1
|
Gagliardi F, De Domenico P, Snider S, Roncelli F, Comai S, Mortini P. Immunomodulatory mechanisms driving tumor escape in glioblastoma: The central role of IDO and tryptophan metabolism in local and systemic immunotolerance. Crit Rev Oncol Hematol 2025; 209:104657. [PMID: 39986404 DOI: 10.1016/j.critrevonc.2025.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive primary brain tumor exhibiting extensive immune evasion mechanisms that hinder effective therapeutic interventions. This narrative review explores the immunomodulatory pathways contributing to tumor escape in GBM, specifically focusing on the role of Tryptophan (TRP) metabolism and its downstream mediators Tryptophan metabolism through the kynurenine pathway (KP) is initiated by indoleamine 2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO2) enzymes and serves as a crucial mechanism for promoting an immunosuppressive microenvironments and systemic immunotolerance. Emerging evidence also indicates a non-enzymatic role for IDO1 signaling in these processes. The downstream effectors interact with immune cells, inducing local immunosuppression within the tumor microenvironment and altering peripheral immune responses. METHODS We systematically reviewed databases (MEDLINE via PubMed, Science Direct, and Embase) through October 2024 to highlight the interplay between local immune escape mechanisms and circulating immunotolerance, emphasizing the role of TRP metabolic enzymes in supporting GBM progression. RESULTS The literature review identified 99 records. TRP-related mechanisms play a central role in fostering immunotolerance in GBM. These phenomena involve intricate interactions between the infiltrating and circulating myeloid and lymphoid compartments, ultimately shaping a tolerant, pro-tumoral environment and the peripheral immunophenotype. CONCLUSIONS The biological activity of IDO1 and TRP metabolites positions these compounds as potential markers of disease activity and promising molecular targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Filippo Gagliardi
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Pierfrancesco De Domenico
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy.
| | - Silvia Snider
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Francesca Roncelli
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada; IRCSS San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
| | - Pietro Mortini
- IRCCS San Raffaele Scientific Institute, Department of Neurosurgery and Gamma Knife Radiosurgery, Milan 20132, Italy
| |
Collapse
|
2
|
Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, Meilleur CE, D'Agostino MR, Zhang A, Feng E, Saeedian N, Bell GI, Vahedi F, Hess DA, Barr SD, Troyer RM, Kang CY, Ashkar AA, Miller MS, Haeryfar SMM. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. PLoS Pathog 2023; 19:e1011485. [PMID: 37384813 DOI: 10.1371/journal.ppat.1011485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.
Collapse
Affiliation(s)
- Rasheduzzaman Rashu
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ryan M Troyer
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res 2021; 65:e2000461. [PMID: 33216452 DOI: 10.1002/mnfr.202000461] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is complex, chronic, and relapsing gastrointestinal inflammatory disorders, which includes mainly two conditions, namely ulcerative colitis (UC) and Crohn's disease (CD). Development of IBD in any individual is closely related to his/her autoimmune regulation, gene-microbiota interactions, and dietary factors. Dietary tryptophan (Trp) is an essential amino acid for intestinal mucosal cells, and it is associated with the intestinal inflammation, epithelial barrier, and energy homeostasis of the host. According to recent studies, Trp and its three major metabolic pathways, namely kynurenine (KYN) pathway, indole pathway, and 5-hydroxytryptamine (5-HT) pathway, have vital roles in the regulation of intestinal inflammation by acting directly or indirectly on the pro/anti-inflammatory cytokines, functions of various immune cells, as well as the intestinal microbial composition and homeostasis. In this review, recent advances in Trp- and its metabolites-associated intestinal inflammation are summarized. It further discusses the complex mechanisms and interrelationships of the three major metabolic pathways of Trp in regulating inflammation, which could elucidate the value of dietary Trp to be used as a nutrient for IBD patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
4
|
Liu J, Xu M, Yuan Z. Immunoscore Guided Cold Tumors to Acquire “Temperature” Through Integrating Physicochemical and Biological Methods. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract Immunotherapy for the treatment of tumors has become the most compelling strategy after targeted treatment, especially for lung cancer and melanoma, as well as some blood cancers. For most remaining types of tumors (e.g., pancreatic, colorectal, and breast cancers),
abundant immunotherapeutic strategies in the forms of immune checkpoint blockade, cancer vaccines, and CAR-T therapies produce little effect. Furthermore, the immunoreactions induced by various types of cancer and even in individual patients, differ among the single therapeutic immune checkpoint
inhibitors, whose pre-existing immunoreaction remains to be optimized for cancer immunotherapy. According to the density of the infiltrating lymphocyte subsets at the invasive margin or core of primary solid tumors, the tumors were classified into four grades using the immunoscore, which is
complementary to the tumor node metastasis (TNM) staging system in providing a better prognosis of cancer patients in addition to the classification of immunogenic hot tumors and non-immunogenic cold tumors. This review aimed to outline the features of the most difficult-to-treat and challenging
cold tumors and potential approaches to transform “cold” tumors into “hot” tumors, because hot tumors are associated with a higher response rate to immunotherapy. We also summarized the current popular strategies for enhancing T cell trafficking, which may be helpful
to provide an etiological basement for a more rational design of drug delivery systems and conquer drug-resistance during cancer therapy.
