1
|
Aggarwal Y, Dixit AB, Siraj F, Tripathi M, Chandra PS, Banerjee J. Differential regulation of GABA A receptor-mediated hyperexcitability at different stages of brain development in focal cortical dysplasia (FCD). Exp Neurol 2025; 389:115265. [PMID: 40246010 DOI: 10.1016/j.expneurol.2025.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Focal cortical dysplasia (FCD) is a developmental abnormality of cortex commonly linked with drug-resistant seizures. Altered GABAergic activity is a key contributor to interictal discharges in FCD. In FCD, GABAA receptor associated epileptogenicity is dependent upon the age at seizure onset, as differential epileptogenic networks are observed in early and late onset FCD patients. But the contribution of GABAA receptor alteration to epileptogenic networks during development is unclear. We hypothesize that GABAergic signaling in FCD undergoes age-dependent molecular alterations, contributing to the development of distinct epileptogenic networks. In this study, we investigated age-dependent changes in GABA neurotransmitter levels, GABAA receptor α subunit expression, and GABAA receptor-mediated synaptic activity using the BCNU-rat model of FCD. GABA levels, mRNA, and protein expression of GABAA receptor α subunits were determined by HPLC, qPCR and western blot and spontaneous GABAergic activity from pyramidal neurons was recorded using whole cell patch-clamp technique. At postnatal days (P) 12 and 21, reduced expression of α1, 2 and 4 subunits were observed in FCD rats compared to control. Consistent with this, decreased amplitude and frequency of GABAergic events were observed in FCD rats. In contrast, at P30 and P65, decreased GABA levels, without changes in receptor expression, were observed in FCD rats. Consistently, reduction in the frequency of GABAergic events was observed in FCD rats compared to the control. Furthermore, treatment with tetrodotoxin (TTX) revealed that the observed alterations in GABAergic activity were predominantly action potential (AP)-dependent. Our findings indicate that distinct epileptogenic networks exist in FCD during early and late developmental stages. These networks are driven primarily by altered GABAergic activity, with early age changes linked to aberrant GABAA receptor configurations and late age changes associated with abnormal GABA levels.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India.
| | - Fouzia Siraj
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Kang K, Wu Y, Gan H, Yang B, Xiao H, Wang D, Qiu H, Dong X, Tang H, Zhai X. Pathophysiological mechanisms underlying the development of focal cortical dysplasia and their association with epilepsy: Experimental models as a research approach. Seizure 2024; 121:176-185. [PMID: 39191070 DOI: 10.1016/j.seizure.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.
Collapse
Affiliation(s)
- Kaiyi Kang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hui Gan
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Baohui Yang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China; Department of Neurosurgery, Laboratory of Neurosurgery, Institute of Neurology, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hanli Qiu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xinyu Dong
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Haotian Tang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China.
| |
Collapse
|
3
|
Patel DC, Swift N, Tewari BP, Browning JL, Prim C, Chaunsali L, Kimbrough IF, Olsen ML, Sontheimer H. Increased expression of chondroitin sulfate proteoglycans in dentate gyrus and amygdala causes postinfectious seizures. Brain 2024; 147:1856-1870. [PMID: 38146224 PMCID: PMC11068111 DOI: 10.1093/brain/awad430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
Alterations in the extracellular matrix are common in patients with epilepsy and animal models of epilepsy, yet whether they are the cause or consequence of seizures and epilepsy development is unknown. Using Theiler's murine encephalomyelitis virus (TMEV) infection-induced model of acquired epilepsy, we found de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major extracellular matrix component, in dentate gyrus (DG) and amygdala exclusively in mice with acute seizures. Preventing the synthesis of CSPGs specifically in DG and amygdala by deletion of the major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells revealed enhanced intrinsic and synaptic excitability in seizing mice that was significantly ameliorated by aggrecan deletion. In situ experiments suggested that dentate granule cell hyperexcitability results from negatively charged CSPGs increasing stationary cations on the membrane, thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. These results show increased expression of CSPGs in the DG and amygdala as one of the causal factors for TMEV-induced acute seizures. We also show identical changes in CSPGs in pilocarpine-induced epilepsy, suggesting that enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and potential therapeutic target.
