1
|
Carlsen J, Fossati S, Østergaard L, Gutiérrez‐Jiménez E, Palmfeldt J. Cerebral proteome adaptations to amyloid angiopathy are prevented by carbonic anhydrase inhibitors. Alzheimers Dement 2025; 21:e70122. [PMID: 40285374 PMCID: PMC12032195 DOI: 10.1002/alz.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a hallmark of Alzheimer's disease (AD), linked to adverse effects of emerging AD treatments. We explored the molecular effects of CAA in mouse brain and evaluated how these could be prevented by two repurposed United States Food and Drug Administration (FDA) approved treatments. METHODS Brain proteomics was performed on the Tg-SwDI genetic mouse model carrying disease causing mutations and developing AD characteristic cognitive deficits and severe CAA. Cortical and hippocampal tissues from presymptomatic male and female mice were studied. RESULTS We identify a core of dysregulated proteins across studies, including established markers of AD as well as proteins indicative of astrogliosis and negative regulators of synaptic stability and function. Two FDA approved, repurposed carbonic anhydrase inhibitors (CAIs), acetazolamide and methazolamide, were effective in preventing these molecular adaptations. DISCUSSION The two drugs broadly prevent proteome adaptations to the detrimental genotype and retain glutamatergic synapse proteins significantly closer to wild-type levels. HIGHLIGHTS The brain proteome changes of mice with CAA are mapped. Cortical and hippocampal tissues from presymptomatic male and female mice are studied. Markers of AD, astrogliosis, and synaptic stability are dysregulated. Two CAI are effective in preventing these protein changes.
Collapse
Affiliation(s)
- Jasper Carlsen
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT) and Department of Neural SciencesTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Eugenio Gutiérrez‐Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| |
Collapse
|
2
|
McNeilly S, Thomson CR, Gonzalez-Trueba L, Sin YY, Granata A, Hamilton G, Lee M, Boland E, McClure JD, Lumbreras-Perales C, Aman A, Kumar AA, Cantini M, Gök C, Graham D, Tomono Y, Anderson CD, Lu Y, Smith C, Markus HS, Abramowicz M, Vilain C, Al-Shahi Salman R, Salmeron-Sanchez M, Hainsworth AH, Fuller W, Kadler KE, Bulleid NJ, Van Agtmael T. Collagen IV deficiency causes hypertrophic remodeling and endothelium-dependent hyperpolarization in small vessel disease with intracerebral hemorrhage. EBioMedicine 2024; 107:105315. [PMID: 39216230 PMCID: PMC11402910 DOI: 10.1016/j.ebiom.2024.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Genetic variants in COL4A1 and COL4A2 (encoding collagen IV alpha chain 1/2) occur in genetic and sporadic forms of cerebral small vessel disease (CSVD), a leading cause of stroke, dementia and intracerebral haemorrhage (ICH). However, the molecular mechanisms of CSVD with ICH and COL4A1/COL4A2 variants remain obscure. METHODS Vascular function and molecular investigations in mice with a Col4a1 missense mutation and heterozygous Col4a2 knock-out mice were combined with analysis of human brain endothelial cells harboring COL4A1/COL4A2 mutations, and brain tissue of patients with sporadic CSVD with ICH. FINDINGS Col4a1 missense mutations cause early-onset CSVD independent of hypertension, with enhanced vasodilation of small arteries due to endothelial dysfunction, vascular wall thickening and reduced stiffness. Mechanistically, the early-onset dysregulated endothelium-dependent hyperpolarization (EDH) is due to reduced collagen IV levels with elevated activity and levels of endothelial Ca2+-sensitive K+ channels. This results in vasodilation via the Na/K pump in vascular smooth muscle cells. Our data support this endothelial dysfunction preceding development of CSVD-associated ICH is due to increased cytoplasmic Ca2+ levels in endothelial cells. Moreover, cerebral blood vessels of patients with sporadic CSVD show genotype-dependent mechanisms with wall thickening and lower collagen IV levels in those harboring common non-coding COL4A1/COL4A2 risk alleles. INTERPRETATION COL4A1/COL4A2 variants act in genetic and sporadic CSVD with ICH via dysregulated EDH, and altered vascular wall thickness and biomechanics due to lower collagen IV levels and/or mutant collagen IV secretion. These data highlight EDH and collagen IV levels as potential treatment targets. FUNDING MRC, Wellcome Trust, BHF.
