1
|
Unexpectedly low paternal diversity is associated with infrequent pollinator visitation for a bird-pollinated plant. Oecologia 2021; 196:937-950. [PMID: 33870456 DOI: 10.1007/s00442-021-04906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The behaviour of pollinators has important consequences for plant mating. Nectar-feeding birds often display behaviour that results in more pollen carryover than insect pollinators, which is predicted to result in frequent outcrossing and high paternal diversity for bird-pollinated plants. We tested this prediction by quantifying mating system parameters and bird visitation in three populations of an understory bird-pollinated herb, Anigozanthos humilis (Haemodoraceae). Microsatellite markers were used to genotype 131 adult plants, and 211 seeds from 23 maternal plants, from three populations. While outcrossing rates were high, estimates of paternal diversity were surprisingly low compared with other bird-pollinated plants. Despite nectar-feeding birds being common at the study sites, visits to A. humilis flowers were infrequent (62 visits over 21,552 recording hours from motion-triggered cameras, or equivalent to one visit per flower every 10 days), and the majority (76%) were by a single species, the western spinebill Acanthorhynchus superciliosus (Meliphagidae). Pollen counts from 30 captured honeyeaters revealed that A. humilis comprised just 0.3% of the total pollen load. For 10 western spinebills, A. humilis pollen comprised only 4.1% of the pollen load, which equated to an average of 3.9 A. humilis pollen grains per bird. Taken together, our findings suggest that low visitation rates and low pollen loads of floral visitors have led to the low paternal diversity observed in this understory bird-pollinated herb. As such, we shed new light on the conditions that can lead to departures from high paternal diversity for plants competing for the pollination services of generalist nectar-feeding birds.
Collapse
|
2
|
Thomas WJW, Anthony JM, Dobrowolski MP, Krauss SL. Optimising the conservation of genetic diversity of the last remaining population of a critically endangered shrub. AOB PLANTS 2021; 13:plab005. [PMID: 33613937 PMCID: PMC7885199 DOI: 10.1093/aobpla/plab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
An understanding of genetic diversity and the population genetic processes that impact future population viability is vital for the management and recovery of declining populations of threatened species. Styphelia longissima (Ericaceae) is a critically endangered shrub, restricted to a single fragmented population near Eneabba, 250 km north of Perth, Western Australia. For this population, we sought to characterize population genetic variation and its spatial structure, and aspects of the mating portfolio, from which strategies that optimize the conservation of this diversity are identified. A comprehensive survey was carried out and 220 adults, and 106 seedlings from 14 maternal plants, were genotyped using 13 microsatellite markers. Levels of genetic variation and its spatial structure were assessed, and mating system parameters were estimated. Paternity was assigned to the offspring of a subsection of plants, which allowed for the calculation of realized pollen dispersal. Allelic richness and levels of expected heterozygosity were higher than predicted for a small isolated population. Spatial autocorrelation analysis identified fine-scale genetic structure at a scale of 20 m, but no genetic structure was found at larger scales. Mean outcrossing rate (t m = 0.66) reflects self-compatibility and a mixed-mating system. Multiple paternity was low, where 61 % of maternal siblings shared the same sire. Realized pollen dispersal was highly restricted, with 95 % of outcrossing events occurring at 7 m or less, and a mean pollen dispersal distance of 3.8 m. Nearest-neighbour matings were common (55 % of all outcross events), and 97 % of mating events were between the three nearest-neighbours. This study has provided critical baseline data on genetic diversity, mating system and pollen dispersal for future monitoring of S. longissima. Broadly applicable conservation strategies such as implementing a genetic monitoring plan, diluting spatial genetic structure in the natural population, genetically optimizing ex situ collections and incorporating genetic knowledge into translocations will help to manage the future erosion of the high genetic variation detected.