Collapse
Affiliation(s)
- Dipan C Patel
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Nathaniel Swift
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bhanu P Tewari
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Courtney Prim
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Lata Chaunsali
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ian F Kimbrough
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Wendling F, Koksal-Ersoz E, Al-Harrach M, Yochum M, Merlet I, Ruffini G, Bartolomei F, Benquet P. Multiscale neuro-inspired models for interpretation of EEG signals in patients with epilepsy. Clin Neurophysiol 2024; 161:198-210. [PMID: 38520800 DOI: 10.1016/j.clinph.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy. METHODS We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory). The whole brain model consists of a large-scale network of interconnected neuronal masses, with connectivity based on the human connectome. RESULTS For these three levels of description, the fine-tuning of free parameters and the quantitative comparison with real data allowed us to reproduce interictal epileptiform discharges with a high degree of fidelity and to formulate hypotheses about the cell- and network-related mechanisms underlying the generation of fast ripples and SEEG-recorded epileptic spikes and spike-waves. CONCLUSIONS The proposed models provide valuable insights into the pathophysiological mechanisms underlying the generation of epileptic events. The knowledge gained from these models effectively complements the clinical analysis of SEEG data collected during the evaluation of patients with epilepsy. SIGNIFICANCE These models are likely to play a key role in the mechanistic interpretation of epileptiform activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology Department, Marseille, France; Univ Aix Marseille, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
5
|
Costanza M, Ciotti A, Consonni A, Cipelletti B, Cattalini A, Cagnoli C, Baggi F, de Curtis M, Colciaghi F. CNS autoimmune response in the MAM/pilocarpine rat model of epileptogenic cortical malformation. Proc Natl Acad Sci U S A 2024; 121:e2319607121. [PMID: 38635635 PMCID: PMC11047071 DOI: 10.1073/pnas.2319607121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The development of seizures in epilepsy syndromes associated with malformations of cortical development (MCDs) has traditionally been attributed to intrinsic cortical alterations resulting from abnormal network excitability. However, recent analyses at single-cell resolution of human brain samples from MCD patients have indicated the possible involvement of adaptive immunity in the pathogenesis of these disorders. By exploiting the MethylAzoxyMethanol (MAM)/pilocarpine (MP) rat model of drug-resistant epilepsy associated with MCD, we show here that the occurrence of status epilepticus and subsequent spontaneous recurrent seizures in the malformed, but not in the normal brain, are associated with the outbreak of a destructive autoimmune response with encephalitis-like features, involving components of both cell-mediated and humoral immune responses. The MP brain is characterized by blood-brain barrier dysfunction, marked and persisting CD8+ T cell invasion of the brain parenchyma, meningeal B cell accumulation, and complement-dependent cytotoxicity mediated by antineuronal antibodies. Furthermore, the therapeutic treatment of MP rats with the immunomodulatory drug fingolimod promotes both antiepileptogenic and neuroprotective effects. Collectively, these data show that the MP rat could serve as a translational model of epileptogenic cortical malformations associated with a central nervous system autoimmune response. This work indicates that a preexisting brain maldevelopment predisposes to a secondary autoimmune response, which acts as a precipitating factor for epilepsy and suggests immune intervention as a therapeutic option to be further explored in epileptic syndromes associated with MCDs.
Collapse
Affiliation(s)
- Massimo Costanza
- Neuro-Oncology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Arianna Ciotti
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Alessandra Consonni
- Neuroimmunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Barbara Cipelletti
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Alessandro Cattalini
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Cinzia Cagnoli
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Fulvio Baggi
- Neuroimmunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Francesca Colciaghi
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan20133, Italy
| |
Collapse
|
6
|
DÜZKALIR HG, GENÇ B, SAĞER SG, TÜRKYILMAZ A, GÜNBEY HP. Microstructural evaluation of the brain with advanced magnetic resonance imaging techniques in cases of electrical status epilepticus during sleep (ESES). Turk J Med Sci 2023; 53:1840-1851. [PMID: 38813507 PMCID: PMC10760578 DOI: 10.55730/1300-0144.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The cause and treatment of electrical status epilepticus during sleep (ESES), one of the epileptic encephalopathies of childhood, is unclear. The aim of this study was to evaluate possible microstructural abnormalities in the brain using advanced magnetic resonance imaging (MRI) techniques in ESES patients with and without genetic mutations. Materials and methods This research comprised 12 ESES patients without structural thalamic lesions (6 with genetic abnormalities and 6 without) and 12 healthy children. Whole-exome sequencing was used for the genetic mutation analysis. Brain MRI data were evaluated using tractus-based spatial statistics, voxel-based morphometry, a local gyrification index, subcortical shape analysis, FreeSurfer volume, and cortical thickness. The data of the groups were compared. Results The mean age in the control group was 9.05 ± 1.85 years, whereas that in the ESES group was 9.45 ± 2.72 years. Compared to the control group, the ESES patients showed higher mean thalamus diffusivity (p < 0.05). ESES patients with genetic mutations had lower axial diffusivity in the superior longitudinal fasciculus and gray matter volume in the entorhinal region, accumbens area, caudate, putamen, cerebral white matter, and outer cerebellar areas. The superior and middle temporal cortical thickness increased in the ESES patients. Conclusion This study is important in terms of presenting the microstructural evaluation of the brain in ESES patients with advanced MRI analysis methods as well as comparing patients with and without genetic mutations. These findings may be associated with corticostriatal transmission, ictogenesis, epileptogenesis, neuropsychiatric symptoms, cognitive impairment, and cerebellar involvement in ESES. Expanded case-group studies may help to understand the physiology of the corticothalamic circuitry in its etiopathogenesis and develop secondary therapeutic targets for ESES.
