1
|
Yu Y, Xu X, Hu Y, Ding Y, Chen L. Indole-3-Acetic Acid (IAA) and Sugar Mediate Endosperm Development in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2024; 17:66. [PMID: 39443408 PMCID: PMC11499519 DOI: 10.1186/s12284-024-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The yield potential of large-panicle rice is often limited by grain-filling barriers caused by the development of inferior spikelets (IS). Photoassimilates, which are the main source of rice grain filling, mainly enter the caryopsis through the dorsal vascular bundle. The distribution of assimilates between superior spikelets (SS) and IS is influenced by auxin-mediated apical dominance; however, the mechanism involved is still unclear. In this study, the effect of auxin signaling on the grain filling of SS and IS was investigated in two large-panicle japonica rice varieties, W1844 and CJ03. Compared to SS, IS displayed delayed initiation of filling and a significantly lower grain weight. Furthermore, the endosperm development in IS remained stagnant at the coenocytic stage. The development of the dorsal vascular bundle in the IS was also slow, and poor sucrose-unloading was observed during the initial grain filling stage. However, the endosperm development in IS immediately started after the improvement of dorsal vascular bundle development. GUS activity staining further revealed that indole-3-acetic (IAA) was localized in the dorsal vascular bundle and surrounding areas, suggesting that the low IAA content observed in the IS during the initial grain filling stage may have delayed the development of the dorsal vascular bundle. Therefore, these results demonstrate that IAA may control sugar transport and unloading by regulating dorsal vascular bundle development, consequently affecting endosperm development in IS.
Collapse
Affiliation(s)
- Yongchao Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China.
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
2
|
Zeng Y, Zi H, Wang Z, Min X, Chen M, Zhang B, Li Z, Lin W, Zhang Z. Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice. RICE (NEW YORK, N.Y.) 2024; 17:50. [PMID: 39136854 PMCID: PMC11322495 DOI: 10.1186/s12284-024-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.
Collapse
Affiliation(s)
- Yuhang Zeng
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China
| | - Hongjuan Zi
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China
| | - Zhaocheng Wang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China
| | - Xiumei Min
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China
| | - Mengying Chen
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China
| | - Bianhong Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhixing Zhang
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Zhang S, Ghatak A, Mohammadi Bazargani M, Kramml H, Zang F, Gao S, Ramšak Ž, Gruden K, Varshney RK, Jiang D, Chaturvedi P, Weckwerth W. Cell-type proteomic and metabolomic resolution of early and late grain filling stages of wheat endosperm. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:555-571. [PMID: 38050335 PMCID: PMC12047074 DOI: 10.1111/pbi.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjingChina
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | | | - Hannes Kramml
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Fujuan Zang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjingChina
| | - Shuang Gao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjingChina
| | - Živa Ramšak
- Department of Systems Biology and Biotechnology, National Institute of BiologyLjubljanaSlovenia
| | - Kristina Gruden
- Department of Systems Biology and Biotechnology, National Institute of BiologyLjubljanaSlovenia
| | - Rajeev K. Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures InstituteMurdoch UniversityMurdochWAAustralia
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjingChina
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| |
Collapse
|
4
|
Lin F, Lin S, Zhang Z, Lin W, Rensing C, Xie D. GF14f gene is negatively associated with yield and grain chalkiness under rice ratooning. FRONTIERS IN PLANT SCIENCE 2023; 14:1112146. [PMID: 36875569 PMCID: PMC9976807 DOI: 10.3389/fpls.2023.1112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear. METHODS In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis. RESULTS Rice ratooning induced an extensive carbon reserve remobilization in combination with an impact on grain filling, starch biosynthesis, and ultimately, an optimization in starch composition and structure in the endosperm. Furthermore, these variations were shown to be associated with a protein-coding gene: GF14f (encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts oxidative and environmental resistance in ratoon rice. CONCLUSION Our findings suggested that this genetic regulation by GF14f gene was the main cause leading to changes in rice yield and grain chalkiness improvement of ratoon rice, irrespective of seasonal or environmental effects. A further significance was to see how yield performance and grain quality of ratoon rice were able to be achieved at higher levels via suppression of GF14f.
Collapse
Affiliation(s)
- Feifan Lin
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Zhixing Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Comparative Phosphoproteomic Analysis Reveals the Response of Starch Metabolism to High-Temperature Stress in Rice Endosperm. Int J Mol Sci 2021; 22:ijms221910546. [PMID: 34638888 PMCID: PMC8508931 DOI: 10.3390/ijms221910546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
High-temperature stress severely affects rice grain quality. While extensive research has been conducted at the physiological, transcriptional, and protein levels, it is still unknown how protein phosphorylation regulates seed development in high-temperature environments. Here, we explore the impact of high-temperature stress on the phosphoproteome of developing grains from two indica rice varieties, 9311 and Guangluai4 (GLA4), with different starch qualities. A total of 9994 phosphosites from 3216 phosphoproteins were identified in all endosperm samples. We identified several consensus phosphorylation motifs ([sP], [LxRxxs], [Rxxs], [tP]) induced by high-temperature treatment and revealed a core set of protein kinases, splicing factors, and regulatory factors in response to high-temperature stress, especially those involved in starch metabolism. A detailed phosphorylation scenario in the regulation of starch biosynthesis (AGPase, GBSSI, SSIIa, SSIIIa, BEI, BEIIb, ISA1, PUL, PHO1, PTST) in rice endosperm was proposed. Furthermore, the dynamic changes in phosphorylated enzymes related to starch synthesis (SSIIIa-Ser94, BEI-Ser562, BEI-Ser620, BEI-Ser821, BEIIb-Ser685, BEIIb-Ser715) were confirmed by Western blot analysis, which revealed that phosphorylation might play specific roles in amylopectin biosynthesis in response to high-temperature stress. The link between phosphorylation-mediated regulation and starch metabolism will provide new insights into the mechanism underlying grain quality development in response to high-temperature stress.
