1
|
Lamm V, Huang K, Deng R, Cao S, Wang M, Soleymanjahi S, Promlek T, Rodgers R, Davis D, Nix D, Escudero GO, Xie Y, Chen CH, Gremida A, Rood RP, Liu TC, Baldridge MT, Deepak P, Davidson NO, Kaufman RJ, Ciorba MA. Tauroursodeoxycholic Acid (TUDCA) Reduces ER Stress and Lessens Disease Activity in Ulcerative Colitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.02.25322684. [PMID: 40236400 PMCID: PMC11998832 DOI: 10.1101/2025.04.02.25322684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background and Aims In inflammatory bowel disease, protein misfolding in the endoplasmic reticulum (ER) potentiates epithelial barrier dysfunction and impairs mucosal healing. Tauroursodeoxycholic acid (TUDCA), a naturally occurring bile acid, acts as a chemical chaperone to reduce protein aggregation and colitis severity in preclinical models. We conducted an open label trial evaluating oral TUDCA as therapy in patients with active ulcerative colitis (UC). Methods Patients with moderate-to-severely active UC (Mayo score ≥6, endoscopic subscore ≥1) received oral TUDCA at 1.75 or 2 g/day for 6 weeks. Exclusion criteria included known hepatic disorders or change in UC therapy within 60 days. Clinical disease activity questionnaires, endoscopy with biopsy, blood, and stool were collected at enrollment and after 6 weeks. The primary outcome measure was change in ER stress markers while safety, tolerability and change in UC disease activity were secondary outcomes. Results Thirteen participants completed the study with eleven evaluable for clinical response. TUDCA was well-tolerated with transient dyspepsia being the most common side effect. Mucosal biopsies revealed significant reductions in ER stress and inflammation as well as an increase in markers of epithelial restitution. Clinical, endoscopic, and histologic disease activity were significantly improved at week 6 (mean total Mayo Score: 9 to 4.5, p<0.001). Conclusions Six weeks of oral TUDCA treatment was well-tolerated in patients with active ulcerative colitis and promoted mucosal healing, lessened ER stress, and reduced clinical disease activity. A randomized controlled trial of adjunctive TUDCA therapy in patients with UC is warranted. Trial registration ClinicalTrials.gov (NCT04114292).
Collapse
Affiliation(s)
- Vladimir Lamm
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine Huang
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ruishu Deng
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Siyan Cao
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Miao Wang
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Saeed Soleymanjahi
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Thanyarat Promlek
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Rachel Rodgers
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Davis
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Darren Nix
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Guadalupe Oliva Escudero
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yan Xie
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Chien-Huan Chen
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Anas Gremida
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard P Rood
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Megan T Baldridge
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Parakkal Deepak
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O Davidson
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Matthew A Ciorba
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
2
|
Di Mattia M, Sallese M, Lopetuso LR. Unfolded protein response: An essential element of intestinal homeostasis and a potential therapeutic target for inflammatory bowel disease. Acta Physiol (Oxf) 2025; 241:e14284. [PMID: 39822064 DOI: 10.1111/apha.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development. Importantly, we also highlighted the promising potential of UPR components as therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Arora A, Sharma A, Singh S, Singh R, Singh A, Kakkar D, Sharma N. Nanoparticles encapsulated in Abelmoschus esculentus polysaccharide-based pellets as colon targeting approach. J Microencapsul 2024; 41:519-534. [PMID: 39162289 DOI: 10.1080/02652048.2024.2390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
AIM(S) This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in Abelmoschus esculentus plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis. METHODS MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. In-vitro efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers. RESULTS Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. In-vivo data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min. CONCLUSION MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.
Collapse
Affiliation(s)
- Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Anshul Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, India
- Anusandhan National Research Foundation, Technology Bhavan, New Delhi, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
4
|
Zhao Y, Yu Z, Song Y, Fan L, Lei T, He Y, Hu S. The Regulatory Network of CREB3L1 and Its Roles in Physiological and Pathological Conditions. Int J Med Sci 2024; 21:123-136. [PMID: 38164349 PMCID: PMC10750332 DOI: 10.7150/ijms.90189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
CREB3 subfamily belongs to the bZIP transcription factor family and comprises five members. Normally they are located on the endoplasmic reticulum (ER) membranes and proteolytically activated through RIP (regulated intramembrane proteolysis) on Golgi apparatus to liberate the N-terminus to serve as transcription factors. CREB3L1 acting as one of them transcriptionally regulates the expressions of target genes and exhibits distinct functions from the other members of CREB3 family in eukaryotes. Physiologically, CREB3L1 involves in the regulation of bone morphogenesis, neurogenesis, neuroendocrine, secretory cell differentiation, and angiogenesis. Pathologically, CREB3L1 implicates in the modulation of osteogenesis imperfecta, low grade fibro myxoid sarcoma (LGFMS), sclerosing epithelioid fibrosarcoma (SEF), glioma, breast cancer, thyroid cancer, and tissue fibrosis. This review summarizes the upstream and downstream regulatory network of CREB3L1 and thoroughly presents our current understanding of CREB3L1 research progress in both physiological and pathological conditions with special focus on the novel findings of CREB3L1 in cancers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Liumeizi Fan
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Ting Lei
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Yinbin He
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Sheng Hu