Collapse
Affiliation(s)
- Sarah McNeilly
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cameron R Thomson
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Laura Gonzalez-Trueba
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge and Royal Papworth Hospital, Cambridge, UK
| | - Graham Hamilton
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - Michelle Lee
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erin Boland
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John D McClure
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cristina Lumbreras-Perales
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alisha Aman
- School of Health and Wellbeing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Apoorva A Kumar
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK; Princess Royal University Hospital, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yasuko Tomono
- Division of Molecular & Cell Biology, Shigei Medical Research Institute, Okayama, Japan
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yinhui Lu
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Colin Smith
- Academic Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Abramowicz
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | | | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - William Fuller
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karl E Kadler
- Wellcome Centre for Cell Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Neil J Bulleid
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
3
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
4
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Haffner C. The emerging role of the HTRA1 protease in brain microvascular disease. FRONTIERS IN DEMENTIA 2023; 2:1146055. [PMID: 39081996 PMCID: PMC11285548 DOI: 10.3389/frdem.2023.1146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies.
Collapse
Affiliation(s)
- Christof Haffner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Alfieri A, Koudelka J, Li M, Scheffer S, Duncombe J, Caporali A, Kalaria RN, Smith C, Shah AM, Horsburgh K. Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. J Cereb Blood Flow Metab 2022; 42:1176-1191. [PMID: 35102790 PMCID: PMC9207496 DOI: 10.1177/0271678x221077766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease.
Collapse
Affiliation(s)
- Alessio Alfieri
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- National Heart and Lung Institute, Vascular Science, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Juraj Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mosi Li
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rajesh N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Luo B, Liu J, Xiong L, Fang C, He Y. Normal cerebral blood vessels under ultrasound in SD rats of different ages. IBRAIN 2022; 8:346-352. [PMID: 37786747 PMCID: PMC10528998 DOI: 10.1002/ibra.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 10/04/2023]
Abstract
The objective of this study was to examine whether ultrasound can examine the development of cerebral vascular structure and cerebral blood flow in Sprague-Dawley (SD) rats by ultrasound in a noninvasive manner, which provides a reference for ultrasound research of SD rats. Thirty-nine SD rats (7-16 days old) were divided into seven groups according to age, and the number of SD rats in each group was, respectively, 7, 17, 1, 3, 2, 8, and 1. Ultrasound was used to detect cerebral blood vessels, cerebrovascular flow velocity, and heart rate in SD rats in the sagittal and coronal positions, and images were obtained in B-mode ultrasound. The cerebral vascular structure of 39 SD rats (7-16 days) was dynamically observed under B-ultrasound. We found that the cerebral vascular structure of the rats aged 7-10 days was clear and detectable. Rats aged 11-16 days of cerebral vascular structures became thinner and undetectable. Quantitative analysis of cerebrovascular flow rate and heart rate in rats found that there was no significant difference in cerebrovascular blood flow rate and heart rate between 7 and 8 days. Ultrasound can also be used in rat animal studies, that is, the cerebral blood flow in rats of different ages can be monitored in real-time by ultrasound in a noninvasive way.