Collapse
Affiliation(s)
| | - Barış GENÇ
- Department of Radiology, Samsun Education and Research Hospital, Samsun,
Turkiye
| | - Safiye Güneş SAĞER
- Department of Pediatric Neurology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| | - Ayberk TÜRKYILMAZ
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkiye
| | - Hediye Pınar GÜNBEY
- Department of Radiology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| |
Collapse
|
7
|
Patel DC, Swift N, Tewari BP, Browning JL, Prim C, Chaunsali L, Kimbrough I, Olsen ML, Sontheimer H. Infection-induced epilepsy is caused by increased expression of chondroitin sulfate proteoglycans in hippocampus and amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541066. [PMID: 37292901 PMCID: PMC10245664 DOI: 10.1101/2023.05.16.541066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alterations in the extracellular matrix (ECM) are common in epilepsy, yet whether they are cause or consequence of disease is unknow. Using Theiler's virus infection model of acquired epilepsy we find de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major ECM component, in dentate gyrus (DG) and amygdala exclusively in mice with seizures. Preventing synthesis of CSPGs specifically in DG and amygdala by deletion of major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells (DGCs) revealed enhanced intrinsic and synaptic excitability in seizing mice that was normalized by aggrecan deletion. In situ experiments suggest that DGCs hyperexcitability results from negatively charged CSPGs increasing stationary cations (K+, Ca2+) on the membrane thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. We show similar changes in CSPGs in pilocarpine-induced epilepsy suggesting enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and novel therapeutic potential.
Collapse
Affiliation(s)
- Dipan C Patel
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Nathaniel Swift
- Department of Internal Medicine, Gerontology and Geriatric Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bhanu P Tewari
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Courtney Prim
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Lata Chaunsali
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ian Kimbrough
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D. Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
9
|
Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. Int J Mol Sci 2022; 23:ijms23094746. [PMID: 35563137 PMCID: PMC9100614 DOI: 10.3390/ijms23094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Collapse
|
10
|
Sóki N, Richter Z, Karádi K, Lőrincz K, Horváth R, Gyimesi C, Szekeres-Paraczky C, Horváth Z, Janszky J, Dóczi T, Seress L, Ábrahám H. Investigation of synapses in the cortical white matter in human temporal lobe epilepsy. Brain Res 2022; 1779:147787. [PMID: 35041843 DOI: 10.1016/j.brainres.2022.147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common focal pharmacotherapy-resistant epilepsy in adults. Previous studies have shown significantly higher numbers of neurons in the neocortical white matter in TLE patients than in controls. The aim of this work was to investigate whether white matter neurons are part of the neuronal circuitry. Therefore, we studied the distribution and density of synapses in surgically resected neocortical tissue of pharmacotherapy-resistant TLE patients. Neocortical white matter of temporal lobe from non-epileptic patients were used as controls. Synapses and neurons were visualized with immunohistochemistry using antibodies against synaptophysin and NeuN, respectively. The presence of synaptophysin in presynaptic terminals was verified by electron microscopy. Quantification of immunostaining was performed and the data of the patients' cognitive tests as well as clinical records were compared to the density of neurons and synapses. Synaptophysin density in the white matter of TLE patients was significantly higher than in controls. In TLE, a significant correlation was found between synaptophysin immunodensity and density of white matter neurons. Neuronal as well as synaptophysin density significantly correlated with scores of verbal memory of TLE patients. Neurosurgical outcome of TLE patients did not significantly correlate with histological data, although, higher neuronal and synaptophysin densities were observed in patients with favorable post-surgical outcome. Our results suggest that white matter neurons in TLE patients receive substantial synaptic input and indicate that white matter neurons may be integrated in epileptic neuronal networks responsible for the development or maintenance of seizures.
Collapse
Affiliation(s)
- Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Zsófia Richter
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, University of Pécs Medical School Szigeti u. 12. Pécs, 7624, Hungary
| | - Katalin Lőrincz
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Réka Horváth
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Cecília Szekeres-Paraczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH Szigony u. 43. Budapest, 1083, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary.
| |
Collapse
|
11
|
Li T, Niu S, Qiu X, Zhai Z, Yang L, Chen L, Zhang XM. Altered Cerebral Blood Flow is Linked to Disease Duration in Patients with Generalized tonic‒clonic Seizures. Neuropsychiatr Dis Treat 2022; 18:2649-2659. [PMID: 36387946 PMCID: PMC9662018 DOI: 10.2147/ndt.s386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics in individuals with generalized tonic‒clonic seizures (GTCS) during the interictal phase using voxel-based analysis of 3D pseudocontinuous arterial spin labeling (PCASL). PATIENTS AND METHODS Patients with GTCS (GTCS group) (during the interictal period) and healthy volunteers (control group) underwent head MR imaging with a 3.0T MR scanner with a 3D PCASL sequence. CBF was compared between the two groups. Spearman correlations of CBF in regions of interest (ROIs) in GTCS patients with the duration of disease and age of onset were analyzed and corrected using the false discovery rate (FDR). RESULTS Twenty patients with GTCS (GTCS group) and twenty healthy volunteers (control group) were recruited for this study. On 3D PCASL, (1) GTCS patients had lower CBF in the brainstem, right cerebellum, right inferior temporal gyrus, parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, triangular part of inferior frontal gyrus, left temporal pole of superior temporal gyrus and thalamus and had higher CBF in the bilateral superior parietal gyri, precuneus, precentral gyri, postcentral gyri, and left dorsolateral superior frontal gyrus than controls. (2) The CBF of the right temporal pole of the middle temporal gyrus was negatively correlated with the duration of disease (PFDRcorrected<0.05), with a correlation coefficient r of -0.7333 and a PFDRcorrected value of 0.04. CONCLUSION Voxel-based analysis of 3D PCASL imaging can be used to sensitively detect brain perfusion differences in GTCS patients. The decrease in CBF in the right temporal pole of the middle temporal gyrus may be associated with disease onset. These findings may offer new perspectives on the pathogenesis of GTCS and the underlying pathophysiological changes associated with perfusion.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Shaowei Niu
