang Y, Zhou J, Xuan R, Wang G, Wang J. Transcriptome Analysis of Dairy Goat Mammary Gland Tissues from Different Lactation Stages. DNA Cell Biol 2019; 38:129-143. [DOI: 10.1089/dna.2018.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Chunlan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Yong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jie Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| |
Collapse
|
9
|
Adipose-Derived Stromal Vascular Fraction Differentially Expands Breast Progenitors in Tissue Adjacent to Tumors Compared to Healthy Breast Tissue. Plast Reconstr Surg 2016; 136:414e-425e. [PMID: 26090768 PMCID: PMC4890821 DOI: 10.1097/prs.0000000000001635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Autologous fat grafts supplemented with adipose-derived stromal vascular fraction are used in reconstructive and cosmetic breast procedures. Stromal vascular fraction contains adipose-derived stem cells that are thought to encourage wound healing, tissue regeneration, and graft retention. Although use of stromal vascular fraction has provided exciting perspectives for aesthetic procedures, no studies have yet been conducted to determine whether its cells contribute to breast tissue regeneration. The authors examined the effect of these cells on the expansion of human breast epithelial progenitors. Methods: From patients undergoing reconstructive breast surgery following mastectomies, abdominal fat, matching tissue adjacent to breast tumors, and the contralateral non–tumor-containing breast tissue were obtained. Ex vivo co-cultures using breast epithelial cells and the stromal vascular fraction cells were used to study the expansion potential of breast progenitors. Breast reduction samples were collected as a source of healthy breast cells. Results: The authors observed that progenitors present in healthy breast tissue or contralateral non–tumor-containing breast tissue showed significant and robust expansion in the presence of stromal vascular fraction (5.2- and 4.8-fold, respectively). Whereas the healthy progenitors expanded up to 3-fold without the stromal vascular fraction cells, the expansion of tissue adjacent to breast tumor progenitors required the presence of stromal vascular fraction cells, leading to a 7-fold expansion, which was significantly higher than the expansion of healthy progenitors with stromal vascular fraction. Conclusions: The use of stromal vascular fraction might be more beneficial to reconstructive operations following mastectomies compared with cosmetic corrections of the healthy breast. Future studies are required to examine the potential risk factors associated with its use. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.
Collapse
|
10
|
Basak P, Dillon R, Leslie H, Raouf A, Mowat MRA. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer 2015; 15:630. [PMID: 26353792 PMCID: PMC4565020 DOI: 10.1186/s12885-015-1642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deleted in Liver Cancer 1 (Dlc1) is a tumor suppressor gene, which maps to human chromosome 8p21-22 and is found frequently deleted in many cancers including breast cancer. The promoter of the remaining allele is often found methylated. The Dlc1 gene encodes a RhoGAP protein that regulates cell proliferation, migration and inhibits cell growth and invasion when restored in Dlc1 deficient tumor cell lines. This study focuses on determining the role of Dlc1 in normal mammary gland development and epithelial cell polarity in a Dlc1 gene trapped (gt) mouse. METHODS Mammary gland whole mount preparations from 10-week virgin heterozygous Dlc1(gt/+) gene-trapped mice were compared with age-matched wild type (WT) controls. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining of histological sections were carried out. Mammary glands from Dlc1(gt/+) mice and WT controls were enzymatically digested with collagenase and dispase and then cultured overnight to deplete hematopoietic and endothelial cells. The single cell suspensions were then cultured in Matrigel for 12 days. To knockdown Dlc1 expression, primary WT mammary epithelial cells were infected with short hairpin (sh) RNA expressing lentivirus or with a scrambled shRNA control. RESULTS Dlc1(gt/+) mice showed anomalies in the mammary gland that included increased ductal branching and deformities in terminal end buds and branch points. Compared to the WT controls, Masson's Trichrome staining showed a thickened stromal layer with increased collagen deposition in mammary glands from Dlc1(gt/+) mice. Dlc1(gt/+) primary mammary epithelial cells formed increased solid acinar spheres in contrast with WT and scrambled shRNA control cells, which mostly formed hollow acinar structures when plated in 3D Matrigel cultures. These solid acinar structures were similar to the acinar structures formed when Dlc1 gene expression was knocked down in WT mammary cells by shRNA lentiviral transduction. The solid acinar structures were not due to a defect in apoptosis as determined by a lack of detectible cleaved caspase 3 antibody staining. Primary mammary cells from Dlc1(gt/+) mice showed increased RhoA activity compared with WT cells. CONCLUSIONS The results illustrate that decreased Dlc1 expression can disrupt the normal cell polarization and mammary ductal branching. Altogether this study suggests that Dlc1 plays a role in maintaining normal mammary epithelial cell polarity and that Dlc1 is haploinsufficient.