Collapse
|
6
|
Min X, Xu H, Huang F, Wei Y, Lin W, Zhang Z. GC-MS-based metabolite profiling of key differential metabolites between superior and inferior spikelets of rice during the grain filling stage. BMC PLANT BIOLOGY 2021; 21:439. [PMID: 34583646 PMCID: PMC8477532 DOI: 10.1186/s12870-021-03219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification. However, the analysis of metabolomics differences between SS and IS is rarely reported currently. RESULTS This study utilized untargeted metabolomics and identified 162 metabolites in rice spikelets. Among them, 17 differential metabolites associated with unsynchronized grain filling between SS and IS, 27 metabolites were related to the stagnant development of IS and 35 metabolites related to the lower maximum grain-filling rate of IS compared with the SS. We found that soluble sugars were an important metabolite during grain filling for SS and IS. Absolute quantification was used to further analyze the dynamic changes of 4 types of soluble sugars (sucrose, fructose, glucose, and trehalose) between SS and IS. The results showed that sucrose and trehalose were closely associated with the dynamic characteristics of grain filling between SS and IS. The application of exogenous sugar showed that trehalose functioned as a key sugar signal during grain filling of IS. Trehalose regulated the expression of genes related to sucrose conversion and starch synthesis, thereby promoting the conversion of sucrose to starch. The difference in the spatiotemporal expression of TPS-2 and TPP-1 between SS and IS was an important reason that led to the asynchronous change in the trehalose content between SS and IS. CONCLUSIONS The results from this study are helpful for understanding the difference in grain filling between SS and IS at the metabolite level. In addition, the present results can also provide a theoretical basis for the next step of using metabolites to regulate the filling of IS.
Collapse
Affiliation(s)
- Xiumei Min
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hailong Xu
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fenglian Huang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, 350018, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
7
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, Chaturvedi P, Jiang D, Weckwerth W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:669-687. [PMID: 34227164 PMCID: PMC9291999 DOI: 10.1111/tpj.15410] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Grain filling and grain development are essential biological processes in the plant's life cycle, eventually contributing to the final seed yield and quality in all cereal crops. Studies of how the different wheat (Triticum aestivum L.) grain components contribute to the overall development of the seed are very scarce. We performed a proteomics and metabolomics analysis in four different developing components of the wheat grain (seed coat, embryo, endosperm, and cavity fluid) to characterize molecular processes during early and late grain development. In-gel shotgun proteomics analysis at 12, 15, 20, and 26 days after anthesis (DAA) revealed 15 484 identified and quantified proteins, out of which 410 differentially expressed proteins were identified in the seed coat, 815 in the embryo, 372 in the endosperm, and 492 in the cavity fluid. The abundance of selected protein candidates revealed spatially and temporally resolved protein functions associated with development and grain filling. Multiple wheat protein isoforms involved in starch synthesis such as sucrose synthases, starch phosphorylase, granule-bound and soluble starch synthase, pyruvate phosphate dikinase, 14-3-3 proteins as well as sugar precursors undergo a major tissue-dependent change in abundance during wheat grain development suggesting an intimate interplay of starch biosynthesis control. Different isoforms of the protein disulfide isomerase family as well as glutamine levels, both involved in the glutenin macropolymer pattern, showed distinct spatial and temporal abundance, revealing their specific role as indicators of wheat gluten quality. Proteins binned into the functional category of cell growth/division and protein synthesis/degradation were more abundant in the early stages (12 and 15 DAA). At the metabolome level all tissues and especially the cavity fluid showed highly distinct metabolite profiles. The tissue-specific data are integrated with biochemical networks to generate a comprehensive map of molecular processes during grain filling and developmental processes.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Arindam Ghatak
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | | | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)Hyderabad502324India
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationMurdoch UniversityMurdochWA6150Australia
| | - Palak Chaturvedi
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop EcophysiologyMinistry of Agriculture/Nanjing Agricultural UniversityNanjing210095China
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyMolecular Systems Biology Lab (MOSYS)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| |
Collapse
|
8
|
Meng X, Baine JM, Yan T, Wang S. Comprehensive Analysis of Lysine Lactylation in Rice ( Oryza sativa) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8287-8297. [PMID: 34264677 DOI: 10.1021/acs.jafc.1c00760] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein lysine lactylation is a new post-translational modification (PTM) prevalently found in fungi and mammalian cells that directly stimulates gene transcription and regulates the glycolytic flux. However, lysine lactylation sites and regulations remain largely unexplored, especially in cereal crops. Herein, we report the first global lactylome profile in rice, which effectively identified 638 lysine lactylation sites across 342 proteins in rice grains. Functional annotations demonstrated that lysine lactylation was enriched in proteins associated with central carbon metabolism and protein biosynthesis. We also observed that proteins serving as nutrition reservoirs in rice grains were frequently targeted by lactylation. Homology analyses indicated that lactylation was conserved on both histone and nonhistone proteins across plants, human cells, and fungi. In addition to lactylation, additional types of acylations could co-occur in many proteins at identical lysine residues, indicating potential cross-talks between these modifications. Our study provided a comprehensive profile of protein lysine lactylation in cereal crop grains.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Jonathan M Baine
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
9
|
Sekhar S, Kumar J, Mohanty S, Mohanty N, Panda RS, Das S, Shaw BP, Behera L. Identification of novel QTLs for grain fertility and associated traits to decipher poor grain filling of basal spikelets in dense panicle rice. Sci Rep 2021; 11:13617. [PMID: 34193914 PMCID: PMC8245594 DOI: 10.1038/s41598-021-93134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
High grain number is positively correlated with grain yield in rice, but it is compromised because of poor filling of basal spikelets in dense panicle bearing numerous spikelets. The phenomenon that turns the basal spikelets of compact panicle sterile in rice is largely unknown. In order to understand the factor(s) that possibly determines such spikelet sterility in compact panicle cultivars, QTLs and candidate genes were identified for spikelet fertility and associated traits like panicle compactness, and ethylene production that significantly influences the grain filling using recombinant inbred lines developed from a cross between indica rice cultivars, PDK Shriram (compact, high spikelet number) and Heera (lax, low spikelet number). Novel QTLs, qSFP1.1, qSFP3.1, and qSFP6.1 for spikelet fertility percentage; qIGS3.2 and qIGS4.1 for panicle compactness; and qETH1.2, qETH3.1, and qETH4.1 for ethylene production were consistently identified in both kharif seasons of 2017 and 2018. The comparative expression analysis of candidate genes like ERF3, AP2-like ethylene-responsive transcription factor, EREBP, GBSS1, E3 ubiquitin-protein ligase GW2, and LRR receptor-like serine/threonine-protein kinase ERL1 associated with identified QTLs revealed their role in poor grain filling of basal spikelets in a dense panicle. These candidate genes thus could be important for improving grain filling in compact-panicle rice cultivars through biotechnological interventions.