Collapse
Affiliation(s)
- Bo‐Yan Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Jin‐Xiang Liu
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Liu‐Lin Xiong
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Chang‐Le Fang
- School of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Yu‐Qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
10
|
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJM, Arzberger T, Gassen NC, Lichtenthaler SF, Kuster B, Haffner C, Dichgans M. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 2022; 10:6. [PMID: 35074002 PMCID: PMC8785498 DOI: 10.1186/s40478-021-01303-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Lindner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
11
|
Pokhilko A, Brezzo G, Handunnetthi L, Heilig R, Lennon R, Smith C, Allan SM, Granata A, Sinha S, Wang T, Markus HS, Naba A, Fischer R, Van Agtmael T, Horsburgh K, Cader MZ. Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. J Cereb Blood Flow Metab 2021; 41:2423-2438. [PMID: 33730931 PMCID: PMC8392779 DOI: 10.1177/0271678x211004307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gaia Brezzo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Raphael Heilig
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alessandra Granata
- Clinical Neurosciences Department, University of Cambridge, Cambridge, UK
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hugh S Markus
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Yan Y, Yu H, Sun L, Liu H, Wang C, Wei X, Song F, Li H, Ge H, Qian H, Li X, Tang X, Liu P. Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging (Albany NY) 2020; 11:2699-2723. [PMID: 31076560 PMCID: PMC6535067 DOI: 10.18632/aging.101943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022]
Abstract
Senescence is a leading cause of age-related cataract (ARC). The current study indicated that the senescence-associated protein, p53, total laminin (LM), LMα4, and transforming growth factor-beta1 (TGF-β1) in the cataractous anterior lens capsules (ALCs) increase with the grades of ARC. In cataractous ALCs, patient age, total LM, LMα4, TGF-β1, were all positively correlated with p53. In lens epithelial cell (HLE B-3) senescence models, matrix metalloproteinase-9 (MMP-9) alleviated senescence by decreasing the expression of total LM and LMα4; TGF-β1 induced senescence by increasing the expression of total LM and LMα4. Furthermore, MMP-9 silencing increased p-p38 and LMα4 expression; anti-LMα4 globular domain antibody alleviated senescence by decreasing the expression of p-p38 and LMα4; pharmacological inhibition of p38 MAPK signaling alleviated senescence by decreasing the expression of LMα4. Finally, in cataractous ALCs, positive correlations were found between LMα4 and total LM, as well as between LMα4 and TGF-β1. Taken together, our results implied that the elevated LMα4, which was possibly caused by the decreased MMP-9, increased TGF-β1 and activated p38 MAPK signaling during senescence, leading to the development of ARC. LMα4 and its regulatory factors show potential as targets for drug development for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Yu Yan
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Haiyang Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xi Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Qian
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaoguang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
13
|
Rosas-Hernandez H, Cuevas E, Raymick JB, Robinson BL, Sarkar S. Impaired Amyloid Beta Clearance and Brain Microvascular Dysfunction are Present in the Tg-SwDI Mouse Model of Alzheimer's Disease. Neuroscience 2020; 440:48-55. [PMID: 32450297 DOI: 10.1016/j.neuroscience.2020.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) pathology is characterized by amyloid plaques containing amyloid beta (Aβ) peptides, neurofibrillary tangles containing hyperphosphorylated tau protein, and neuronal loss. In addition, Aβ deposition in brain microvessels, known as cerebral amyloid angiopathy (CAA), increases blood-brain barrier (BBB) permeability and induces vascular dysfunction which aggravates AD pathology. The aim of the present study was to characterize neurovascular dysfunction in the Tg-SwDI mouse model of AD. Isolated brain capillaries from wild type (WT) and Tg-SwDI mice were used to evaluate the expression of monomeric and aggregated forms of Aβ, P-glycoprotein (P-gp), the receptor for advance glycation end-products (RAGE) and the tight junction (TJs) proteins occludin and claudin-5. Cultured brain endothelial cells were used to analyze barrier function via fluorescein flux. Isolated capillaries from Tg-SwDI mice contained increased levels of aggregated and oligomeric Aβ compared to WT animals. Isolated capillaries from Tg-SwDI had decreased levels of P-gp, which transports Aβ from brain to blood, and increased levels of RAGE, which transports Aβ from blood to brain. In addition, the TJ protein occludin was decreased in Tg-SwDI mice relative to WT mice, which correlated with an increase in BBB permeability in cultured brain endothelial cells. These findings demonstrated that Tg-SwDI mice exhibit Aβ aggregation that is due, in part, to impaired Aβ clearance driven by both a decrease in P-gp and increase in RAGE protein levels in brain capillaries. Aβ aggregation promotes a decrease in the expression of the TJ protein occludin, and as consequence an increase in BBB permeability.