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Zeng R, Wang J, Jiang R, Yang J, Zheng C, Wu H, Zhuo Z, Yang Q, Li J, Leung FW, Sha W, Chen H. Investigating Causality and Shared Genetic Architecture between Neurodegenerative Disorders and Inflammatory Bowel Disease. Aging Dis 2023; 14:1349-1359. [PMID: 37163440 PMCID: PMC10389839 DOI: 10.14336/ad.2022.12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 05/12/2023] Open
Abstract
Published observational studies have revealed the connection between neurodegenerative disorders and inflammatory bowel disease (IBD), whereas the causal association remains largely unclear. Our study aims to assess the causality and identify the shared genetic architecture between neurodegenerative disorders and IBD. Two-sample Mendelian randomization analyses were performed to assess the causality between IBD and neurodegenerative disorders (amyotrophic lateral sclerosis [ALS], Alzheimer's disease [AD], Parkinson's disease [PD], and multiple sclerosis [MS]). Shared genetic loci, functional interpretation, and transcriptomic profiles were further investigated in ALS and IBD. We identified that genetic predisposition to IBD was suggestively associated with lower odds of ALS (odds ratio [OR] 0.96, 95% confidence interval [CI] 0.94 to 0.99). In contrast, IBD was not genetically associated with an increased risk of AD, PD, or MS (and vice versa). Two shared genetic loci (rs6571361 and rs7154847) were derived, and SCFD1, G2E3, and HEATR5A were further identified as novel risk genes with enriched functions related to membrane trafficking. G2E3 was differentially expressed and significantly correlated with SCFD1 in patients with ALS or IBD. Our study reveals the suggestively protective role of IBD on ALS, and does not support the causality of AD, PD, or MS on IBD (and vice versa). Our findings indicate possible shared genetic architecture and pathways between ALS and IBD. These results provide insights into the pathogenesis and therapeutics of IBD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Jinghua Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Jie Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Chunwen Zheng
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California, USA
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Upregulation of OASIS/CREB3L1 in podocytes contributes to the disturbance of kidney homeostasis. Commun Biol 2022; 5:734. [PMID: 35869269 PMCID: PMC9307819 DOI: 10.1038/s42003-022-03709-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Podocyte injury is involved in the onset and progression of various kidney diseases. We previously demonstrated that the transcription factor, old astrocyte specifically induced substance (OASIS) in myofibroblasts, contributes to kidney fibrosis, as a novel role of OASIS in the kidneys. Importantly, we found that OASIS is also expressed in podocytes; however, the pathophysiological significance of OASIS in podocytes remains unknown. Upon lipopolysaccharide (LPS) treatment, there is an increase in OASIS in murine podocytes. Enhanced serum creatinine levels and tubular injury, but not albuminuria and podocyte injury, are attenuated upon podocyte-restricted OASIS knockout in LPS-treated mice, as well as diabetic mice. The protective effects of podocyte-specific OASIS deficiency on tubular injury are mediated by protein kinase C iota (PRKCI/PKCι), which is negatively regulated by OASIS in podocytes. Furthermore, podocyte-restricted OASIS transgenic mice show tubular injury and tubulointerstitial fibrosis, with severe albuminuria and podocyte degeneration. Finally, there is an increase in OASIS-positive podocytes in the glomeruli of patients with minimal change nephrotic syndrome and diabetic nephropathy. Taken together, OASIS in podocytes contributes to podocyte and/or tubular injury, in part through decreased PRKCI. The induction of OASIS in podocytes is a critical event for the disturbance of kidney homeostasis. Upregulation of transcription factor OASIS in podocytes contributes to podocyte and/or tubular injury through decreased PRKCi expression and is a critical event for the disturbance of kidney homeostasis.
Collapse
|
7
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
8
|
Engevik MA, Herrmann B, Ruan W, Engevik AC, Engevik KA, Ihekweazu F, Shi Z, Luck B, Chang-Graham AL, Esparza M, Venable S, Horvath TD, Haidacher SJ, Hoch KM, Haag AM, Schady DA, Hyser JM, Spinler JK, Versalovic J. Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes 2021; 13:1-21. [PMID: 33985416 PMCID: PMC8128206 DOI: 10.1080/19490976.2021.1902717] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA,CONTACT Melinda A. Engevik Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University Medical Center, NashvilleTN, USA
| | - Kristen A. Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Faith Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Berkley Luck
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Magdalena Esparza
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Susan Venable
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Sigmund J. Haidacher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah A. Schady
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Joseph M. Hyser
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - James Versalovic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Nishino K, Nishida A, Inatomi O, Imai T, Kume S, Kawahara M, Maegawa H, Andoh A. Targeted deletion of Atg5 in intestinal epithelial cells promotes dextran sodium sulfate-induced colitis. J Clin Biochem Nutr 2020; 68:156-163. [PMID: 33879967 DOI: 10.3164/jcbn.20-90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy-associated genes have been identified as susceptible loci for inflammatory bowel disease. We investigated the role of a core autophagy factor, Atg5, in the development of dextran sodium sulfate (DSS)-induced colitis. Intestinal epithelial cell (IEC)-specific Atg5 gene deficient mice (Atg5 ΔIEC mice) were generated by cross of Atg5-floxed mice (Atg5 fl/fl ) with transgenic mice expressing Cre-recombinase driven by the villin promotor. Mice were given three cycles of 1.5% DSS in drinking water for 5 days and regular water for 14 days over a 60-day period. The dysfunction of autophagy characterized by a marked accumulation of p62 protein, a substrate for autophagy degradation, was detected in epithelial cells in the non-inflamed and inflamed mucosa of inflammatory bowel disease patients. DSS-colitis was exacerbated in Atg5 ΔIEC mice compared to control Atg5 fl/fl mice. Phosphorylation of inositol-requiring transmembrane kinase/endonuclease1α (IRE1α), a sensor for endoplasmic reticulum stress, and c-Jun N-terminal kinase, a downstream target of IRE1α, were significantly enhanced in IECs in DSS-treated Atg5 ΔIEC mice. Accumulation of phosphorylated IRE1α was enhanced by the treatment with chloroquine, an autophagy inhibitor. Apoptotic IECs were more abundant in DSS-treated Atg5 ΔIEC mice. These findings suggest that Atg5 suppresses endoplasmic reticulum stress-induced apoptosis of IECs via the degradation of excess p-IRE1α.