- Department of Infection, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiang Qiu
- Department of Radiology, Integrated TCM & Western Medicine Hospital Affiliated to Chengdu University of TCM, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Zhaohua Zhai
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Li Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiao Ming Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
12
|
Achiriloaie A, Deisch J, Boling W, Bannout F. Striking MRI Changes of Focal Cortical Dysplasia Over Time: A Case Series and Literature Review. Neurol Clin Pract 2021; 11:445-451. [PMID: 34840871 DOI: 10.1212/cpj.0000000000001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 11/15/2022]
Abstract
Purpose of Review Brain MRI findings of focal cortical dysplasia (FCD) can undergo dramatic changes over time, which may be related to long-term epilepsy or a combination of histopathologic changes that necessitate further investigation. Recent Findings We describe 2 cases of FCD type IIb that initially displayed inconspicuous findings on MRI, however progressed to obvious signal changes on subsequent MRI 10-17 years later. Pathologic analysis indicates that the interval changes are likely attributed to reactive astrogliosis and diffuse parenchymal rarefaction. A few case reports and case series showing similar MRI changes have been described in the literature, the majority in pediatric patients. The adult cases we present add to the scientific evidence of these changes occurring in the adult population. Summary Our observations lead to several clinical suggestions, including closer interval follow-up imaging for nonlesional cases, the addition of postprocessing imaging methods, earlier surgical intervention, and meticulous surgical planning.
Collapse
Affiliation(s)
- Adina Achiriloaie
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Jeremy Deisch
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Warren Boling
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Firas Bannout
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| |
Collapse
|
13
|
Kim JE, Lee DS, Park H, Kang TC. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats. Int J Mol Sci 2020; 21:E9633. [PMID: 33348808 PMCID: PMC7766850 DOI: 10.3390/ijms21249633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
Both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) have been reported as targets for treatment of epilepsy. To investigate the roles and interactions of AMPAR and NMDAR in ictogenesis of epileptic hippocampus, we analyzed AMPAR antagonists (perampanel and GYKI 52466)-mediated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulation and glutamate ionotropic receptor NMDA type subunit 2B (GluN2B) tyrosine (Y) 1472 phosphorylation in epilepsy rats. Both perampanel and GYKI 52466 increased PTEN expression and its activity (reduced phosphorylation), concomitant with decreased activities (phosphorylations) of Src family-casein kinase 2 (CK2) signaling pathway. Compatible with these, they also restored the upregulated GluN2B Y1472 and Ca2+/cAMP response element-binding protein (CREB) serine (S) 133 phosphorylations and surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) to basal level in the epileptic hippocampus. These effects of perampanel and GYKI 52466 are observed in responders (whose seizure activities are responsive to AMPAR antagonists), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). Therefore, our findings suggest that Src/CK2/PTEN-mediated GluN2B Y1472 and CREB S133 regulations may be one of the responsible signaling pathways for the generation of refractory seizures in non-responders to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
14
|
Nobili P, Cattalini A, de Grazia U, Cagnoli C, de Curtis M, Battaglia GS, Colciaghi F. Early Chronic Carbamazepine-in-Food Administration to MAM/Pilocarpine Rats Does Not Affect Convulsive Motor Seizures. Front Pharmacol 2020; 11:181. [PMID: 32180728 PMCID: PMC7059791 DOI: 10.3389/fphar.2020.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Antiepileptic drug-resistance is a major health problem in patients with cortical dysplasia (CD). Whether drug-resistant epilepsy is associated with progressive brain damage is still debated. We previously generated a rat model of acquired CD, the methylazoxymethanol-pilocarpine (MP) rat, in which the occurrence of status epilepticus and subsequent spontaneous seizures induce progressive brain damage (Nobili et al., 2015). The present study tested the outcome of early-chronic carbamazepine (CBZ) administration on both seizure activity and brain damage in MP rats. We took advantage of the non-invasive CBZ-in-food administration protocol, established by Ali (2012), which proved effective in suppressing generalized convulsive seizures in kainic acid rat model of epilepsy. MP rats were treated immediately after the onset of the first spontaneous seizure with 300 mg/kg/day CBZ formulated in pellets for a two-months-trial. CBZ-treated rats were continuously video-monitored to detect seizure activity and were compared with untreated epileptic MP rats. Despite CBZ serum levels in treated rats were within the suggested therapeutic range for humans, CBZ affected spontaneous convulsive seizures in 2 out of 10 treated rats (responders), whereas the remaining animals (non-responders) did not show any difference when compared to untreated MP rats. Histological analysis revealed cortical thinning paralleled by robust staining of Fluoro-Jade+ (FJ+) degenerating neurons and diffuse tissue necrosis in CBZ-non-responder vs CBZ-responder rats. Data reported here suggest that MP rat model represents suitable experimental setting where to investigate mechanisms of CD-related drug-resistant epilepsy and to verify if modulation of seizures, with appropriate treatment, may reduce seizure-induced brain damage.