Collapse
Affiliation(s)
- Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India.
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Soumya Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Niharika Mohanty
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Rudraksh Shovan Panda
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | - Swagatika Das
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India
| | | | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, 753006, India.
| |
Collapse
|
10
|
Tappiban P, Ying Y, Xu F, Bao J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int J Mol Sci 2021; 22:5901. [PMID: 34072759 PMCID: PMC8199009 DOI: 10.3390/ijms22115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rice (Oryza sativa L.) is a foremost staple food for approximately half the world's population. The components of rice starch, amylose, and amylopectin are synthesized by a series of enzymes, which are responsible for rice starch properties and functionality, and then affect rice cooking and eating quality. Recently, proteomics technology has been applied to the establishment of the differentially expressed starch biosynthesis-related proteins and the identification of posttranslational modifications (PTMs) target starch biosynthesis proteins as well. It is necessary to summarize the recent studies in proteomics and PTMs in rice endosperm to deepen our understanding of starch biosynthesis protein expression and regulation, which will provide useful information to rice breeding programs and industrial starch applications. The review provides a comprehensive summary of proteins and PTMs involved in starch biosynthesis based on proteomic studies of rice developing seeds. Starch biosynthesis proteins in rice seeds were differentially expressed in the developing seeds at different developmental stages. All the proteins involving in starch biosynthesis were identified using proteomics methods. Most starch biosynthesis-related proteins are basically increased at 6-20 days after flowering (DAF) and decreased upon the high-temperature conditions. A total of 10, 14, 2, 17, and 7 starch biosynthesis related proteins were identified to be targeted by phosphorylation, lysine acetylation, succinylation, lysine 2-hydroxyisobutyrylation, and malonylation, respectively. The phosphoglucomutase is commonly targeted by five PTMs types. Research on the function of phosphorylation in multiple enzyme complex formation in endosperm starch biosynthesis is underway, while the functions of other PTMs in starch biosynthesis are necessary to be conducted in the near future.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
11
|
He Z, Zou T, Xiao Q, Yuan G, Liu M, Tao Y, Zhou D, Zhang X, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Yu X, Wang A, Liu H, Wang L, Li P, Li S. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development 2021; 148:dev.196378. [PMID: 33658224 DOI: 10.1242/dev.196378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/22/2021] [Indexed: 01/27/2023]
Abstract
Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we have isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity, likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Fungal Phytohormones: Plant Growth-Regulating Substances and Their Applications in Crop Productivity. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. ADVANCES IN PLANT MICROBIOME AND SUSTAINABLE AGRICULTURE 2020. [DOI: 10.1007/978-981-15-3204-7_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Zhang D, Zhang M, Zhou Y, Wang Y, Shen J, Chen H, Zhang L, Lü B, Liang G, Liang J. The Rice G Protein γ Subunit DEP1/qPE9-1 Positively Regulates Grain-Filling Process by Increasing Auxin and Cytokinin Content in Rice Grains. RICE (NEW YORK, N.Y.) 2019; 12:91. [PMID: 31844998 PMCID: PMC6915179 DOI: 10.1186/s12284-019-0344-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/29/2019] [Indexed: 05/18/2023]
Abstract
Heterotrimeric G protein-mediated signal transduction is one of the most important and highly conserved signaling pathways in eukaryotes, which involves in the regulation of many important biological processes. As compared with those in mammals and Arabidopsis thaliana, the functions of rice heterotrimeric G protein and their molecular mechanisms are largely unknown. The rice genome contains a single Gα (RGA1) and Gβ (RGB1), and five Gγ (RGG1, RGG2, GS3, DEP1/qPE9-1, and GGC2) subunits. Recent genetic studies have shown that DEP1/qPE9-1, an atypical putative Gγ protein, is responsible for the grain size as well as the dense and erect panicles, but the biochemical and molecular mechanisms underlying the control of grain size are not well understood. Here, we report that rice plants carrying DEP1/qPE9-1 have more endosperm cells per grain than plants contain the dep1/qpe9-1 allele. The DEP1/qPE9-1 line has a higher rate and more prolonged period of starch accumulation than the dep1/qpe9-1 line. Additionally, the expression of several essential genes encoding enzymes catalyzing sucrose metabolism and starch biosynthesis is higher in the DEP1/qPE9-1 line than in the dep1/qpe9-1 line, especially from the mid to late grain-filling stage. Grains of the DEP1/qPE9-1 line also have higher contents of three phytohormones, ABA, auxin and cytokinin. Exogenous application of auxin or cytokinin enhanced the starch accumulation and the expression of genes encoding grain-filling-related enzymes in the grains of dep1/qpe9-1, whereas ABA produced no effects. Based on these results, we conclude that DEP1/qPE9-1 positively regulates starch accumulation primarily through auxin and cytokinin, which enhance the expression of genes encoding starch biosynthesis during the mid to late grain-filling stage, resulting in increased duration of the grain-filling process.