Collapse
Affiliation(s)
- Kyohei Nishino
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
10
|
Eugene SP, Reddy VS, Trinath J. Endoplasmic Reticulum Stress and Intestinal Inflammation: A Perilous Union. Front Immunol 2020; 11:543022. [PMID: 33324392 PMCID: PMC7723926 DOI: 10.3389/fimmu.2020.543022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal tract encompasses the largest mucosal surface fortified with a fine layer of intestinal epithelial cells along with highly sophisticated network of the lamina propria immune cells that are indispensable to sustain gut homeostasis. However, it can be challenging to uphold homeostasis when these cells in the intestine are perpetually exposed to insults of both endogenous and exogenous origin. The complex networking and dynamic microenvironment in the intestine demand highly functional cells ultimately burdening the endoplasmic reticulum (ER) leading to ER stress. Unresolved ER stress is one of the primary contributors to the pathogenesis of inflammatory bowel diseases (IBD). Studies also suggest that ER stress can be the primary cause of inflammation and/or the consequence of inflammation. Therefore, understanding the patterns of expression of ER stress regulators and deciphering the intricate interplay between ER stress and inflammatory pathways in intestinal epithelial cells in association with lamina propria immune cells contribute toward the development of novel therapies to tackle IBD. This review provides imperative insights into the molecular markers involved in the pathogenesis of IBD by potentiating ER stress and inflammation and briefly describes the potential pharmacological intervention strategies to mitigate ER stress and IBD. In addition, genetic mutations in the biomarkers contributing to abnormalities in the ER stress signaling pathways further emphasizes the relevance of biomarkers in potential treatment for IBD.
Collapse
Affiliation(s)
- Sanchez Preethi Eugene
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| | | | - Jamma Trinath
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
11
|
Yamamoto A, Morioki H, Nakae T, Miyake Y, Harada T, Noda S, Mitsuoka S, Matsumoto K, Tomimatsu M, Kanemoto S, Tanaka S, Maeda M, Conway SJ, Imaizumi K, Fujio Y, Obana M. Transcription factor old astrocyte specifically induced substance is a novel regulator of kidney fibrosis. FASEB J 2020; 35:e21158. [PMID: 33150680 PMCID: PMC7821213 DOI: 10.1096/fj.202001820r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Prevention of kidney fibrosis is an essential requisite for effective therapy in preventing chronic kidney disease (CKD). Here, we identify Old astrocyte specifically induced substance (OASIS)/cAMP responsive element‐binding protein 3‐like 1 (CREB3l1), a CREB/ATF family transcription factor, as a candidate profibrotic gene that drives the final common pathological step along the fibrotic pathway in CKD. Although microarray data from diseased patient kidneys and fibrotic mouse model kidneys both exhibit OASIS/Creb3l1 upregulation, the pathophysiological roles of OASIS in CKD remains unknown. Immunohistochemistry revealed that OASIS protein was overexpressed in human fibrotic kidney compared with normal kidney. Moreover, OASIS was upregulated in murine fibrotic kidneys, following unilateral ureteral obstruction (UUO), resulting in an increase in the number of OASIS‐expressing pathological myofibroblasts. In vitro assays revealed exogenous TGF‐β1 increased OASIS expression coincident with fibroblast‐to‐myofibroblast transition and OASIS contributed to TGF‐β1–mediated myofibroblast migration and increased proliferation. Significantly, in vivo kidney fibrosis induced via UUO or ischemia/reperfusion injury was ameliorated by systemic genetic knockout of OASIS, accompanied by reduced myofibroblast proliferation. Microarrays revealed that the transmembrane glycoprotein Bone marrow stromal antigen 2 (Bst2) expression was reduced in OASIS knockout myofibroblasts. Interestingly, a systemic anti‐Bst2 blocking antibody approach attenuated kidney fibrosis in normal mice but not in OASIS knockout mice after UUO, signifying Bst2 functions downstream of OASIS. Finally, myofibroblast‐restricted OASIS conditional knockouts resulted in resistance to kidney fibrosis. Taken together, OASIS in myofibroblasts promotes kidney fibrosis, at least in part, via increased Bst2 expression. Thus, we have identified and demonstrated that OASIS signaling is a novel regulator of kidney fibrosis.
Collapse
Affiliation(s)
- Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hitomi Morioki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takafumi Nakae
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Miyake
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takeo Harada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shunsuke Noda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Sayuri Mitsuoka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kotaro Matsumoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Soshi Kanemoto
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.,Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Shastri S, Shinde T, Perera AP, Gueven N, Eri R. Idebenone Protects against Spontaneous Chronic Murine Colitis by Alleviating Endoplasmic Reticulum Stress and Inflammatory Response. Biomedicines 2020; 8:biomedicines8100384. [PMID: 32998266 PMCID: PMC7601570 DOI: 10.3390/biomedicines8100384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress in intestinal secretory goblet cells has been linked to the development of ulcerative colitis (UC). Emerging evidence suggests that the short chain quinone drug idebenone displays anti-inflammatory activity in addition to its potent antioxidant and mitochondrial electron donor properties. This study evaluated the impact of idebenone in Winnie mice, that are characterized by spontaneous chronic intestinal inflammation and ER stress caused by a missense mutation in the mucin MUC2 gene. Idebenone (200 mg/kg) was orally administered daily to 5-6 weeks old Winnie mice over a period of 21 days. Idebenone treatment substantially improved body weight gain, disease activity index (DAI), colon length and histopathology score. Immunohistochemistry revealed increased expression of MUC2 protein in goblet cells, consistent with increased MUC2 mRNA levels. Furthermore, idebenone significantly reduced the expression of the ER stress markers C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6) and X-box binding protein-1 (XBP-1) at both mRNA and protein levels. Idebenone also effectively reduced pro-inflammatory cytokine levels in colonic explants. Taken together, these results indicate that idebenone could represent a potential therapeutic approach against human UC by its strong anti-inflammatory activity and its ability to reduce markers of ER stress.