Collapse
Affiliation(s)
- Paola Nobili
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alessandro Cattalini
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Cinzia Cagnoli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Stefano Battaglia
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesca Colciaghi
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- *Correspondence: Francesca Colciaghi,
| |
Collapse
|
15
|
Colciaghi F, Nobili P, Cipelletti B, Cagnoli C, Zambon S, Locatelli D, de Curtis M, Battaglia GS. Targeting PSD95-nNOS interaction by Tat-N-dimer peptide during status epilepticus is neuroprotective in MAM-pilocarpine rat model. Neuropharmacology 2019; 153:82-97. [DOI: 10.1016/j.neuropharm.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
16
|
Represa A. Why Malformations of Cortical Development Cause Epilepsy. Front Neurosci 2019; 13:250. [PMID: 30983952 PMCID: PMC6450262 DOI: 10.3389/fnins.2019.00250] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development (MCDs), a complex family of rare disorders, result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are an important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the physiopathological mechanisms of epilepsy in MCD patients remain poorly elucidated, research during the past decade highlighted the contribution of some factors that will be reviewed in this paper and that include: (i) the genes that caused the malformation, that can be responsible for a significant reduction of inhibitory cells (e.g., ARX gene) or be inducing cell-autonomous epileptogenic changes in affected neurons (e.g., mutations on the mTOR pathway); (ii) the alteration of cortical networks development induced by the malformation that will also involve adjacent or distal cortical areas apparently sane so that the epileptogenic focus might be more extended that the malformation or even localized at distance from it; (iii) the normal developmental processes that would influence and determine the onset of epilepsy in MCD patients, particularly precocious in most of the cases.
Collapse
Affiliation(s)
- Alfonso Represa
- INSERM, Institut de Neurobiologie de la Méditerranée, Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Hahm J, Kim KK, Kim DW. Seizure-Related Cortical Volume Alterations in Alzheimer's Disease: A Preliminary Study. J Epilepsy Res 2018; 8:33-40. [PMID: 30090760 PMCID: PMC6066695 DOI: 10.14581/jer.18006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/05/2018] [Indexed: 11/03/2022] Open
Abstract
Background and Purpose Alzheimer’s disease (AD) leads to cognitive dysfunction and neuronal loss, both of which can be exacerbated by seizures. For the treatment and diagnosis of AD, it is imperative to identify the cortical characteristics of comorbidities of AD such as seizures. The present study investigated the alterations in cortical volumes in patients with comorbid AD and seizures. Methods In this retrospective study, magnetic resonance T1-weighted brain images were collected from six patients with early AD or amnestic mild cognitive impairment without seizures (AD-No Seizure, age: 66.17 ± 4.92 years) and six individuals with seizures (AD-Seizure, age: 80.33 ± 4.63 years). The gray matter volumes estimated from the T1 images were compared between the groups using nuisance variables (e.g., age). Subsequently, a correlation analysis was performed to investigate the relationship between cortical structure and global cognitive function. Results AD-Seizure group showed volumetric alterations compared with AD-No Seizure group. In the volumetrically altered regions, correlation analysis revealed that the AD-Seizure group showed a positive correlation between the mini-mental state examination (MMSE) score and cortical volume, with smaller volumes than the AD-No Seizure group in the right parahippocampal gyrus, left angular gyrus, and middle temporal gyrus. The AD-No Seizure group showed negative correlations with MMSE score in the volume of right inferior frontal gyrus and cerebellar culmen and a positive correlation with the volume of the left middle frontal gyrus. Conclusions Our findings revealed that smaller temporal region volumes are predictive of cognitive dysfunction in AD patients with seizures. Given that these temporal areas overlap with regions showing abnormal brain activities in AD patients with seizures, these results suggest synergistic effects of AD and seizures on cortical volume and cognitive function.
Collapse
Affiliation(s)
- Jarang Hahm
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kwang Ki Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Ogren JA, Tripathi R, Macey PM, Kumar R, Stern JM, Eliashiv DS, Allen LA, Diehl B, Engel J, Rani MRS, Lhatoo SD, Harper RM. Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin 2018; 20:205-215. [PMID: 30094170 PMCID: PMC6073085 DOI: 10.1016/j.nicl.2018.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/27/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Objective Generalized tonic-clonic seizures are accompanied by cardiovascular and respiratory sequelae that threaten survival. The frequency of these seizures is a major risk factor for sudden unexpected death in epilepsy (SUDEP), a leading cause of untimely death in epilepsy. The circumstances accompanying such fatal events suggest a cardiovascular or respiratory failure induced by unknown neural processes rather than an inherent cardiac or lung deficiency. Certain cortical regions, especially the insular, cingulate, and orbitofrontal cortices, are key structures that integrate sensory input and influence diencephalic and brainstem regions regulating blood pressure, cardiac rhythm, and respiration; output from those cortical regions compromised by epilepsy-associated injury may lead to cardiorespiratory dysregulation. The aim here was to assess changes in cortical integrity, reflected as cortical thickness, relative to healthy controls. Cortical alterations in areas that influence cardiorespiratory action could contribute to SUDEP mechanisms. Methods High-resolution T1-weighted images were collected with a 3.0-Tesla MRI scanner from 53 patients with generalized tonic-clonic seizures (Mean age ± SD: 37.1 ± 12.6 years, 22 male) at Case Western Reserve University, University College London, and the University of California at Los Angeles. Control data included 530 healthy individuals (37.1 ± 12.6 years; 220 male) from UCLA and two open access databases (OASIS and IXI). Cortical thickness group differences were assessed at all non-cerebellar brain surface locations (P < 0.05 corrected). Results Increased cortical thickness appeared in post-central gyri, insula, and subgenual, anterior, posterior, and isthmus cingulate cortices. Post-central gyri increases were greater in females, while males showed more extensive cingulate increases. Frontal and temporal cortex, lateral orbitofrontal, frontal pole, and lateral parietal and occipital cortices showed thinning. The extents of thickness changes were sex- and hemisphere-dependent, with only males exhibiting right-sided and posterior cingulate thickening, while females showed only left lateral orbitofrontal thinning. Regional cortical thickness showed modest correlations with seizure frequency, but not epilepsy duration. Significance Cortical thickening and thinning occur in patients with generalized tonic-clonic seizures, in cardiovascular and somatosensory areas, with extent of changes sex- and hemisphere-dependent. The data show injury in key autonomic and respiratory cortical areas, which may contribute to dysfunctional cardiorespiratory patterns during seizures, as well as to longer-term SUDEP risk.