Collapse
Affiliation(s)
- Jing Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Mengze Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
5
|
Meilleur CE, Memarnejadian A, Shivji AN, Benoit JM, Tuffs SW, Mele TS, Singh B, Dikeakos JD, Topham DJ, Mu HH, Bennink JR, McCormick JK, Haeryfar SMM. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathog 2020; 16:e1008393. [PMID: 32433711 PMCID: PMC7239382 DOI: 10.1371/journal.ppat.1008393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Infection with (SAg)-producing bacteria may precede or follow infection with or vaccination against influenza A viruses (IAVs). However, how SAgs alter the breadth of IAV-specific CD8+ T cell (TCD8) responses is unknown. Moreover, whether recall responses mediating heterosubtypic immunity to IAVs are manipulated by SAgs remains unexplored. We employed wild-type (WT) and mutant bacterial SAgs, SAg-sufficient/deficient Staphylococcus aureus strains, and WT, mouse-adapted and reassortant IAV strains in multiple in vivo settings to address the above questions. Contrary to the popular view that SAgs delete or anergize T cells, systemic administration of staphylococcal enterotoxin B (SEB) or Mycoplasma arthritidis mitogen before intraperitoneal IAV immunization enlarged the clonal size of ‘select’ IAV-specific TCD8 and reshuffled the hierarchical pattern of primary TCD8 responses. This was mechanistically linked to the TCR Vβ makeup of the impacted clones rather than their immunodominance status. Importantly, SAg-expanded TCD8 retained their IFN-γ production and cognate cytolytic capacities. The enhancing effect of SEB on immunodominant TCD8 was also evident in primary responses to vaccination with heat-inactivated and live attenuated IAV strains administered intramuscularly and intranasally, respectively. Interestingly, in prime-boost immunization settings, the outcome of SEB administration depended strictly upon the time point at which this SAg was introduced. Accordingly, SEB injection before priming raised CD127highKLRG1low memory precursor frequencies and augmented the anamnestic responses of SEB-binding TCD8. By comparison, introducing SEB before boosting diminished recall responses to IAV-derived epitopes drastically and indiscriminately. This was accompanied by lower Ki67 and higher Fas, LAG-3 and PD-1 levels consistent with a pro-apoptotic and/or exhausted phenotype. Therefore, SAgs can have contrasting impacts on anti-IAV immunity depending on the naïve/memory status and the TCR composition of exposed TCD8. Finally, local administration of SEB or infection with SEB-producing S. aureus enhanced pulmonary TCD8 responses to IAV. Our findings have clear implications for superinfections and prophylactic vaccination. Exposure to bacterial superantigens (SAgs) is often a consequence of infection with common Gram-positive bacteria causing septic and toxic shock or food poisoning. How SAgs affect the magnitude, breadth and quality of infection/vaccine-elicited CD8+ T cell (TCD8) responses to respiratory viral pathogens, including influenza A viruses (IAVs), is far from clear. Also importantly, superinfections with IAVs and SAg-producing bacteria are serious clinical occurrences during seasonal and pandemic flu and require urgent attention. We demonstrate that two structurally distinct SAgs, including staphylococcal enterotoxin B (SEB), unexpectedly enhance primary TCD8 responses to ‘select’ IAV-derived epitopes depending on the TCR makeup of the responding clones. Intriguingly, the timing of exposure to SEB dictates the outcome of prime-boost immunization. Seeing a SAg before priming raises memory precursor frequencies and augments anamnestic TCD8 responses. Conversely, a SAg encounter before boosting renders TCD8 prone to death or exhaustion and impedes recall responses, thus likely compromising heterosubtypic immunity to IAVs. Finally, local exposure to SEB increases the pulmonary response of immunodominant IAV-specific TCD8. These findings shed new light on how bacterial infections and SAgs influence the effectiveness of anti-IAV TCD8 responses, and have, as such, wide-ranging implications for preventative vaccination and infection control.