Collapse
Affiliation(s)
- Sonia Shastri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Correspondence: (S.S.); (R.E.); Tel.: +61-4-4992-4236 (S.S.); +61-3-6226-5017 (R.E.)
| | - Tanvi Shinde
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston 7250, Tasmania, Australia
| | - Agampodi Promoda Perera
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia;
| | - Rajaraman Eri
- Gut Health Laboratory, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Tasmania, Australia; (T.S.); (A.P.P.)
- Correspondence: (S.S.); (R.E.); Tel.: +61-4-4992-4236 (S.S.); +61-3-6226-5017 (R.E.)
| |
Collapse
|
13
|
Intestinal Immune Homeostasis and Inflammatory Bowel Disease: A Perspective on Intracellular Response Mechanisms. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) involves perturbation of intestinal immune homeostasis in genetically susceptible individuals. A mutual interplay between intestinal epithelial cells (IECs) and gut resident microbes maintains a homeostatic environment across the gut. An idiopathic gastrointestinal (GI) complication triggers aberrant physiological stress in the epithelium and peripheral myeloid cells, leading to a chronic inflammatory condition. Indeed, events in the endoplasmic reticulum (ER) and mitochondria contribute to orchestrating intracellular mechanisms such as the unfolded protein response (UPR) and oxidative stress, respectively, to resolve aberrant cellular stress. This review highlights the signaling cascades encrypted within ER and mitochondria in IECs and/or myeloid cells to dissipate chronic stress in maintaining intestinal homeostasis.
Collapse
|
14
|
Dextran Sodium Sulfate-Induced Impairment of Protein Trafficking and Alterations in Membrane Composition in Intestinal Caco-2 Cell Line. Int J Mol Sci 2020; 21:ijms21082726. [PMID: 32326391 PMCID: PMC7215722 DOI: 10.3390/ijms21082726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
A key morphological feature of inflammatory bowel disease (IBD) is the loss of the barrier function of intestinal epithelial cells. The present study investigates endoplasmic reticulum (ER) stress in addition to alterations in protein and membrane trafficking in a dextran sulfate sodium (DSS)-induced IBD-like phenotype of intestinal Caco-2 cells in culture. DSS treatment significantly reduced the transepithelial electric resistance (TEER) and increased the epithelial permeability of Caco-2 cells, without affecting their viability. This was associated with an alteration in the expression levels of inflammatory factors in addition to an increase in the expression of the ER stress protein markers, namely immunoglobulin-binding protein (BiP), C/EBP homologous protein (CHOP), activation transcription factor 4 (ATF4), and X-box binding protein (XBP1). The DSS-induced ER-stress resulted in impaired intracellular trafficking and polarized sorting of sucrase-isomaltase (SI) and dipeptidyl peptidase-4 (DPPIV), which are normally sorted to the apical membrane via association with lipid rafts. The observed impaired sorting was caused by reduced cholesterol levels and subsequent distortion of the lipid rafts. The data presented confirm perturbation of ER homeostasis in DSS-treated Caco-2 cells, accompanied by impairment of membrane and protein trafficking resulting in altered membrane integrity, cellular polarity, and hence disrupted barrier function.
Collapse
|
15
|
Xiuhong L, Yajun DU, Guoxing L, Guomei D, Xin T, Juan X. [Kirenol relieves dextran sulfate sodium-induced ulcerative colitis in mice by inhibiting inflammatory cytokines and inducing CD4 + T lymphocyte apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 39:1387-1392. [PMID: 31907162 DOI: 10.12122/j.issn.1673-4254.2019.12.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate whether kirenol, the major pharmacologically active compound of the Chinese medicinal herb Herba Siegesbeckiae, can protect mice from dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). METHODS C57BL/6 mice with or without kirenol pretreatment were treated with DSS in drinking water for 7 days to induce UC. The symptoms of UC including weight loss, diarrhea and bloody stool were observed daily and graded using the disease activity index (DAI). Colon injury of the mice was assessed by measuring the length of the colon and HE staining of the colon tissue. The levels of inflammatory cytokines produced by the mesenteric lymph nodes (MLNs) lymphocytes were measured using enzyme-linked immunosorbent assay; the apoptosis of the lymphocytes and CD4+ T cells was analyzed using flow cytometry. RESULTS The mice receiving pretreatment with kirenol showed obviously ameliorated symptoms of UC and milder pathological changes in the colon as compared with the control mice. Kirenol treatment significantly down-regulated the secretion of IFN-γ, IL-17A, IL-6 and TNF-α by the MLNs lymphocytes and increased the apoptosis of lymphocytes, especially CD4+ T cells in the DSS-treated mice. CONCLUSIONS Kirenol can protect against T cell-mediated colon injury in DSS-treated mice possibly by suppressing the secretion of inflammatory mediators and inducing apoptosis of the inflammatory lymphocytes.