Collapse
Affiliation(s)
- Dongping Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Minyan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yuzhu Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jinyu Shen
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Hongyingxue Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Bing Lü
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Meng X, Mujahid H, Zhang Y, Peng X, Redoña ED, Wang C, Peng Z. Comprehensive Analysis of the Lysine Succinylome and Protein Co-modifications in Developing Rice Seeds. Mol Cell Proteomics 2019; 18:2359-2372. [PMID: 31492684 PMCID: PMC6885699 DOI: 10.1074/mcp.ra119.001426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
Lysine succinylation has been recognized as a post-translational modification (PTM) in recent years. It is plausible that succinylation may have a vaster functional impact than acetylation because of bulkier structural changes and more significant charge differences on the modified lysine residue. Currently, however, the quantity and identity of succinylated proteins and their corresponding functions in cereal plants remain largely unknown. In this study, we estimated the native succinylation occupancy on lysine was between 2% to 10% in developing rice seeds. Eight hundred fifty-four lysine succinylation sites on 347 proteins have been identified by a thorough investigation in developing rice seeds. Six motifs were revealed as preferred amino acid sequence arrangements for succinylation sites, and a noteworthy motif preference was identified in proteins associated with different biological processes, molecular functions, pathways, and domains. Remarkably, heavy succinylation was detected on major seed storage proteins, in conjunction with critical enzymes involved in central carbon metabolism and starch biosynthetic pathways for rice seed development. Meanwhile, our results showed that the modification pattern of in vitro nonenzymatically succinylated proteins was different from those of the proteins isolated from cells in Western blots, suggesting that succinylation is not generated via nonenzymatic reaction in the cells, at least not completely. Using the acylation data obtained from the same rice tissue, we mapped many sites harboring lysine succinylation, acetylation, malonylation, crotonylation, and 2-hydroxisobutyrylation in rice seed proteins. A striking number of proteins with multiple modifications were shown to be involved in critical metabolic events. Given that these modification moieties are intermediate products of multiple cellular metabolic pathways, these targeted lysine residues may mediate the crosstalk between different metabolic pathways via modifications by different moieties. Our study exhibits a platform for extensive investigation of molecular networks administrating cereal seed development and metabolism via PTMs.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762
| | - Yadong Zhang
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou 310018, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Mississippi State University, Stoneville MS, 38776
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762.
| |
Collapse
|
16
|
Zhang Z, Zhao H, Huang F, Long J, Song G, Lin W. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:344-358. [PMID: 30912217 DOI: 10.1111/tpj.14329] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
In rice (Oryza sativa L.), later flowering inferior spikelets (IS), which are located on proximal secondary branches, fill slowly and produce smaller and lighter grains than earlier flowering superior spikelets (SS). Many genes have been reported to be involved in poor grain filling of IS, however the underlying molecular mechanisms remain unclear. The present study determined that GF14f, a member of the 14-3-3 protein family, showed temporal and spatial differences in expression patterns between SS and IS. Using GF14f-RNAi plants, we observed that a reduction in GF14f expression in the endosperm resulted in a significant increase in both grain length and weight, which in turn improved grain yield. Furthermore, pull-down assays indicated that GF14f interacts with enzymes that are involved in sucrose breakdown, starch synthesis, tricarboxylic acid (TCA) cycle and glycolysis. At the same time, an increase in the activity of sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), and starch synthase (StSase) was observed in the GF14f-RNAi grains. Comprehensive analysis of the proteome and metabolite profiling revealed that the abundance of proteins related to the TCA cycle, and glycolysis increased in the GF14f-RNAi grains together with several carbohydrate intermediates. These results suggested that GF14f negatively affected grain development and filling, and the observed higher abundance of the GF14f protein in IS compared with SS may be responsible for poor IS grain filling. The study provides insights into the molecular mechanisms underlying poor grain filling of IS and suggests that GF14f could serve as a potential tool for improving rice grain filling.
Collapse
Affiliation(s)
- Zhixing Zhang
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Zhao
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fengliang Huang
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Jifang Long
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Guo Song
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agricultural& Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing & Safety Monitoring, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
17
|
De la Fuente Cantó C, Russell J, Hackett CA, Booth A, Dancey S, George TS, Waugh R. Genetic dissection of quantitative and qualitative traits using a minimum set of barley Recombinant Chromosome Substitution Lines. BMC PLANT BIOLOGY 2018; 18:340. [PMID: 30526499 PMCID: PMC6286510 DOI: 10.1186/s12870-018-1527-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exploring the natural occurring genetic variation of the wild barley genepool has become a major target of barley crop breeding programmes aiming to increase crop productivity and sustainability in global climate change scenarios. However this diversity remains unexploited and effective approaches are required to investigate the benefits that unadapted genomes could bring to crop improved resilience. In the present study, a set of Recombinant Chromosome Substitution Lines (RCSLs) derived from an elite barley cultivar 'Harrington' as the recurrent parent, and a wild barley accession from the Fertile Crescent 'Caesarea 26-24', as the donor parent (Matus et al. Genome 46:1010-23, 2003) have been utilised in field and controlled conditions to examine the contribution of wild barley genome as a source of novel allelic variation for the cultivated barley genepool. METHODS Twenty-eight RCSLs which were selected to represent the entire genome of the wild barley accession, were genotyped using the 9 K iSelect SNP markers (Comadran et al. Nat Genet 44:1388-92, 2012) and phenotyped for a range of morphological, developmental and agronomic traits in 2 years using a rain-out shelter with four replicates and three water treatments. Data were analysed for marker traits associations using a mixed model approach. RESULTS We identified lines that differ significantly from the elite parent for both qualitative and quantitative traits across growing seasons and water regimes. The detailed genotypic characterisation of the lines for over 1800 polymorphic SNP markers and the design of a mixed model analysis identified chromosomal regions associated with yield related traits where the wild barley allele had a positive response increasing grain weight and size. In addition, variation for qualitative characters, such as the presence of cuticle waxes on the developing spikes, was associated with the wild barley introgressions. Despite the coarse location of the QTLs, interesting candidate genes for the major marker-trait associations were identified using the recently released barley genome assembly. CONCLUSION This study has highlighted the role of exotic germplasm to contribute novel allelic variation by using an optimised experimental approach focused on an exotic genetic library. The results obtained constitute a step forward to the development of more tolerant and resilient varieties.