Collapse
Affiliation(s)
- Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Adil N. Shivji
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M. Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tina S. Mele
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jack R. Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Meilleur CE, Wardell CM, Mele TS, Dikeakos JD, Bennink JR, Mu HH, McCormick JK, Haeryfar SMM. Bacterial Superantigens Expand and Activate, Rather than Delete or Incapacitate, Preexisting Antigen-Specific Memory CD8+ T Cells. J Infect Dis 2020; 219:1307-1317. [PMID: 30418594 DOI: 10.1093/infdis/jiy647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/07/2018] [Indexed: 11/13/2022] Open
Abstract
Superantigens (SAgs) released by common Gram-positive bacterial pathogens have been reported to delete, anergize, or activate mouse T cells. However, little is known about their effects on preexisting memory CD8+ T cell (TCD8) pools. Furthermore, whether SAgs manipulate human memory TCD8 responses to cognate antigens is unknown. We used a human peripheral blood mononuclear cell culture system and a nontransgenic mouse model in which the impact of stimulation by two fundamentally distinct SAgs, staphylococcal enterotoxin B and Mycoplasma arthritidis mitogen, on influenza virus- and/or cytomegalovirus-specific memory TCD8 could be monitored. Bacterial SAgs surprisingly expanded antiviral memory TCD8 generated naturally through infection or artificially through vaccination. Mechanistically, this was a T cell-intrinsic and T cell receptor β-chain variable-dependent phenomenon. Importantly, SAg-expanded TCD8 displayed an effector memory phenotype and were capable of producing interferon-γ and destroying target cells ex vivo or in vivo. These findings have clear implications for antimicrobial defense and rational vaccine design.
Collapse
Affiliation(s)
- Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Tina S Mele
- Division of General Surgery, Department of Surgery, Western University, London, Canada.,Division of Critical Care Medicine, Western University, London, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Jack R Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - John K McCormick
- Department of Microbiology and Immunology, Western University, London, Canada.,Centre for Human Immunology, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Canada.,Centre for Human Immunology, Western University, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|
7
|
Luo B, Que ZJ, Zhou ZY, Wang Q, Dong CS, Jiang Y, Hu B, Shi H, Jin Y, Liu JW, Li HG, Wang L, Tian JH. Feiji Recipe inhibits the growth of lung cancer by modulating T-cell immunity through indoleamine-2,3-dioxygenase pathway in an orthotopic implantation model. JOURNAL OF INTEGRATIVE MEDICINE 2018; 16:283-289. [PMID: 29752140 DOI: 10.1016/j.joim.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/15/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Escape from the body's immune response is a basic characteristic of lung cancer, and indoleamine-2,3-dioxygenase (IDO) plays a key role in mediating immune escape of non-small-cell lung cancer, which leads to recurrence and metastasis. Feiji Recipe, a compound Chinese herbal medicine, has the effect of stabilizing lesions and prolonging survival in patients with lung cancer. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of Feiji Recipe. METHODS An orthotopic transplant model of mouse Lewis lung cancer, with stable expression of IDO gene, was established in C57BL/6 mice. Optical imaging was used to observe the effects of Feiji Recipe in the treatment of lung cancer in vivo. The effects of Feiji Recipe on the proliferation of mouse Lewis lung cancer cell line 2LL, 2LL-enhanced green fluorescent protein (2LL-EGFP) and 2LL-EGFP-IDO were investigated, and the apoptosis of T-cells was examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide using flow cytometry. Chemical composition of Feiji Recipe was validated by high-performance liquid chromatography. RESULTS Compared to the control group, the survival of animals treated with Feiji Recipe was significantly prolonged (P = 0.0074), and the IDO protein level decreased (P = 0.0072); moreover, the percentages of CD4+CD25+ T-cells and Foxp3+ T-cells were significantly decreased (P < 0.05). The molecular mechanism of Feiji Recipe against lung cancer may relate to the regulation of immune cells, such as T-cells and regulatory T-cells. CONCLUSION The molecular mechanism of Feiji Recipe in treatment of lung cancer is to restore the function of T-cells in the cancer microenvironment through interfering with the IDO pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/physiopathology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Growth Inhibitors/administration & dosage
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/immunology
- Lung Neoplasms/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Bin Luo
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zu-Jun Que
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Zhi-Yi Zhou
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Wang
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Chang-Sheng Dong
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Hui Shi
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Jin
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-Wen Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - He-Gen Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lin Wang
- Department of Nephrology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jian-Hui Tian
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China.