Collapse
Affiliation(s)
- Pratima Basak
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Rachelle Dillon
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Heather Leslie
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| | - Afshin Raouf
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
- Regenerative Medicine Program, University of Manitoba, Winnipeg, MB, Canada.
| | - Michael R A Mowat
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
De Silva D, Kunasegaran K, Ghosh S, Pietersen AM. Transcriptome analysis of the hormone-sensing cells in mammary epithelial reveals dynamic changes in early pregnancy. BMC DEVELOPMENTAL BIOLOGY 2015; 15:7. [PMID: 25623114 PMCID: PMC4314744 DOI: 10.1186/s12861-015-0058-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022]
Abstract
Background Alveoli, the milk-producing units of the mammary gland, are generated during pregnancy by collaboration of different epithelial cell types. We present the first analysis of transcriptional changes within the hormone sensing population during pregnancy. Hormone-receptor positive (HR+) cells play a key role in the initiation of alveologenesis as they sense systemic hormonal changes and translate these into local instructions for neighboring HR- cells. We recently showed that IGF2 is produced specifically by HR+ cells in early pregnancy, but is undetectable in the virgin state. Here, we define the transcriptome of HR+ cells in early pregnancy with the aim to elucidate additional changes that are unique for this dynamic developmental time window. Results We harvested mammary glands from virgin, 3-day and 7-day pregnant mice and isolated a few hundred hormone-sensing cells per animal by FACS for microarray analysis. There was a high concordance between animals with a clear induction of cell cycle progression genes at day 3 of pregnancy and molecules involved in paracrine signalling at day 7. Conclusions These findings underscore the proliferative capacity of HR+ cells upon specific stimuli and elucidate developmentally-restricted changes in cellular communication. Since the majority of breast cancers are HR+, with a variable proportion of HR+ cells per tumor, we anticipate that this data set will aid further studies into the regulation of HR+ cell proliferation and the role of heterotypic signalling within tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0058-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duvini De Silva
- Laboratory of Mammary Gland Biology, National Cancer Centre Singapore, 11 Hospital Dr, Singapore, 169610, Singapore. .,Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College, Rd, 169857, Singapore, Singapore.
| | - Kamini Kunasegaran
- Laboratory of Mammary Gland Biology, National Cancer Centre Singapore, 11 Hospital Dr, Singapore, 169610, Singapore. .,Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College, Rd, 169857, Singapore, Singapore.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School, 8 College Rd, Singapore, 169857, Singapore.
| | - Alexandra M Pietersen
- Laboratory of Mammary Gland Biology, National Cancer Centre Singapore, 11 Hospital Dr, Singapore, 169610, Singapore. .,Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College, Rd, 169857, Singapore, Singapore. .,Department of Physiology, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore.
| |
Collapse
|
12
|
Shojaii R, Bacopulos S, Yang W, Karavardanyan T, Spyropoulos D, Raouf A, Martel A, Seth A. Reconstruction of 3-dimensional histology volume and its application to study mouse mammary glands. J Vis Exp 2014:e51325. [PMID: 25145969 DOI: 10.3791/51325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histology volume reconstruction facilitates the study of 3D shape and volume change of an organ at the level of macrostructures made up of cells. It can also be used to investigate and validate novel techniques and algorithms in volumetric medical imaging and therapies. Creating 3D high-resolution atlases of different organs(1,2,3) is another application of histology volume reconstruction. This provides a resource for investigating tissue structures and the spatial relationship between various cellular features. We present an image registration approach for histology volume reconstruction, which uses a set of optical blockface images. The reconstructed histology volume represents a reliable shape of the processed specimen with no propagated post-processing registration error. The Hematoxylin and Eosin (H&E) stained sections of two mouse mammary glands were registered to their corresponding blockface images using boundary points extracted from the edges of the specimen in histology and blockface images. The accuracy of the registration was visually evaluated. The alignment of the macrostructures of the mammary glands was also visually assessed at high resolution. This study delineates the different steps of this image registration pipeline, ranging from excision of the mammary gland through to 3D histology volume reconstruction. While 2D histology images reveal the structural differences between pairs of sections, 3D histology volume provides the ability to visualize the differences in shape and volume of the mammary glands.
Collapse
Affiliation(s)
- Rushin Shojaii
- Department of Medical Biophysics, University of Toronto;
| | - Stephanie Bacopulos
- Platform Biological Sciences, Sunnybrook Research Institute; Department of Laboratory Medicine and Pathobiology, University of Toronto
| | - Wenyi Yang
- Platform Biological Sciences, Sunnybrook Research Institute; Department of Laboratory Medicine and Pathobiology, University of Toronto
| | | | - Demetri Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Afshin Raouf
- Manitoba Institute of Cell Biology, University of Manitoba
| | - Anne Martel
- Department of Medical Biophysics, University of Toronto; Physical Sciences, Sunnybrook Research Institute
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Research Institute; Department of Laboratory Medicine and Pathobiology, University of Toronto
| |
Collapse
|