Collapse
Affiliation(s)
- Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Raghav Tripathi
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul M Macey
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dawn S Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - Luke A Allen
- Institute of Neurology, University College London, London, United Kingdom
| | - Beate Diehl
- Institute of Neurology, University College London, London, United Kingdom
| | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | - Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Yue ZW, Wang YL, Xiao B, Feng L. Axon Initial Segment Structural Plasticity is Involved in Seizure Susceptibility in a Rat Model of Cortical Dysplasia. Neurochem Res 2018; 43:878-885. [PMID: 29468458 DOI: 10.1007/s11064-018-2493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Cortical dysplasia is the most common etiology of intractable epilepsy. Both excitability changes in cortical neurons and neural network reconstitution play a role in cortical dysplasia epileptogenesis. Recent research shows that the axon initial segment, a subcompartment of the neuron important to the shaping of action potentials, adjusts its position in response to changes in input, which contributes to neuronal excitability and local circuit balance. It is unknown whether axon initial segment plasticity occurs in neurons involved in seizure susceptibility in cortical dysplasia. Here, we developed a "Carmustine"- "pilocarpine" rat model of cortical dysplasia and show that it exhibits a lower seizure threshold, as indicated by behavior studies and electroencephalogram monitoring. Using immunofluorescence, we measured the axon initial segment positions of deep L5 somatosensory neurons and show that it is positioned closer to the soma after acute seizure, and that this displacement is sustained in the chronic phase. We then show that Nifedipine has a dose-dependent protective effect against axon initial segment displacement and increased seizure susceptibility. These findings further our understanding of the pathophysiology of seizures in cortical dysplasia and suggests Nifedipine as a potential therapeutic agent.
Collapse
Affiliation(s)
- Zong-Wei Yue
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Ye-Lan Wang
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China
| | - Bo Xiao
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China.
| | - Li Feng
- 1Neurology Department, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China.
| |
Collapse
|
20
|
Hsin YL, Harnod T, Chang CS, Peng SJ. Increase in gray matter volume and white matter fractional anisotropy in the motor pathways of patients with secondarily generalized neocortical seizures. Epilepsy Res 2017; 137:61-68. [PMID: 28950219 DOI: 10.1016/j.eplepsyres.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/10/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Convulsive motor activity is a clinical manifestation of secondarily generalized seizures evolving from different focal regions. The way in which the motor seizures present themselves is not very different from most of the generalized seizures in and between epilepsy patients. This might point towards the involvement of motor-related cortices and corticospinal pathway for wide spread propagation of epileptic activity. Our aim was to identify changes in the cerebral structures and to correlate clinical variables with structural changes particularly in the motor-related cortices and pathway of patients with generalized convulsions from different seizure foci. METHODS Sixteen patients with focal onset and secondarily generalized seizures were included, along with sixteen healthy volunteers. Structural differences were analysed by measuring grey matter (GM) volume and thickness via T1-weighted MRI, and white matter (WM) fractional anisotropy (FA) via diffusion tensor imaging. GM and WM microstructural properties were compared between patients and controls by voxel- and surface- based analyses. Next, morphometric findings were correlated with seizure severity and disease duration to identify the pathologic process. KEY FINDINGS In addition to widely reduced GM and WM properties, increased GM volume in the bilateral precentral gyri and paracentral lobules, and elevated regional FA in the bilateral corticospinal tracts adjacent to these motor -related GM were observed in patients and with higher statistical difference in the sub-patient group with drug-resistance. SIGNIFICANCE The increment of GM volume and WM FA in the motor pathway positively correlated with severity and duration of epilepsy. The demonstrated microstructural changes of motor pathways imply a plastic process of motor networks in the patients with frequent generalization of focal seizures.