Collapse
Affiliation(s)
- Hector Rosas-Hernandez
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, United States
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, United States
| | - James B Raymick
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, United States
| | - Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, United States
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, United States.
| |
Collapse
|
14
|
Haffner C. Proteostasis in Cerebral Small Vessel Disease. Front Neurosci 2019; 13:1142. [PMID: 31798396 PMCID: PMC6874119 DOI: 10.3389/fnins.2019.01142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 01/02/2023] Open
Abstract
Maintaining the homeostasis of proteins (proteostasis) by controlling their synthesis, folding and degradation is a central task of cells and tissues. The gradual decline of the capacity of the various proteostasis machineries, frequently in combination with their overload through mutated, aggregation-prone proteins, is increasingly recognized as an important catalyst of age-dependent pathologies in the brain, most prominently neurodegenerative disorders. A dysfunctional proteostasis might also contribute to neurovascular disease as indicated by the occurrence of excessive protein accumulation or massive extracellular matrix expansion within vessel walls in conditions such as cerebral small vessel disease (SVD), a major cause of ischemic stroke, and cerebral amyloid angiopathy. Recent advances in brain vessel isolation techniques and mass spectrometry methodology have facilitated the analysis of cerebrovascular proteomes and fueled efforts to determine the proteomic signatures associated with neurovascular disease. In several studies in humans and mice considerable differences between healthy and diseased vessel proteomes were observed, emphasizing the critical contribution of an impaired proteostasis to disease pathogenesis. These findings highlight the important role of a balanced proteostasis for cerebrovascular health.
Collapse
Affiliation(s)
- Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Gama Sosa MA, De Gasperi R, Perez Garcia GS, Perez GM, Searcy C, Vargas D, Spencer A, Janssen PL, Tschiffely AE, McCarron RM, Ache B, Manoharan R, Janssen WG, Tappan SJ, Hanson RW, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure disrupts gliovascular and neurovascular connections and induces a chronic vascular pathology in rat brain. Acta Neuropathol Commun 2019; 7:6. [PMID: 30626447 PMCID: PMC6327415 DOI: 10.1186/s40478-018-0647-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023] Open
Abstract
Much concern exists over the role of blast-induced traumatic brain injury (TBI) in the chronic cognitive and mental health problems that develop in veterans and active duty military personnel. The brain vasculature is particularly sensitive to blast injury. The aim of this study was to characterize the evolving molecular and histologic alterations in the neurovascular unit induced by three repetitive low-energy blast exposures (3 × 74.5 kPa) in a rat model mimicking human mild TBI or subclinical blast exposure. High-resolution two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of purified brain vascular fractions from blast-exposed animals 6 weeks post-exposure showed decreased levels of vascular-associated glial fibrillary acidic protein (GFAP) and several neuronal intermediate filament proteins (α-internexin and the low, middle, and high molecular weight neurofilament subunits). Loss of these proteins suggested that blast exposure disrupts gliovascular and neurovascular interactions. Electron microscopy confirmed blast-induced effects on perivascular astrocytes including swelling and degeneration of astrocytic endfeet in the brain cortical vasculature. Because the astrocyte is a major sensor of neuronal activity and regulator of cerebral blood flow, structural disruption of gliovascular integrity within the neurovascular unit should impair cerebral autoregulation. Disrupted neurovascular connections to pial and parenchymal blood vessels might also affect brain circulation. Blast exposures also induced structural and functional alterations in the arterial smooth muscle layer. Interestingly, by 8 months after blast exposure, GFAP and neuronal intermediate filament expression had recovered to control levels in isolated brain vascular fractions. However, despite this recovery, a widespread vascular pathology was still apparent at 10 months after blast exposure histologically and on micro-computed tomography scanning. Thus, low-level blast exposure disrupts gliovascular and neurovascular connections while inducing a chronic vascular pathology.