Collapse
Affiliation(s)
- Liu Xiuhong
- Zaoyang First People's Hospital (Affiliated Zaoyang Hospital of Hubei University of Arts and Science), Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - D U Yajun
- Zaoyang First People's Hospital (Affiliated Zaoyang Hospital of Hubei University of Arts and Science), Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Liu Guoxing
- Zaoyang First People's Hospital (Affiliated Zaoyang Hospital of Hubei University of Arts and Science), Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Dan Guomei
- Zaoyang First People's Hospital (Affiliated Zaoyang Hospital of Hubei University of Arts and Science), Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Tong Xin
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Xiao Juan
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| |
Collapse
|
16
|
Inflammatory bowel disease-associated ubiquitin ligase RNF183 promotes lysosomal degradation of DR5 and TRAIL-induced caspase activation. Sci Rep 2019; 9:20301. [PMID: 31889078 PMCID: PMC6937276 DOI: 10.1038/s41598-019-56748-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
RNF183 is a ubiquitin ligase containing RING-finger and transmembrane domains, and its expression levels are increased in patients with inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, and in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Here, we further demonstrate that RNF183 was induced to a greater degree in the dextran sulfate sodium (DSS)-treated IBD model at a very early stage than were inflammatory cytokines. In addition, fluorescence-activated cell sorting and polymerase chain reaction analysis revealed that RNF183 was specifically expressed in epithelial cells of DSS-treated mice, which suggested that increased levels of RNF183 do not result from the accumulation of immune cells. Furthermore, we identified death receptor 5 (DR5), a member of tumour necrosis factor (TNF)-receptor superfamily, as a substrate of RNF183. RNF183 mediated K63-linked ubiquitination and lysosomal degradation of DR5. DR5 promotes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis signal through interaction with caspase-8. Inhibition of RNF183 expression was found to suppress TRAIL-induced activation of caspase-8 and caspase-3. Thus, RNF183 promoted not only DR5 transport to lysosomes but also TRAIL-induced caspase activation and apoptosis. Together, our results provide new insights into potential roles of RNF183 in DR5-mediated caspase activation in IBD pathogenesis.
Collapse
|
17
|
Coleman OI, Haller D. ER Stress and the UPR in Shaping Intestinal Tissue Homeostasis and Immunity. Front Immunol 2019; 10:2825. [PMID: 31867005 PMCID: PMC6904315 DOI: 10.3389/fimmu.2019.02825] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
An imbalance in the correct protein folding milieu of the endoplasmic reticulum (ER) can cause ER stress, which leads to the activation of the unfolded protein response (UPR). The UPR constitutes a highly conserved and intricately regulated group of pathways that serve to restore ER homeostasis through adaptation or apoptosis. Numerous studies over the last decade have shown that the UPR plays a critical role in shaping immunity and inflammation, resulting in the recognition of the UPR as a key player in pathological processes including complex inflammatory, autoimmune and neoplastic diseases. The intestinal epithelium, with its many highly secretory cells, forms an important barrier and messenger between the luminal environment and the host immune system. It is not surprising, that numerous studies have associated ER stress and the UPR with intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this review, we discuss our current understanding of the roles of ER stress and the UPR in shaping immune responses and maintaining tissue homeostasis. Furthermore, the role played by the UPR in disease, with emphasis on IBD and CRC, is described here. As a key player in immunity and inflammation, the UPR has been increasingly recognized as an important pharmacological target in the development of therapeutic strategies for immune-mediated pathologies. We summarize available strategies targeting the UPR and their therapeutic implications. Understanding the balance between homeostasis and pathophysiology, as well as means of manipulating this balance, provides an important avenue for future research.
Collapse
Affiliation(s)
- Olivia I Coleman
- Chair of Nutrition and Immunology, Technical University of Munich, Munich, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Munich, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Khan HA, Margulies CE. The Role of Mammalian Creb3-Like Transcription Factors in Response to Nutrients. Front Genet 2019; 10:591. [PMID: 31293620 PMCID: PMC6598459 DOI: 10.3389/fgene.2019.00591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Our ability to overcome the challenges behind metabolic disorders will require a detailed understanding of the regulation of responses to nutrition. The Creb3 transcription factor family appears to have a unique regulatory role that links cellular secretory capacity with development, nutritional state, infection, and other stresses. This role in regulating individual secretory capacity genes could place this family of transcription factors at an important regulatory intersection mediating an animal’s responses to nutrients and other environmental challenges. Interestingly, in both humans and mice, individuals with mutations in Creb3L3/CrebH, one of the Creb3 family members, exhibit hypertriglyceridemia (HTG) thus linking this transcription factor to lipid metabolism. We are beginning to understand how Creb3L3 and related family members are regulated and to dissect the potential redundancy and cross talk between distinct family members, thereby mediating both healthy and pathological responses to the environment. Here, we review the current knowledge on the regulation of Creb3 family transcription factor activity, their target genes, and their role in metabolic disease.