Collapse
Affiliation(s)
- Yue-Loong Hsin
- Department of Neurology, Chung Shan Medical University and Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 40201, Taiwan.
| | - Tomor Harnod
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, No.707, Sec. 3, Zhongyang Rd., Hualien City, Hualien County 97002, Taiwan.
| | - Cheng-Siu Chang
- Department of Neurosurgery, Chung Shan Medical University and Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 40201, Taiwan.
| | - Syu-Jyun Peng
- Institute of Electronics, National Chiao Tung University, 1001 University Rd., Hsinchu City 300, Taiwan; Biomedical Electronics Translational Research Center, National Chiao Tung University, 1001 University Rd., Hsinchu City 300, Taiwan.
| |
Collapse
|
21
|
Iizuka T, Kaneko J, Tominaga N, Someko H, Nakamura M, Ishima D, Kitamura E, Masuda R, Oguni E, Yanagisawa T, Kanazawa N, Dalmau J, Nishiyama K. Association of Progressive Cerebellar Atrophy With Long-term Outcome in Patients With Anti-N-Methyl-d-Aspartate Receptor Encephalitis. JAMA Neurol 2017; 73:706-13. [PMID: 27111481 DOI: 10.1001/jamaneurol.2016.0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disorder that occurs with IgG antibodies against the GluN1 subunit of NMDAR. Some patients develop reversible diffuse cerebral atrophy (DCA), but the long-term clinical significance of progressive brain and cerebellar atrophy is unknown. OBJECTIVE To report the long-term clinical implications of DCA and cerebellar atrophy in anti-NMDAR encephalitis. DESIGN, SETTING, AND PARTICIPANTS A retrospective observational study and long-term imaging investigation was conducted in the Department of Neurology at Kitasato University. Fifteen patients with anti-NMDAR encephalitis admitted to Kitasato University Hospital between January 1, 1999, and December 31, 2014, were included; data analysis was conducted between July 15, 2015, and January 18, 2016. EXPOSURES Neurologic examination, immunotherapy, and magnetic resonance imaging (MRI) studies were performed. MAIN OUTCOMES AND MEASURES Long-term MRI changes in association with disease severity, serious complications (eg, pulmonary embolism, septic shock, and rhabdomyolysis), treatment, and outcome. RESULTS The clinical outcome of 15 patients (median age, 21 years, [range, 14-46 years]; 10 [67%] female) was evaluated after a median follow-up of 68 months (range, 10-179 months). Thirteen patients (87%) received first-line immunotherapy (intravenous high-dose methylprednisolone, intravenous immunoglobulin, and plasma exchange alone or combined), and 4 individuals (27%) also received cyclophosphamide; 2 patients (13%) did not receive immunotherapy. In 5 patients (33%), ovarian teratoma was found and removed. Serious complications developed in 4 patients (27%). Follow-up MRI revealed DCA in 5 patients (33%) that, in 2 individuals (13%), was associated with progressive cerebellar atrophy. Long-term outcome was good in 13 patients (87%) and poor in the other 2 individuals (13%). Although cerebellar atrophy was associated with poor long-term outcome (2 of 2 vs 0 of 13 patients; P = .01), other features, such as DCA without cerebellar atrophy, serious complications, ventilatory support, or prolonged hospitalization, were not associated with a poor outcome. Five patients with DCA had longer hospitalizations (11.1 vs 2.4 months; P = .002), required ventilatory support more frequently (5 of 5 vs 4 of 10 patients; P = .04), and developed more serious complications (4 of 5 vs 0 of 10 patients; P = .004) compared with those without DCA. Although DCA was reversible, cerebellar atrophy was irreversible. CONCLUSIONS AND RELEVANCE In anti-NMDAR encephalitis, DCA can be reversible and does not imply a poor clinical outcome. In contrast, cerebellar atrophy was irreversible and associated with a poor outcome. This observation deserves further study to confirm progressive cerebellar atrophy as a prognostic marker of poor outcome.
Collapse
Affiliation(s)
- Takahiro Iizuka
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Juntaro Kaneko
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Naomi Tominaga
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hidehiro Someko
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masaaki Nakamura
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Daisuke Ishima
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Eiji Kitamura
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Ray Masuda
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Eiichi Oguni
- Department of Neurology, Ibaraki Prefectural Central Hospital, Ibaraki, Japan
| | - Toshiyuki Yanagisawa
- Department of Neurology, School of Medicine, St Marianna University, Kawasaki, Japan
| | - Naomi Kanazawa
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Josep Dalmau
- Institut d'Investigacións Biomèdicques August Pi i Sunyer, Barcelona, Spain5Department of Neurology, University of Pennsylvania, Philadelphia6Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kazutoshi Nishiyama
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Japan
| |
Collapse
|
22
|
Continuous neurodegeneration and death pathway activation in neurons and glia in an experimental model of severe chronic epilepsy. Neurobiol Dis 2015; 83:54-66. [PMID: 26264964 DOI: 10.1016/j.nbd.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022] Open
Abstract
Whether seizures might determine the activation of cell death pathways and what could be the relevance of seizure-induced cell death in epilepsy are still highly debated issues. We recently developed an experimental model of acquired focal cortical dysplasia (the MAM-pilocarpine or MP rat) in which the occurrence of status epilepticus--SE--and subsequent seizures induced progressive cellular/molecular abnormalities and neocortical/hippocampal atrophy. Here, we exploited the same model to verify when, where, and how cell death occurred in neurons and glia during epilepsy course. We analyzed Fluoro Jade (FJ) staining and the activation of c-Jun- and caspase-3-dependent pathways during epilepsy, from few hours post-SE up to six months of spontaneous recurrent seizures. FJ staining revealed that cell injury in MP rats was not temporally restricted to SE, but extended throughout the different epileptic stages. The region-specific pattern of FJ staining changed during epilepsy, and FJ(+) neurons became more prominent in the dorsal and ventral hippocampal CA at chronic epilepsy stages. Phospho-c-Jun- and caspase-3-dependent pathways were selectively activated respectively in neurons and glia, at early but even more conspicuously at late chronic stages. Phospho-c-Jun activation was associated with increased cytochrome-c staining, particularly at chronic stages, and the staining pattern of cytochrome-c was suggestive of its release from the mitochondria. Taken together, these data support the content that at least in the MP rat model the recurrence of seizures can also sustain cell death mechanisms, thus continuously contributing to the pathologic process triggered by the occurrence of SE.