| |
Collapse
|
8
|
Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR, Schell TD, Haeryfar SMM. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8 + T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. THE JOURNAL OF IMMUNOLOGY 2017; 199:3348-3359. [PMID: 28939757 DOI: 10.4049/jimmunol.1700643] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | | | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University, Hershey, PA 17033
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6G 5W9, Canada.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
9
|
Zhong W, Gao L, Zhou Z, Lin H, Chen C, Huang P, Huang W, Zhou C, Huang S, Nie L, Liu Y, Chen Y, Zhou D, Lv Z. Indoleamine 2,3-dioxygenase 1 deficiency attenuates CCl4-induced fibrosis through Th17 cells down-regulation and tryptophan 2,3-dioxygenase compensation. Oncotarget 2017; 8:40486-40500. [PMID: 28465467 PMCID: PMC5522192 DOI: 10.18632/oncotarget.17119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an intracellular rate-limiting enzyme in the metabolism of tryptophan along the kynurenine pathway, subsequently mediating the immune response; however, the role of IDO1 in liver fibrosis and cirrhosis is still unclear. In this study, we investigated the role of IDO1 in the development of hepatic fibrosis and cirrhosis. Patients with hepatitis B virus-induced cirrhosis and healthy volunteers were enrolled. For animals, carbon tetrachloride (CCl4) was used to establish liver fibrosis in wild-type and IDO1 knockout mice. Additionally, an IDO1 inhibitor (1-methyl-D-tryptophan) was administered to WT fibrosis mice. Liver lesions were positively correlated with serum IDO1 levels in both the clinical subjects and hepatic fibrosis mice. A positive correlation between serum IDO1 levels and liver stiffness values was found in the cirrhosis patients. Notably, IDO1 knockout mice were protected from CCl4-induced liver fibrosis, as reflected by unchanged serum alanine transaminase and aspartate transaminase levels and lower collagen deposition, α-smooth muscle actin expression and apoptotic cell death rates. On the other hand, tryptophan 2,3-dioxygenase (TDO), another systemic tryptophan metabolism enzyme, exhibited a compensatory increase as a result of IDO1 deficiency. Moreover, hepatic interleukin-17a, a characteristic cytokine of T helper 17 (Th17) cells, and downstream cytokines' mRNA levels showed lower expression in the IDO1-/- model mice. IDO1 appears to be a potential hallmark of liver lesions, and its deficiency protects mice from CCl4-induced fibrosis mediated by Th17 cells down-regulation and TDO compensation.
Collapse
Affiliation(s)
- Weichao Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Liver Diseases, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhenting Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Haiyan Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Peng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weiliang Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linghui Nie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ye Liu
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Youming Chen
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Daqiao Zhou
- Department of Liver Diseases, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
10
|
Gaelings L, Söderholm S, Bugai A, Fu Y, Nandania J, Schepens B, Lorey MB, Tynell J, Vande Ginste L, Le Goffic R, Miller MS, Kuisma M, Marjomäki V, De Brabander J, Matikainen S, Nyman TA, Bamford DH, Saelens X, Julkunen I, Paavilainen H, Hukkanen V, Velagapudi V, Kainov DE. Regulation of kynurenine biosynthesis during influenza virus infection. FEBS J 2016; 284:222-236. [PMID: 27860276 DOI: 10.1111/febs.13966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023]
Abstract
Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus-host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furthermore, IAV attenuated the IDO1 expression and the production of kynurenine through its NS1 protein. Interestingly, inhibition of viral replication prior to IFN induction limited IDO1 expression, while inhibition after did not. Finally, we showed that kynurenine biosynthesis was activated in macrophages in response to other stimuli, such as influenza B virus, herpes simplex virus 1 and 2 as well as bacterial lipopolysaccharides. Thus, the tight regulation of the kynurenine biosynthesis by host cell and, perhaps, pathogen might be a basic signature of a wide range of host-pathogen interactions, which should be taken into account during development of novel antiviral and antibacterial drugs.