Collapse
Affiliation(s)
- Haris A Khan
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carla E Margulies
- Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
19
|
Hooper KM, Barlow PG, Henderson P, Stevens C. Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:661-671. [PMID: 30590697 DOI: 10.1093/ibd/izy380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. The etiology involves a combination of genetic and environmental factors resulting in abnormal immune responses to intestinal microbiota. Genetic studies have strongly linked genes involved in autophagy to CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), and autophagy plays a key role in relieving ER stress and restoring homeostasis. This review summarizes the known interactions between autophagy and the UPR and discusses the impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-term treatments for IBD, targeting of synergistic pathways may provide novel and more effective therapeutic options.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Cunningham KE, Novak EA, Vincent G, Siow VS, Griffith BD, Ranganathan S, Rosengart MR, Piganelli JD, Mollen KP. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation. FASEB J 2018; 33:1330-1346. [PMID: 30113881 DOI: 10.1096/fj.201800535r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. IBD is known to be multifactorial, but inflammatory signaling within the intestinal epithelium and a subsequent failure of the intestinal epithelial barrier have been shown to play essential roles in disease pathogenesis. CaMKIV is a multifunctional protein kinase associated with inflammation and cell cycle regulation. CaMKIV has been extensively studied in autoimmune diseases, but a role in idiopathic intestinal inflammation has not been described. In this study, active CaMKIV was highly expressed within the intestinal epithelium of humans with ulcerative colitis and wild-type (WT) mice with experimental induced colitis. Clinical disease severity directly correlates with CaMKIV activation, as does expression of proinflammatory cytokines and histologic features of colitis. In WT mice, CaMKIV activation is associated with increases in expression of 2 cell cycle proarrest signals: p53 and p21. Cell cycle arrest inhibits proliferation of the intestinal epithelium and ultimately results in compromised intestinal epithelial barrier integrity, further perpetuating intestinal inflammation during experimental colitis. Using a CaMKIV null mutant mouse, we demonstrate that a loss of CaMKIV protects against murine DSS colitis. Small molecules targeting CaMKIV activation may provide therapeutic benefit for patients with IBD.-Cunningham, K. E., Novak, E. A., Vincent, G., Siow, V. S., Griffith, B. D., Ranganathan, S., Rosengart, M. R., Piganelli, J. D., Mollen, K. P. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Kellie E Cunningham
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Garret Vincent
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Vei Shaun Siow
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian D Griffith
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarangarajan Ranganathan
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jon D Piganelli
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, Hindryckx P, De Vos M, Laukens D. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. J Transl Med 2017; 97:519-529. [PMID: 28165466 DOI: 10.1038/labinvest.2017.6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023] Open
Abstract
Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNFΔARE/WT mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNFΔARE/WT mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNFΔARE/WT mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.
Collapse
Affiliation(s)
| | - Daniel Borsboom
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sarah Devriese
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sophie Van Welden
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Tom Holvoet
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
23
|
Chong WC, Shastri MD, Eri R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology. Int J Mol Sci 2017; 18:E771. [PMID: 28379196 PMCID: PMC5412355 DOI: 10.3390/ijms18040771] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.
Collapse
Affiliation(s)
- Wai Chin Chong
- School of Health Science, University of Tasmania, Newnham TAS 7248, Australia.
| | - Madhur D Shastri
- School of Health Science, University of Tasmania, Newnham TAS 7248, Australia.
| | - Rajaraman Eri
- School of Health Science, University of Tasmania, Newnham TAS 7248, Australia.
| |
Collapse
|
24
|
Fujimoto K, Kinoshita M, Tanaka H, Okuzaki D, Shimada Y, Kayama H, Okumura R, Furuta Y, Narazaki M, Tamura A, Hatakeyama S, Ikawa M, Tsuchiya K, Watanabe M, Kumanogoh A, Tsukita S, Takeda K. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol 2017; 10:446-459. [PMID: 27381925 DOI: 10.1038/mi.2016.58] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Genome-wide association studies and subsequent deep sequencing analysis have identified susceptible loci for inflammatory bowel diseases (IBDs) including ulcerative colitis (UC). A gene encoding RING finger protein 186 (RNF186) is located within UC-susceptible loci. However, it is unclear whether RNF186 is involved in IBD pathogenesis. Here, we show that RNF186 controls protein homeostasis in colonic epithelia and regulates intestinal inflammation. RNF186, which was highly expressed in colonic epithelia, acted as an E3 ligase mediating polyubiquitination of its substrates. Permeability of small organic molecules was augmented in the intestine of Rnf186-/- mice. Increased expression of several RNF186 substrates, such as occludin, was found in Rnf186-/- colonic epithelia. The disturbed protein homeostasis in Rnf186-/- mice correlated with enhanced endoplasmic reticulum (ER) stress in colonic epithelia and increased sensitivity to intestinal inflammation after dextran sulfate sodium (DSS) treatment. Introduction of an UC-associated Rnf186 mutation led to impaired E3 ligase activity and increased sensitivity to DSS-induced intestinal inflammation in mice. Thus, RNF186 maintains gut homeostasis by controlling ER stress in colonic epithelia.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Shimada
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoki Furuta
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sachiko Tsukita
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
25
|
Sugi Y, Takahashi K, Kurihara K, Nakata K, Narabayashi H, Hamamoto Y, Suzuki M, Tsuda M, Hanazawa S, Hosono A, Kaminogawa S. Post-Transcriptional Regulation of Toll-Interacting Protein in the Intestinal Epithelium. PLoS One 2016; 11:e0164858. [PMID: 27741296 PMCID: PMC5065231 DOI: 10.1371/journal.pone.0164858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Immune responses against gut microbiota should be minimized to avoid unnecessary inflammation at mucosal surface. In this study, we analyzed the expression patterns of Toll-interacting protein (Tollip), an inhibitor of TLRs and IL-1 family cytokine-related intracellular signaling, in intestinal epithelial cells (IECs). Comparable mRNA expression was observed in murine small and large IECs (S-IECs and L-IECs). However, Tollip protein was only detected in L-IECs, but not in S-IECs. Similar results were obtained in germ-free mice, indicating that L-IEC-specific TOLLIP expression does not depend on bacterial colonization. Next, to understand the mechanisms underlying the post-transcriptional repression of Tollip, 3´-UTR-mediated translational regulation was evaluated. The region +1876/+2398 was responsible for the repression of Tollip expression. This region included the target sequence of miR-31. The inhibition of miR-31 restored the 3´-UTR-meditaed translational repression. In addition, miR-31 expression was significantly higher in S-IECs than in L-IECs, suggesting that miR-31 represses the translation of Tollip mRNA in S-IECs. Collectively, we conclude that the translation of Tollip is inhibited in S-IECs, at least in part, by miR-31 to yield L-IEC-specific high-level expression of the Tollip protein, which may contribute to the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Yutaka Sugi
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Kyoko Takahashi
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- * E-mail:
| | - Kenta Kurihara
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Kazuaki Nakata
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Hikari Narabayashi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Yuji Hamamoto
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Makoto Suzuki
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Masato Tsuda
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Akira Hosono
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Shuichi Kaminogawa
- Department of Food Biochemistry and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| |
Collapse
|
26
|
Akiyama T, Oishi K, Wullaert A. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers. PLoS One 2016; 11:e0162448. [PMID: 27611782 PMCID: PMC5017626 DOI: 10.1371/journal.pone.0162448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon.