Collapse
Affiliation(s)
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | | | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Siobhan Dancey
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | | | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| |
Collapse
|
18
|
Waqas M, Feng S, Amjad H, Letuma P, Zhan W, Li Z, Fang C, Arafat Y, Khan MU, Tayyab M, Lin W. Protein Phosphatase ( PP2C9) Induces Protein Expression Differentially to Mediate Nitrogen Utilization Efficiency in Rice under Nitrogen-Deficient Condition. Int J Mol Sci 2018; 19:E2827. [PMID: 30235789 PMCID: PMC6163212 DOI: 10.3390/ijms19092827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Nitrogen (N) is an essential element usually limiting in plant growth and a basic factor for increasing the input cost in agriculture. To ensure the food security and environmental sustainability it is urgently required to manage the N fertilizer. The identification or development of genotypes with high nitrogen utilization efficiency (NUE) which can grow efficiently and sustain yield in low N conditions is a possible solution. In this study, two isogenic rice genotypes i.e., wild-type rice kitaake and its transgenic line PP2C9TL overexpressed protein phosphatase gene (PP2C9) were used for comparative proteomics analysis at control and low level of N to identify specific proteins and encoding genes related to high NUE. 2D gel electrophoresis was used to perform the differential proteome analysis. In the leaf proteome, 30 protein spots were differentially expressed between the two isogenic lines under low N level which were involved in the process of energy, photosynthesis, N metabolism, signaling, and defense mechanisms. In addition, we have found that protein phosphatase enhances nitrate reductase activation by downregulation of SnRK1 and 14-3-3 proteins. Furthermore, we showed that PP2C9TL exhibits higher NUE than WT due to higher activity of nitrate reductase. This study provides new insights on the rice proteome which would be useful in the development of new strategies to increase NUE in cereal crops.
Collapse
Affiliation(s)
- Muhammad Waqas
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shizhong Feng
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Hira Amjad
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Puleng Letuma
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Wenshan Zhan
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Zhong Li
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Changxun Fang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Yasir Arafat
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Muhammad Tayyab
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenxiong Lin
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Pang Y, Zhou X, Chen Y, Bao J. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3030-3037. [PMID: 29486119 DOI: 10.1021/acs.jafc.8b00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.
Collapse
Affiliation(s)
- Yuehan Pang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| | - Xin Zhou
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| | - Yaling Chen
- College of Life Sciences , Jiangxi Normal University , Nanchang , 330022 , China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| |
Collapse
|
20
|
Wang GQ, Hao SS, Gao B, Chen MX, Liu YG, Yang JC, Ye NH, Zhang JH. Regulation of Gene Expression in the Remobilization of Carbon Reserves in Rice Stems During Grain Filling. PLANT & CELL PHYSIOLOGY 2017; 58:1391-1404. [PMID: 28575477 DOI: 10.1093/pcp/pcx072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/09/2017] [Indexed: 05/15/2023]
Abstract
Carbon reserves in rice straw (stem and sheath) before flowering contribute to a significant portion of grain filling. However, the molecular mechanism of carbon reserve remobilization from straw to grains remains unclear. In this study, super rice LYP9 and conventional rice 9311 showed different carbon reserve remobilization behaviors. The transcriptomic profiles of straws of LYP9 and 9311 were analyzed at three stages of grain filling. Among the differentially expressed genes (DGs), 5,733 genes were uniquely up- or down-regulated at 30 days after anthesis (DAA) between LYP9 and 9311 in comparison with 681 at 10 DAA and 495 at 20 DAA, suggesting that the gene expression profile of LYP9 was very different from that of 9311 at the late stage of grain filling. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology (GO) classification of DGs both showed that the carbohydrate catabolic pathway, plant hormone signal transduction and photosynthesis pathway were enriched in DGs, suggesting their roles in carbon reserve remobilization, which explains to a certain extent the difference in non-structural carbohydrate content, photosynthesis and ABA content between the two cultivars during grain filling. Further comparative analysis and confirmation by quantitative real-time PCR and enzyme assays suggest that genes involved in trehalose synthesis (trehalose-phosphate phosphatase and trehalose 6-phosphate synthase/phosphatase), starch degradation (β-amylase) and sucrose synthesis (sucrose-phosphate synthase and sucrose synthase) were important for carbon reserve remobilization, whereas ABA content was determined by the counteraction of NCED1 and ABA8ox1 genes. The higher expression level of all these genes and ABA content in 9311 resulted in better efficiency of carbon reserve remobilization in 9311 than in LYP9.
Collapse
Affiliation(s)
- Guan-Qun Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shuai-Shuai Hao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bei Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mo-Xian Chen
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Jian-Chang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
21
|
You C, Chen L, He H, Wu L, Wang S, Ding Y, Ma C. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC PLANT BIOLOGY 2017; 17:100. [PMID: 28592253 PMCID: PMC5463490 DOI: 10.1186/s12870-017-1050-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/29/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Large-panicle rice varieties often fail to achieve their yield potential due to poor grain filling of late-flowering inferior spikelets (IS). The physiological and molecular mechanisms of poor IS grain filling, and whether an increase in assimilate supply could regulate protein abundance and consequently improve IS grain filling for japonica rice with large panicles is still partially understood. RESULTS A field experiment was performed with two spikelet removal treatments at anthesis in the large-panicle japonica rice line W1844, including removal of the top 1/3 of spikelets (T1) and removal of the top 2/3 of spikelets (T2), with no spikelet removal as a control (T0). The size, weight, setting rate, and grain filling rate of IS were significantly increased after spikelet removing. The biological functions of the differentially expressed proteins (DEPs) between superior and inferior spikelets as well as the response of IS to the removal of superior spikelets (SS) were investigated by using iTRAQ at 10 days post anthesis. A total of 159, 87, and 28 DEPs were identified from group A (T0-SS/T0-IS), group B (T0-SS/T2-IS), and group C (T2-IS/T0-IS), respectively. Among these, 104, 63, and 22 proteins were up-regulated, and 55, 24, and 6 proteins were down-regulated, respectively. Approximately half of these DEPs were involved in carbohydrate metabolism (sucrose-to-starch metabolism and energy metabolism) and protein metabolism (protein synthesis, folding, degradation, and storage). CONCLUSIONS Reduced endosperm cell division and decreased activities of key enzymes associated with sucrose-starch metabolism and nitrogen metabolism are mainly attributed to the poor sink strength of IS. In addition, due to weakened photosynthesis and respiration, IS are unable to obtain a timely supply of materials and energy after fertilization, which might be resulted in the stagnation of IS development. Finally, an increased abundance of 14-3-3 protein in IS could be involved in the inhibition of starch synthesis. The removal of SS contributed to transfer of assimilates to IS and enhanced enzymatic activities of carbon metabolism (sucrose synthase, starch branching enzyme, soluble starch synthase, and pullulanase) and nitrogen metabolism (aspartate amino transferase and alanine amino transferase), promoting starch and protein synthesis in IS. In addition, improvements in energy metabolism (greater abundance of pyrophosphate-fructose 6-phosphate 1-phosphotransferase) might be played a vital role in inducing the initiation of grain filling. These results collectively demonstrate that carbohydrate supply is the main cause of poor IS grain filling.