Collapse
Affiliation(s)
- Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Sandra Söderholm
- Institute of Biotechnology (BI), University of Helsinki, Finland.,Finnish Institute of Occupational Health (TTL), Helsinki, Finland
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Finland
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Jatin Nandania
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Martina B Lorey
- Finnish Institute of Occupational Health (TTL), Helsinki, Finland
| | - Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Liesbeth Vande Ginste
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Finland.,Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Ronan Le Goffic
- Centre de Recherche de Jouy-en-Josas UR0892 Unité VIM - Virologie & Immunologie Moléculaires, Domaine de Vilvert, Jouy-en-Josas, France
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Institute for Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Marika Kuisma
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Finland
| | - Jef De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tuula A Nyman
- Institute of Clinical Medicine, Rikshospitalet, Oslo, Norway
| | - Dennis H Bamford
- Institute of Biotechnology (BI), University of Helsinki, Finland
| | - Xavier Saelens
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Finland.,Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki, Finland.,Department of Virology, University of Turku, Finland
| | | | | | - Vidya Velagapudi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| |
Collapse
|
11
|
Polyzos KA, Ovchinnikova O, Berg M, Baumgartner R, Agardh H, Pirault J, Gisterå A, Assinger A, Laguna-Fernandez A, Bäck M, Hansson GK, Ketelhuth DFJ. Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe-/- mice. Cardiovasc Res 2015; 106:295-302. [PMID: 25750192 DOI: 10.1093/cvr/cvv100] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of low-density lipoprotein in the artery, leading to maladaptive response of cells from the immune system and vessel wall. Strong evidence implicates indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of the kynurenine pathway of tryptophan (Trp) degradation, with immune regulation and anti-inflammatory mechanisms in different diseases. However, the role of IDO and the endogenous degradation of Trp have never been directly examined in atherosclerosis development. We used the IDO inhibitor 1-methyl-Trp (1-MT) to determine the role of IDO-mediated Trp metabolism in vascular inflammation and atherosclerosis. METHODS AND RESULTS Apoe(-/-) mice were treated with 1-MT in drinking water for 8 weeks. Systemic IDO inhibition led to a significant increase in atherosclerotic lesions that were ∼58 and 54% larger in the aortic arch and root, respectively. 1-MT treatment enhanced vascular inflammation, up-regulated VCAM-1 and CCL2, and increased CD68 macrophage accumulation into the plaque. Notably, the rise in VCAM-1 expression was not limited to the plaque but also found in smooth muscle cells (SMCs) of the tunica media. Furthermore, we found that IDO-dependent Trp metabolism by SMCs regulates VCAM-1 expression, and that 1-MT-induced acceleration of atherosclerosis and vascular inflammation can be reversed by exogenous administration of the Trp metabolite 3-hydroxyanthranilic acid (3-HAA). CONCLUSION IDO-mediated Trp metabolism regulates vascular inflammation and plaque formation in hypercholesterolaemic Apoe(-/-) mice. Our data establish that this pathway plays a major role in the pathological process of atherogenesis.
Collapse
Affiliation(s)
- Konstantinos A Polyzos
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Olga Ovchinnikova
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Martin Berg
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Roland Baumgartner
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Hanna Agardh
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - John Pirault
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Anton Gisterå
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Alice Assinger
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andres Laguna-Fernandez
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Magnus Bäck
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Göran K Hansson
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine, Experimental Cardiovascular Research Unit, Center for Molecular Medicine, L8:03, Karolinska University Hospital, Stockholm S-17176, Sweden
| |
Collapse
|