Collapse
Affiliation(s)
- Takuya Akiyama
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- * E-mail: (TA); (AW)
| | - Kenji Oishi
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- Yakult Central Institute, Tokyo, Japan
| | - Andy Wullaert
- Yakult Honsha European Research Center for Microbiology ESV, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Internal Medicine Department, Ghent University, Ghent, Belgium
- * E-mail: (TA); (AW)
| |
Collapse
|
27
|
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16:469-84. [PMID: 27346803 DOI: 10.1038/nri.2016.62] [Citation(s) in RCA: 578] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.
Collapse
Affiliation(s)
- Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Abstract
Research in the past decade has greatly expanded our understanding of the pathogenesis of inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. In addition to the sophisticated network of immune response, the epithelial layer lining the mucosa has emerged as an essential player in the development and persistence of intestinal inflammation. As the frontline of numerous environmental insults in the gut, the intestinal epithelial cells are subject to various cellular stresses. In eukaryotic cells, disturbance of endoplasmic reticulum homeostasis may lead to the accumulation of unfolded and misfolded proteins in the ER lumen, a condition called ER stress. This cellular process activates the unfolded protein response, which functions to enhance the ER protein folding capacity, alleviates the burden of protein synthesis and maturation, and activates ER-associated protein degradation. Paneth and goblet cells, 2 secretory epithelial populations in the gut, are particularly sensitive to ER stress on environmental or genetic disturbances. Recent studies suggested that epithelial ER stress may contribute to the pathogenesis of Crohn's disease and ulcerative colitis by compromising protein secretion, inducing epithelial cell apoptosis and activating proinflammatory response in the gut. Our knowledge of ER stress in intestinal epithelial function may open avenue to new inflammatory bowel disease therapies by targeting the ER protein folding homeostasis in the cells lining the intestinal mucosa.
Collapse
|
29
|
Sreedhar R, Arumugam S, Thandavarayan RA, Giridharan VV, Karuppagounder V, Pitchaimani V, Afrin R, Harima M, Nakamura T, Ueno K, Nakamura M, Suzuki K, Watanabe K. Toki-shakuyaku-san, a Japanese kampo medicine, reduces colon inflammation in a mouse model of acute colitis. Int Immunopharmacol 2015; 29:869-875. [DOI: 10.1016/j.intimp.2015.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
30
|
Cui M, Kanemoto S, Cui X, Kaneko M, Asada R, Matsuhisa K, Tanimoto K, Yoshimoto Y, Shukunami C, Imaizumi K. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis. Sci Rep 2015; 5:16455. [PMID: 26558437 PMCID: PMC4642342 DOI: 10.1038/srep16455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development.
Collapse
Affiliation(s)
- Min Cui
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Xiang Cui
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Keiji Tanimoto
- Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
31
|
Banerjee A, Bizzaro D, Burra P, Di Liddo R, Pathak S, Arcidiacono D, Cappon A, Bo P, Conconi MT, Crescenzi M, Pinna CMA, Parnigotto PP, Alison MR, Sturniolo GC, D'Incà R, Russo FP. Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res Ther 2015; 6:79. [PMID: 25890182 PMCID: PMC4455709 DOI: 10.1186/s13287-015-0073-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/26/2014] [Accepted: 04/01/2015] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Inflammatory bowel diseases (IBD) are complex multi-factorial diseases with increasing incidence worldwide but their treatment is far from satisfactory. Unconventional strategies have consequently been investigated, proposing the use of cells as an effective alternative approach to IBD. In the present study we examined the protective potential of exogenously administered human umbilical cord derived mesenchymal stem cells (UCMSCs) against Dextran Sulfate Sodium (DSS) induced acute colitis in immunodeficient NOD.CB17-Prkdc (scid)/J mice with particular attention to endoplasmic reticulum (ER) stress. METHODS UCMSCs were injected in NOD.CB17-Prkdc (scid)/J via the tail vein at day 1 and 4 after DSS administration. To verify attenuation of DSS induced damage by UCMSCs, Disease Activity Index (DAI) and body weight changes was monitored daily. Moreover, colon length, histological changes, myeloperoxidase and catalase activities, metalloproteinase (MMP) 2 and 9 expression and endoplasmic reticulum (ER) stress related proteins were evaluated on day 7. RESULTS UCMSCs administration to immunodeficient NOD.CB17-Prkdc (scid)/J mice after DSS damage significantly reduced DAI (1.45 ± 0.16 vs 2.08 ± 0.18, p < 0.05), attenuating the presence of bloody stools, weight loss, colon shortening (8.95 ± 0.33 cm vs 6.8 ± 0.20 cm, p < 0.01) and histological score (1.97 ± 0.13 vs 3.27 ± 0.13, p < 0.001). Decrease in neutrophil infiltration was evident from lower MPO levels (78.2 ± 9.7 vs 168.9 ± 18.2 U/g, p < 0.01). DSS treatment enhanced MMP2 and MMP9 activities (>3-fold), which were significantly reduced in mice receiving UCMSCs. Moreover, positive modulation in ER stress related proteins was observed after UCMSCs administration. CONCLUSIONS Our results demonstrated that UCMSCs are able to prevent DSS-induced colitis in immunodeficient mice. Using these mice we demonstrated that our UCMSCs have a direct preventive effect other than the T-cell immunomodulatory properties which are already known. Moreover we demonstrated a key function of MMPs and ER stress in the establishment of colitis suggesting them to be potential therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Debora Bizzaro
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Surajit Pathak
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Diletta Arcidiacono
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
- Venetian Institute of Molecular Medicine (VIMM), Via Orus, 2 35129, Padova, Italy.