Collapse
|
16
|
Lynch CE, Crynen G, Ferguson S, Mouzon B, Paris D, Ojo J, Leary P, Crawford F, Bachmeier C. Chronic cerebrovascular abnormalities in a mouse model of repetitive mild traumatic brain injury. Brain Inj 2018; 30:1414-1427. [PMID: 27834539 DOI: 10.1080/02699052.2016.1219060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PRIMARY OBJECTIVE To investigate the status of the cerebrovasculature following repetitive mild traumatic brain injury (r-mTBI). RESEARCH DESIGN TBI is a risk factor for development of various neurodegenerative disorders. A common feature of neurodegenerative disease is cerebrovascular dysfunction which includes alterations in cerebral blood flow (CBF). TBI can result in transient reductions in CBF, with severe injuries often accompanied by varying degrees of vascular pathology post-mortem. However, at this stage, few studies have investigated the cerebrovasculature at chronic time points following repetitive mild brain trauma. METHODS AND PROCEDURES r-mTBI was delivered to wild-type mice (12 months old) twice per week for 3 months and tested for spatial memory deficits (Barnes Maze task) at 1 and 6 months post-injury. At 7 months post-injury CBF was assessed via Laser Doppler Imaging and, following euthanasia, the brain was probed for markers of cerebrovascular dysfunction and inflammation. MAIN OUTCOMES AND RESULTS Memory impairment was identified at 1 month post-injury and persisted as late as 6 months post-injury. Furthermore, significant immunopathological insult, reductions in global CBF and down-regulation of cerebrovascular-associated markers were observed. CONCLUSIONS These results demonstrate impaired cognitive behaviour alongside chronic cerebrovascular dysfunction in a mouse model of repetitive mild brain trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Gogce Crynen
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Scott Ferguson
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Benoit Mouzon
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Daniel Paris
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Joseph Ojo
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Paige Leary
- a The Roskamp Institute , Sarasota , FL , USA
| | - Fiona Crawford
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| | - Corbin Bachmeier
- a The Roskamp Institute , Sarasota , FL , USA.,b The Open University , Department of Life Sciences , Milton Keynes , UK.,c James A. Haley Veteran's Administration Center , Tampa , FL , USA
| |
Collapse
|
17
|
Saito S, Yamamoto Y, Maki T, Hattori Y, Ito H, Mizuno K, Harada-Shiba M, Kalaria RN, Fukushima M, Takahashi R, Ihara M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol Commun 2017; 5:26. [PMID: 28376923 PMCID: PMC5379578 DOI: 10.1186/s40478-017-0429-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) induces various forms of cerebral infarcts and hemorrhages from vascular amyloid-β accumulation, resulting in acceleration of cognitive impairment, which is currently untreatable. Soluble amyloid-β protein likely impairs cerebrovascular integrity as well as cognitive function in early stage Alzheimer’s disease. Taxifolin, a flavonol with strong anti-oxidative and anti-glycation activities, has been reported to disassemble amyloid-β in vitro but the in vivo relevance remains unknown. Here, we investigated whether taxifolin has therapeutic potential in attenuating CAA, hypothesizing that inhibiting amyloid-β assembly may facilitate its clearance through several elimination pathways. Vehicle- or taxifolin-treated Tg-SwDI mice (commonly used to model CAA) were used in this investigation. Cognitive and cerebrovascular function, as well as the solubility and oligomerization of brain amyloid-β proteins, were investigated. Spatial reference memory was assessed by water maze test. Cerebral blood flow was measured with laser speckle flowmetry and cerebrovascular reactivity evaluated by monitoring cerebral blood flow changes in response to hypercapnia. Significantly reduced cerebrovascular pan-amyloid-β and amyloid-β1-40 accumulation was found in taxifolin-treated Tg-SwDI mice compared to vehicle-treated counterparts (n = 5). Spatial reference memory was severely impaired in vehicle-treated Tg-SwDI mice but normalized after taxifolin treatment, with scoring similar to wild type mice (n = 10–17). Furthermore, taxifolin completely restored decreased cerebral blood flow and cerebrovascular reactivity in Tg-SwDI mice (n = 4–6). An in vitro thioflavin-T assay showed taxifolin treatment resulted in efficient inhibition of amyloid-β1-40 assembly. In addition, a filter trap assay and ELISA showed Tg-SwDI mouse brain homogenates exhibited significantly reduced levels of amyloid-β oligomers in vivo after taxifolin treatment (n = 4–5), suggesting the effects of taxifolin on CAA are attributable to the inhibition of amyloid-β oligomer formation. In conclusion, taxifolin prevents amyloid-β oligomer assembly and fully sustains cognitive and cerebrovascular function in a CAA model mice. Taxifolin thus appears a promising therapeutic approach for CAA.