Collapse
Affiliation(s)
- Cuicui You
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
| | - Haibing He
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Liquan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 People’s Republic of China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095 People’s Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 People’s Republic of China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
22
|
Yu T, Li G, Liu P, Dong S, Zhang J, Zhao B. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:83-96. [PMID: 28340398 DOI: 10.1016/j.plaphy.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
In maize, inferior grains (IG) located on the upper part of the ear have poor grain filling process compared to superior grains (SG) located on the middle and lower parts of the ear. This difference limits satisfactory yield and quality; however, the underlying molecular mechanisms remain unknown. Here, using the isobaric tag for relative and absolute quantification (iTRAQ) technology, the proteomes of IG and SG during early and middle grain filling stages were investigated. In total, 4720 proteins were identified in maize grain and 305 differentially accumulated proteins (DiAPs) were detected between IG and SG. These DiAPs were involved in diverse cellular and metabolic processes with preferred distribution in protein synthesis/destination and metabolism. Compared to SG, DiAPs related to cell growth/division and starch synthesis were lag-accumulated and down-regulated in IG, respectively, resulting in smaller sink sizes and lower sink activities in IG. Meanwhile, impediment of the glycolysis pathway in IG may lead to reduce energy supply and building materials for substance synthesis. Additionally, reactive oxygen species (ROS) homeostasis and the defense system were disturbed in IG, which might lead to reduce protection against various environmental stresses. The present study provides new information on the proteomic differences between IG and SG, and explains possible molecular mechanisms for poor grain filling in IG.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Geng Li
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Peng Liu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China.
| | - Shuting Dong
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China.
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| | - Bin Zhao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an 271018, Shandong Province, PR China
| |
Collapse
|
23
|
Zhu FY, Chen MX, Su YW, Xu X, Ye NH, Cao YY, Lin S, Liu TY, Li HX, Wang GQ, Jin Y, Gu YH, Chan WL, Lo C, Peng X, Zhu G, Zhang J. SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. FRONTIERS IN PLANT SCIENCE 2016; 7:1926. [PMID: 28066479 PMCID: PMC5169098 DOI: 10.3389/fpls.2016.01926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/05/2016] [Indexed: 05/21/2023]
Abstract
Modern rice cultivars have large panicle but their yield potential is often not fully achieved due to poor grain-filling of late-flowering inferior spikelets (IS). Our earlier work suggested a broad transcriptional reprogramming during grain filling and showed a difference in gene expression between IS and earlier-flowering superior spikelets (SS). However, the links between the abundances of transcripts and their corresponding proteins are unclear. In this study, a SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) -based quantitative proteomic analysis has been applied to investigate SS and IS proteomes. A total of 304 proteins of widely differing functionality were observed to be differentially expressed between IS and SS. Detailed gene ontology analysis indicated that several biological processes including photosynthesis, protein metabolism, and energy metabolism are differentially regulated. Further correlation analysis revealed that abundances of most of the differentially expressed proteins are not correlated to the respective transcript levels, indicating that an extra layer of gene regulation which may exist during rice grain filling. Our findings raised an intriguing possibility that these candidate proteins may be crucial in determining the poor grain-filling of IS. Therefore, we hypothesize that the regulation of proteome changes not only occurs at the transcriptional, but also at the post-transcriptional level, during grain filling in rice.
Collapse
Affiliation(s)
- Fu-Yuan Zhu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yu-Wen Su
- School of Pharmacy, Nanjing Medical UniversityNanjing, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Neng-Hui Ye
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| | - Yun-Ying Cao
- College of Life Sciences, Nantong UniversityNantong, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Tie-Yuan Liu
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Hao-Xuan Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Guan-Qun Wang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yu Jin
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Yong-Hai Gu
- The Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Wai-Lung Chan
- School of Biological Science, The University of Hong KongHong Kong, China
| | - Clive Lo
- School of Biological Science, The University of Hong KongHong Kong, China
| | - Xinxiang Peng
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
- Shenzhen Research Institute, The Chinese University of Hong KongShenzhen, China
| |
Collapse
|
24
|
Yu T, Li G, Dong S, Liu P, Zhang J, Zhao B. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes. BMC PLANT BIOLOGY 2016; 16:241. [PMID: 27809771 PMCID: PMC5095984 DOI: 10.1186/s12870-016-0878-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. RESULTS Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. CONCLUSIONS Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also provide new insights into the potential protein regulatory networks that control grain yield and quality.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| |
Collapse
|
25
|
Das K, Panda BB, Sekhar S, Kariali E, Mohapatra PK, Shaw BP. Comparative proteomics of the superior and inferior spikelets at the early grain filling stage in rice cultivars contrast for panicle compactness and ethylene evolution. JOURNAL OF PLANT PHYSIOLOGY 2016; 202:65-74. [PMID: 27450495 DOI: 10.1016/j.jplph.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The breeding programmes in rice aimed at increasing the number of spikelets per panicle have been accompanied by poor grain filling in the inferior spikelets of large panicle rice, leading to yield disadvantage. The present study attempted to understand the reason for differential grain filling in the inferior and superior spikelets by comparative proteomics considering a compact-panicle rice cultivar Mahalaxmi and a lax-panicle rice cultivar Upahar, which show poor and good grain filling, respectively. An initial study of two rice cultivars for panicle compactness and grain filling revealed an inverse correlation between the two parameters. It was further observed that the panicle compactness in Mahalaxmi was associated with a higher evolution of ethylene by the spikelets, both superior and inferior, compared with the lax-panicle Upahar. The proteomic studies revealed that the superior and inferior spikelets of Mahalaxmi differentially expressed 21 proteins that were also expressed in Upahar. However, in Upahar, only two of these proteins were differentially expressed between the superior and inferior spikelets, indicating that the metabolic activities of the spikelets occupying the superior and inferior positions on the panicle were very different in Mahalaxmi compared with those in Upahar. Among the proteins that were downregulated in the inferior spikelets compared with the superior ones in Mahalaxmi were importin-α, elongation factor 1-β and cell division control protein 48, which are essential for cell cycle progression and cell division. Low expression of these proteins might inhibit endosperm cell division in the inferior spikelets, limiting their sink capacity and leading to poor grain filling compared to that in the superior spikelets. The poor grain filling in Mahalaxmi may also be a result of the high evolution of ethylene in the inferior spikelets, which is reflected from the observation that these spikelets showed significantly higher expression of S-adenosylmethionine synthase and the gene encoding the enzyme than the superior spikelets in this cultivar, but not in Upahar; S-adenosynlmethionine synthase catalyses the synthesis of S-adenosylmethionine, the precursor of ethylene biosynthesis.