| | - Andrea Cappon
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Patrizio Bo
- Obstetrics and Gynecology Unit, Cittadella Hospital, via Casa di ricovero, 40 35013 Cittadella, Padova, Italy.
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Marika Crescenzi
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Claudia Maria Assunta Pinna
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Pier Paolo Parnigotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Renata D'Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology/Multivisceral Transplant Unit, University Hospital Padova, Via Giustiniani 2, Padova, 35128, Italy.
| |
Collapse
|
32
|
Abstract
In eukaryotic cells, protein folding and modification in the endoplasmic reticulum (ER) is highly sensitive to disturbances of homeostasis. The accumulation of unfolded and misfolded proteins in the ER lumen, termed ER stress, activates intracellular signaling pathways to resolve the protein-folding defect. This unfolded protein response (UPR) increases the capacity of ER protein folding, reduces global protein synthesis, and activates ER-associated protein degradation. If ER stress is too severe or chronic, or the UPR is compromised and not able to restore ER protein-folding homeostasis, numerous apoptotic signaling pathways are activated. Preclinical and clinical studies in the past decade indicate that ER stress and the UPR have a significant impact on the pathogenesis of inflammatory bowel disease. Paneth and goblet cells, 2 epithelial cell populations in the gut, rely on a robust ER function for protein folding and secretion. Several immune cells are orchestrated by ER stress and the UPR for differentiation, activation, migration, and survival. In addition, a variety of exogenous and endogenous molecules in the intestinal lumen affect ER function, making ER stress and the UPR relevant cellular signals in intestinal homeostasis. Recent studies demonstrated that unresolved ER stress and/or dysregulated UPR may cause inflammatory bowel disease by inducing epithelial cell death, impairing mucosal barrier function, and activating proinflammatory response in the gut. With our increased understanding of ER stress in inflammatory bowel disease pathogenesis, it is now possible to develop novel therapies to improve ER protein-folding homeostasis and target-specific UPR pathways in cells residing in the intestinal mucosa.
Collapse
|
33
|
Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol Res Pract 2015; 2015:328791. [PMID: 25755668 PMCID: PMC4338396 DOI: 10.1155/2015/328791] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) causes accumulation of unfolded and misfolded proteins in the ER lumen, which activates intracellular signaling pathways termed the unfolded protein response (UPR). Recent studies have linked ER stress and the UPR to inflammatory bowel disease (IBD). The microenvironment of the ER is affected by a myriad of intestinal luminal molecules, implicating ER stress and the UPR in proper maintenance of intestinal homeostasis. Several intestinal cell populations, including Paneth and goblet cells, require robust ER function for protein folding, maturation, and secretion. Prolonged ER stress and impaired UPR signaling may cause IBD through: (1) induction of intestinal epithelial cell apoptosis, (2) disruption of mucosal barrier function, and (3) induction of the proinflammatory response in the gut. Based on our increased understanding of ER stress in IBD, new pharmacological approaches can be developed to improve intestinal homeostasis by targeting ER protein-folding in the intestinal epithelial cells (IECs).
Collapse
|
34
|
Hosomi S, Kaser A, Blumberg RS. Role of endoplasmic reticulum stress and autophagy as interlinking pathways in the pathogenesis of inflammatory bowel disease. Curr Opin Gastroenterol 2015; 31:81-8. [PMID: 25426970 PMCID: PMC4592163 DOI: 10.1097/mog.0000000000000144] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to provide an overview of the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in inflammatory bowel disease (IBD). RECENT FINDINGS Human genetic studies have identified several UPR-related genes and autophagy-related genes as IBD risk loci. Impairment of each branch of the UPR causes spontaneous enteritis or creates higher susceptibility for intestinal inflammation in model systems. Deficiency of either UPR or autophagy in small intestinal epithelial cells promotes each other's compensatory engagement, which is especially prominent in Paneth cells such that, in the absence of both, severe spontaneous enteritis emerges. SUMMARY Interactions between the UPR and autophagy exhibit critical synergistic interactions within the intestinal epithelium and especially Paneth cells that are of considerable importance to the maintenance of homeostasis. When dysfunctional in the Paneth cell, spontaneous inflammation can emerge that may extend beyond the epithelium providing direct experimental evidence that subsets of Crohn's disease may emanate from primary Paneth cell disturbances.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Abstract
Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.
Collapse
Affiliation(s)
- Sarah E Bettigole
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065; ,
| | | |
Collapse
|