Collapse
|
18
|
Badhwar A, Brown R, Stanimirovic DB, Haqqani AS, Hamel E. Proteomic differences in brain vessels of Alzheimer's disease mice: Normalization by PPARγ agonist pioglitazone. J Cereb Blood Flow Metab 2017; 37:1120-1136. [PMID: 27339263 PMCID: PMC5363486 DOI: 10.1177/0271678x16655172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular insufficiency appears years prior to clinical symptoms in Alzheimer's disease. The soluble, highly toxic amyloid-β species, generated from the amyloidogenic processing of amyloid precursor protein, are known instigators of the chronic cerebrovascular insufficiency observed in both Alzheimer's disease patients and transgenic mouse models. We have previously demonstrated that pioglitazone potently reverses cerebrovascular impairments in a mouse model of Alzheimer's disease overexpressing amyloid-β. In this study, we sought to characterize the effects of amyloid-β overproduction on the cerebrovascular proteome; determine how pioglitazone treatment affected the altered proteome; and analyze the relationship between normalized protein levels and recovery of cerebrovascular function. Three-month-old wildtype and amyloid precursor protein mice were treated with pioglitazone- (20 mg/kg/day, 14 weeks) or control-diet. Cerebral arteries were surgically isolated, and extracted proteins analyzed by gel-free and gel-based mass spectrometry. 193 cerebrovascular proteins were abnormally expressed in amyloid precursor protein mice. Pioglitazone treatment rescued a third of these proteins, mainly those associated with oxidative stress, promotion of cerebrovascular vasocontractile tone, and vascular compliance. Our results demonstrate that amyloid-β overproduction perturbs the cerebrovascular proteome. Recovery of cerebrovascular function with pioglitazone is associated with normalized levels of key proteins in brain vessel function, suggesting that pioglitazone-responsive cerebrovascular proteins could be early biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Rebecca Brown
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Edith Hamel, Laboratory of Cerebrovascular research, Montreal Neurological Institute, 3801 University St., Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
19
|
Chu Q, Diedrich JK, Vaughan JM, Donaldson CJ, Nunn MF, Lee KF, Saghatelian A. HtrA1 Proteolysis of ApoE In Vitro Is Allele Selective. J Am Chem Soc 2016; 138:9473-8. [PMID: 27379525 PMCID: PMC5063305 DOI: 10.1021/jacs.6b03463] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (ApoE) belongs to a large class of proteins that solubilize lipids for physiological transport. Humans have three different APOE alleles, APOE ε2, APOE ε3, and APOE ε4, and genetic studies identified ApoE4 as the strongest genetic risk factor for Alzheimer's disease (AD). People who are homozygous for ApoE4 (i.e., ApoE4/E4) are an order of magnitude more likely to develop late-onset AD (LOAD) than ApoE3/E3 carriers. Several differences between ApoE3 and ApoE4 may contribute to AD including the observation that ApoE4 is degraded to a greater extent than ApoE3 in the human brain. Experiments with high-temperature requirement serine peptidase A1 (HtrA1), which is found in the nervous system, demonstrate that HtrA1 is an allele-selective ApoE-degrading enzyme that degrades ApoE4 more quickly than ApoE3. This activity is specific to HtrA1, as similar assays with HtrA2 showed minimal ApoE4 proteolysis and trypsin had no preference between ApoE4 and ApoE3. HtrA1 has also been reported to cleave the tau protein (Tau) and the amyloid protein precursor (APP) to hinder the formation of toxic amyloid deposits associated with AD. Competition assays with ApoE4, ApoE3, and Tau revealed that ApoE4 inhibits Tau degradation. Thus, the identification of ApoE4 as an in vitro HtrA1 substrate suggests a potential biochemical mechanism that links ApoE4 regulation of AD proteins such as Tau.