Collapse
|
23
|
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks. Brain Struct Funct 2015; 221:2919-36. [PMID: 26163822 DOI: 10.1007/s00429-015-1080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/01/2015] [Indexed: 01/20/2023]
Abstract
Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Collapse
|
24
|
Acharya MM, Martirosian V, Chmielewski NN, Hanna N, Tran KK, Liao AC, Christie LA, Parihar VK, Limoli CL. Stem cell transplantation reverses chemotherapy-induced cognitive dysfunction. Cancer Res 2015; 75:676-86. [PMID: 25687405 DOI: 10.1158/0008-5472.can-14-2237] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The frequent use of chemotherapy to combat a range of malignancies can elicit severe cognitive dysfunction often referred to as "chemobrain," a condition that can persist long after the cessation of treatment in as many as 75% of survivors. Although cognitive health is a critical determinant of therapeutic outcome, chemobrain remains an unmet medical need that adversely affects quality of life in pediatric and adult cancer survivors. Using a rodent model of chemobrain, we showed that chronic cyclophosphamide treatment induced significant performance-based decrements on behavioral tasks designed to interrogate hippocampal and cortical function. Intrahippocampal transplantation of human neural stem cells resolved all cognitive impairments when animals were tested 1 month after the cessation of chemotherapy. In transplanted animals, grafted cells survived (8%) and differentiated along neuronal and astroglial lineages, where improved cognition was associated with reduced neuroinflammation and enhanced host dendritic arborization. Stem cell transplantation significantly reduced the number of activated microglia after cyclophosphamide treatment in the brain. Granule and pyramidal cell neurons within the dentate gyrus and CA1 subfields of the hippocampus exhibited significant reductions in dendritic complexity, spine density, and immature and mature spine types following chemotherapy, adverse effects that were eradicated by stem cell transplantation. Our findings provide the first evidence that cranial transplantation of stem cells can reverse the deleterious effects of chemobrain, through a trophic support mechanism involving the attenuation of neuroinflammation and the preservation host neuronal architecture.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vahan Martirosian
- Department of Radiation Oncology, University of California, Irvine, California
| | | | - Nevine Hanna
- Department of Radiation Oncology, University of California, Irvine, California
| | - Katherine K Tran
- Department of Radiation Oncology, University of California, Irvine, California
| | - Alicia C Liao
- Department of Radiation Oncology, University of California, Irvine, California
| | - Lori-Ann Christie
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California.
| |
Collapse
|
25
|
Song MY, Tian FF, Wang YZ, Huang X, Guo JL, Ding DX. Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol Med Rep 2014; 11:1738-44. [PMID: 25420768 PMCID: PMC4270322 DOI: 10.3892/mmr.2014.2993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
Mossy fiber sprouting (MFS) is a unique feature of chronic epilepsy. However, the molecular signals underlying MFS are still unclear. The repulsive guidance molecule A (RGMa) appears to contribute to axon growth and axonal guidance, and may exert its biological effects by dephosphorylating focal adhesion kinase (FAK) at Tyr397, then regulating the activation of Ras. The objective of this study was to explore the expression patterns of RGMa, FAK (Tyr397) and Ras in epileptogenesis, and their correlation with MFS. The epileptic models were established by intraperitoneal pentylenetetrazole (PTZ) injection of Sprague-Dawley rats. At 3 days and at 1, 2, 4 and 6 weeks after the first PTZ injection, Timm staining was scored at different time points in the CA3 region of the hippocampus and dentate gyrus. The protein levels of RGMa, FAK (Tyr397) and Ras were analyzed at different time points in the CA3 region of the hippocampus using immunofluorescence, immunohistochemistry and western blot analysis. Compared with the control (saline-injected) group, the expression of RGMa in the CA3 area was significantly downregulated (P<0.05) from 3 days and still maintained the low expression at 6 weeks in the PTZ group. The expression of FAK (Tyr397) and Ras was upregulated (P<0.05) in the PTZ groups. The Timm score in the CA3 region was significantly higher than that in the control group at different time points and reached a peak at 4 weeks. In the CA3 region, no obvious distinction was observed at the different time points in the control group. To the best of our knowledge, these are the first results to indicate that the RGMa-FAK-Ras pathway may be involved in MFS and the development of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ming-Yu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fa-Fa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Zhong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia-Ling Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dong-Xue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|