Collapse
Affiliation(s)
- Kaushik Das
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, Odisha, India.
| | - Binay B Panda
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, Odisha, India.
| | - Sudhanshu Sekhar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, Odisha, India.
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India.
| | - Pravat K Mohapatra
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India.
| | - Birendra P Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar - 751023, Odisha, India.
| |
Collapse
|
26
|
Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS One 2016; 11:e0159238. [PMID: 27415428 PMCID: PMC4944901 DOI: 10.1371/journal.pone.0159238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. RESULTS The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. CONCLUSIONS Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Collapse
Affiliation(s)
- Linghua Chen
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Yining Huang
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou Fujian, China
| | - Ming Xu
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Zuxin Cheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai, China
| | - Jingui Zheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| |
Collapse
|
27
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
28
|
Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun 2016; 7:10527. [PMID: 26841834 PMCID: PMC4742901 DOI: 10.1038/ncomms10527] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Rice panicle architecture is a key target of selection when breeding for yield and grain quality. However, panicle phenotypes are difficult to measure and susceptible to confounding during genetic mapping due to correlation with flowering and subpopulation structure. Here we quantify 49 panicle phenotypes in 242 tropical rice accessions with the imaging platform PANorama. Using flowering as a covariate, we conduct a genome-wide association study (GWAS), detect numerous subpopulation-specific associations, and dissect multi-trait peaks using panicle phenotype covariates. Ten candidate genes in pathways known to regulate plant architecture fall under GWAS peaks, half of which overlap with quantitative trait loci identified in an experimental population. This is the first study to assess inflorescence phenotypes of field-grown material using a high-resolution phenotyping platform. Herein, we establish a panicle morphocline for domesticated rice, propose a genetic model underlying complex panicle traits, and demonstrate subtle links between panicle size and yield performance. Panicle architecture is an important determinant of crop yield and a target of selection by plant breeders. Here, Crowell et al. combine image-based phenotyping with high-density array-based genotyping to perform a genome-wide association study revealing a number of candidate genes linked to panicle variation in rice.
Collapse
|
29
|
Qiu J, Hou Y, Tong X, Wang Y, Lin H, Liu Q, Zhang W, Li Z, Nallamilli BR, Zhang J. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2016; 90:249-265. [PMID: 26613898 DOI: 10.1007/s11103-015-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Qing Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Wen Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China.
| |
Collapse
|
30
|
Zhang Y, Zhang D, Yu H, Lin B, Fu Y, Hua S. Floral Initiation in Response to Planting Date Reveals the Key Role of Floral Meristem Differentiation Prior to Budding in Canola (Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1369. [PMID: 27683582 PMCID: PMC5021690 DOI: 10.3389/fpls.2016.01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/29/2016] [Indexed: 05/16/2023]
Abstract
In Brassica napus, floral development is a decisive factor in silique formation, and it is influenced by many cultivation practices including planting date. However, the effect of planting date on floral initiation in canola is poorly understood at present. A field experiment was conducted using a split plot design, in which three planting dates (early, 15 September, middle, 1 October, and late, 15 October) served as main plot and five varieties differing in maturity (1358, J22, Zhongshuang 11, Zheshuang 8, and Zheyou 50) employed as subplot. The purpose of this study was to shed light on the process of floral meristem (FM) differentiation, the influence of planting date on growth period (GP) and floral initiation, and silique formation. The main stages of FM developments can be divided into four stages: first, the transition from shoot apical meristem to FM; second, flower initiation; third, gynoecium and androecium differentiation; and fourth, bud formation. Our results showed that all genotypes had increased GPs from sowing to FM differentiation as planting date was delayed while the GPs from FM differentiation to budding varied year by year except the very early variety, 1358. Based on the number of flowers present at the different reproductive stages, the flowers produced from FM differentiation to budding closely approximated the final silique even though the FM differentiated continuously after budding and peaked generally at the middle flowering stage. The ratio of siliques to maximum flower number ranged from 48 to 80%. These results suggest that (1) the period from FM differentiation to budding is vital for effective flower and silique formation although there was no significant correlation between the length of the period and effective flowers and siliques, and (2) the increased number of flowers from budding were generally ineffective. Therefore, maximizing flower numbers prior to budding will improve silique numbers, and reducing FM degeneration should also increase final silique formation. From the results of our study, we offer guidelines for planting canola varieties that differ in maturity in order to maximize effective flower numbers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuijin Hua
- *Correspondence: Shuijin Hua, Dongqing Zhang,
| |
Collapse
|
31
|
Sekhar S, Gharat SA, Panda BB, Mohaptra T, Das K, Kariali E, Mohapatra PK, Shaw BP. Identification and Characterization of Differentially Expressed Genes in Inferior and Superior Spikelets of Rice Cultivars with Contrasting Panicle-Compactness and Grain-Filling Properties. PLoS One 2015; 10:e0145749. [PMID: 26710230 PMCID: PMC4692420 DOI: 10.1371/journal.pone.0145749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Breeding programs for increasing spikelet number in rice have resulted in compactness of the panicle, accompanied by poor grain filling in inferior spikelets. Although the inefficient utilization of assimilate has been indicated as responsible for this poor grain filling, the underlying cause remains elusive. The current study utilized the suppression subtractive hybridization technique to identify 57 and 79 genes that overexpressed in the superior and inferior spikelets (with respect to each other), respectively, of the compact-panicle rice cultivar Mahalaxmi. Functional categorization of these differentially expressed genes revealed a marked metabolic