Collapse
Affiliation(s)
- Qian Chu
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joan M. Vaughan
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cynthia J. Donaldson
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Michael F. Nunn
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kuo-Fen Lee
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Poepsel S, Sprengel A, Sacca B, Kaschani F, Kaiser M, Gatsogiannis C, Raunser S, Clausen T, Ehrmann M. Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat Chem Biol 2015; 11:862-9. [PMID: 26436840 DOI: 10.1038/nchembio.1931] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/09/2015] [Indexed: 01/28/2023]
Abstract
Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.
Collapse
Affiliation(s)
- Simon Poepsel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andreas Sprengel
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Barbara Sacca
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, Dortmund, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michael Ehrmann
- Centre of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Huntley MA, Bien-Ly N, Daneman R, Watts RJ. Dissecting gene expression at the blood-brain barrier. Front Neurosci 2014; 8:355. [PMID: 25414634 PMCID: PMC4222230 DOI: 10.3389/fnins.2014.00355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
The availability of genome-wide expression data for the blood-brain barrier is an invaluable resource that has recently enabled the discovery of several genes and pathways involved in the development and maintenance of the blood-brain barrier, particularly in rodent models. The broad distribution of published data sets represents a viable starting point for the molecular dissection of the blood-brain barrier and will further direct the discovery of novel mechanisms of blood-brain barrier formation and function. Technical advances in purifying brain endothelial cells, the key cell that forms the critical barrier, have allowed for greater specificity in gene expression comparisons with other central nervous system cell types, and more systematic characterizations of the molecular composition of the blood-brain barrier. Nevertheless, our understanding of how the blood-brain barrier changes during aging and disease is underrepresented. Blood-brain barrier data sets from a wider range of experimental paradigms and species, including invertebrates and primates, would be invaluable for investigating the function and evolution of the blood-brain barrier. Newer technologies in gene expression profiling, such as RNA-sequencing, now allow for finer resolution of transcriptomic changes, including isoform specificity and RNA-editing. As our field continues to utilize more advanced expression profiling in its ongoing efforts to elucidate the blood-brain barrier, including in disease and drug delivery, we will continue to see rapid advances in our understanding of the molecular mediators of barrier biology. We predict that the recently published data sets, combined with forthcoming genomic and proteomic blood-brain barrier data sets, will continue to fuel the molecular genetic revolution of blood-brain barrier biology.
Collapse
Affiliation(s)
- Melanie A Huntley
- Department of Bioinformatics and Computational Biology, Genentech Inc. South San Francisco, CA, USA
| | - Nga Bien-Ly
- Department of Neuroscience, Genentech Inc. South San Francisco, CA, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego La Jolla, CA, USA
| | - Ryan J Watts
- Department of Neuroscience, Genentech Inc. South San Francisco, CA, USA
| |
Collapse
|