difference between the spikelets according to their spatial location on the panicle. The expression of genes encoding seed storage proteins was dominant in inferior spikelets, whereas genes encoding regulatory proteins, such as serine-threonine kinase, zinc finger protein and E3 ligase, were highly expressed in superior spikelets. The expression patterns of these genes in the inferior and superior spikelets of Mahalaxmi were similar to those observed in another compact-panicle cultivar, OR-1918, but differed from those obtained in two lax-panicle cultivars, Upahar and Lalat. The results first suggest that the regulatory proteins abundantly expressed in the superior spikelets of compact-panicle cultivars and in both the superior and inferior spikelets of lax-panicle cultivars but poorly expressed in the inferior spikelets of compact-panicle cultivars promote grain filling. Second, the high expression of seed-storage proteins observed in the inferior spikelets of compact-panicle cultivars appears to inhibit the grain filling process. Third, the low expression of enzymes of the Krebs cycle in inferior spikelets compared with superior spikelets of compact-panicle cultivars is bound to lead to poor ATP generation in the former and consequently limit starch biosynthesis, an ATP-consuming process, resulting in poor grain filling.
Collapse
Affiliation(s)
- Sudhanshu Sekhar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Binay Bhushan Panda
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Trupti Mohaptra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kaushik Das
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, India
| | | | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
32
|
Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK. Progress and challenges in improving the nutritional quality of rice (Oryza sativaL.). Crit Rev Food Sci Nutr 2015; 57:2455-2481. [DOI: 10.1080/10408398.2015.1084992] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deep Shikha Birla
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Kapil Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Manish Sainger
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Pawan K. Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
33
|
Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq. PLoS One 2015; 10:e0137168. [PMID: 26355995 PMCID: PMC4565701 DOI: 10.1371/journal.pone.0137168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 01/10/2023] Open
Abstract
Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage.
Collapse
Affiliation(s)
- Hongzheng Sun
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yafan Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Yanxiu Du
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Collaberative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Rice Engineer Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Physiology, Ecology and Genetics Improvement of Food Crop in Henan Province, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
34
|
Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. PLANTA 2015; 241:1091-107. [PMID: 25589060 DOI: 10.1007/s00425-015-2245-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Abscisic acid mediates the effect of post-anthesis soil drying on grain filling through regulating the activities of key enzymes and expressions of genes involved in sucrose-to-starch conversion in rice spikelets. This study investigated if abscisic acid (ABA) would mediate the effect of post-anthesis soil drying on grain filling through regulating the key enzymes in sucrose-to-starch conversion in rice (Oryza sativa L.) spikelets. Two rice cultivars were field-grown. Three treatments, well-watered (WW), moderate soil drying (MD), and severe soil drying (SD), were imposed from 6 days after full heading until maturity. When compared with those under the WW, grain filling rate, grain weight, and sink activity, in terms of the activities and gene expression levels of sucrose synthase, ADP glucose pyrophosphorylase, starch synthase, and starch branching enzyme, in inferior spikelets were substantially increased under the MD, whereas they were markedly decreased in both superior and inferior spikelets under the SD. The two cultivars showed the same tendencies. Both MD and SD increased ABA content and expression levels of its biosynthesis genes in spikelets, with more increase under the SD than the MD. ABA content was significantly correlated with grain filling rate and sink activities under both WW and MD, while the correlations were not significant under the SD. Application of a low concentration ABA to WW plants imitated the results under the MD, and applying with a high concentration ABA showed the effect of the SD. The results suggest that ABA plays a vital role in grain filling through regulating sink activity and functions in a dose-dependent manner. An elevated ABA level under the MD enhances, whereas a too high level of ABA under the SD decreases, sink activity.
Collapse
Affiliation(s)
- Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | | | | | | | | | | |
Collapse
|
35
|
Kong L, Guo H, Sun M. Signal transduction during wheat grain development. PLANTA 2015; 241:789-801. [PMID: 25680351 DOI: 10.1007/s00425-015-2260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 05/08/2023]
Abstract
This review examines the signaling pathways from the developmental and environmental point of view and the interactions among external conditions, hormonal regulations, and sugarsensing in wheat. Grain development is the key phase of reproductive growth that is closely associated with vegetative organ senescence, initiation of grain filling, pre-stored assimilates remobilization, and maturation. Senescence is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids as well as nutrient exports to the sink. The initiation and progression of vegetative organ senescence are under the control of an array of environmental signals (such as biotic and abiotic stresses, darkness, and nutrient availability) and endogenous factors (including aging, multiple hormones, and sugar availability). This review will discuss the major breakthroughs in signal transduction for the wheat (Triticum aestivum) grain development achieved in the past several years, with focuses on the regulation of senescence, reserves remobilization and biosynthesis of main components of the grain. Different mechanisms of diverse signals in controlling different phrases of wheat grain development, and cross talks between different signaling pathways will also be discussed. For perspectives, key signaling networks for grain development remain to be elucidated, including cross talks and the interactions between various environmental factors and internal signals.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan, 250100, China,
| | | | | |
Collapse
|
36
|
Dong M, Gu J, Zhang L, Chen P, Liu T, Deng J, Lu H, Han L, Zhao B. Comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification. J Proteomics 2014; 109:382-99. [DOI: 10.1016/j.jprot.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 01/30/2023]
|