Collapse
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
| | - Janet M Anthony
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
| | - Mark P Dobrowolski
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Iluka Resources Ltd, Perth, WA, Australia
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Siegfried L Krauss
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, WA, Australia
| |
Collapse
|
3
|
Gibson MJS, Crawford DJ, Holder MT, Mort ME, Kerbs B, de Sequeira MM, Kelly JK. Genome-wide genotyping estimates mating system parameters and paternity in the island species Tolpis succulenta. AMERICAN JOURNAL OF BOTANY 2020; 107:1189-1197. [PMID: 32864742 DOI: 10.1002/ajb2.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The mating system has profound consequences, not only for ecology and evolution, but also for the conservation of threatened or endangered species. Unfortunately, small populations are difficult to study owing to limits on sample size and genetic marker diversity. Here, we estimated mating system parameters in three small populations of an island plant using genomic genotyping. Although self-incompatible (SI) species are known to often set some self-seed, little is known about how "leaky SI" affects selfing rates in nature or the role that multiple paternity plays in small populations. METHODS We generalized the BORICE mating system program to determine the siring pattern within maternal families. We applied this algorithm to maternal families from three populations of Tolpis succulenta from Madeira Island and genotyped the progeny using RADseq. We applied BORICE to estimate each individual offspring as outcrossed or selfed, the paternity of each outcrossed offspring, and the level of inbreeding of each maternal plant. RESULTS Despite a functional self-incompatibility system, these data establish T. succulenta as a pseudo-self-compatible (PSC) species. Two of 75 offspring were strongly indicated as products of self-fertilization. Despite selfing, all adult maternal plants were fully outbred. There was high differentiation among and low variation within populations, consistent with a history of genetic isolation of these small populations. There were generally multiple sires per maternal family. Twenty-two percent of sib contrasts (between outcrossed offspring within maternal families) shared the same sire. CONCLUSIONS Genome-wide genotyping, combined with appropriate analytical methods, enables estimation of mating system and multiple paternity in small populations. These data address questions about the evolution of reproductive traits and the conservation of threatened populations.
Collapse
Affiliation(s)
- Matthew J S Gibson
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Daniel J Crawford
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Mark T Holder
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Mark E Mort
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Benjamin Kerbs
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Miguel Menezes de Sequeira
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, 9501-81, Ponta Delgada, Portugal
| | - John K Kelly
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| |
Collapse
|
4
|
Bezemer N, Hopper SD, Krauss SL, Phillips RD, Roberts DG. Primary pollinator exclusion has divergent consequences for pollen dispersal and mating in different populations of a bird‐pollinated tree. Mol Ecol 2019; 28:4883-4898. [DOI: 10.1111/mec.15264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole Bezemer
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
| | - Siegy L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - Ryan D. Phillips
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Vic. Australia
| | - David G. Roberts
- Centre of Excellence in Natural Resource Management School of Agriculture and Environment The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| |
Collapse
|
5
|
McCallum KP, Breed MF, Lowe AJ, Paton DC. Plants, position and pollination: Planting arrangement and pollination limitation in a revegetated eucalypt woodland. ECOLOGICAL MANAGEMENT & RESTORATION 2019. [DOI: 10.1111/emr.12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
McCallum KP, Breed MF, Paton DC, Lowe AJ. Clumped planting arrangements improve seed production in a revegetated eucalypt woodland. Restor Ecol 2018. [DOI: 10.1111/rec.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimberly P. McCallum
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Martin F. Breed
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - David C. Paton
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Andrew J. Lowe
- School of Biological Sciences Faculty of Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
7
|
O'Connell MC, Castilla AR, Lee LX, Jha S. Bee movement across heterogeneous tropical forests: multi‐paternal analyses reveal the importance of neighborhood composition for pollen dispersal. Biotropica 2018. [DOI: 10.1111/btp.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Megan C. O'Connell
- Department of Integrative Biology University of Texas at Austin 1 University Station Austin TX 78712 USA
| | - Antonio R. Castilla
- Department of Integrative Biology University of Texas at Austin 1 University Station Austin TX 78712 USA
- Centro de Ecologia Aplicada Prof. Baeta Neves/InBIO Universidade de Lisboa Tapada da Ajuda 1349‐017 Lisbon Portugal
| | - Leticia X. Lee
- Department of Integrative Biology University of Texas at Austin 1 University Station Austin TX 78712 USA
- Department of Earth and Environment Boston University 685 Commonwealth Avenue Boston MA 02215 USA
| | - Shalene Jha
- Department of Integrative Biology University of Texas at Austin 1 University Station Austin TX 78712 USA
| |
Collapse
|
8
|
Campbell DR, Brody AK, Price MV, Waser NM, Aldridge G. Is Plant Fitness Proportional to Seed Set? An Experiment and a Spatial Model. Am Nat 2017; 190:818-827. [PMID: 29166152 DOI: 10.1086/694116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individual differences in fecundity often serve as proxies for differences in overall fitness, especially when it is difficult to track the fate of an individual's offspring to reproductive maturity. Using fecundity may be biased, however, if density-dependent interactions between siblings affect survival and reproduction of offspring from high- and low-fecundity parents differently. To test for such density-dependent effects in plants, we sowed seeds of the wildflower Ipomopsis aggregata (scarlet gilia) to mimic partially overlapping seed shadows of pairs of plants, one of which produced twice as many seeds. We tested for differences in offspring success using a genetic marker to track offspring to flowering multiple years later. Without density dependence, the high-fecundity parent should produce twice as many surviving offspring. We also developed a model that considered the geometry of seed shadows and assumed limited survivors so that the number of juvenile recruits is proportional to the area. Rather than a ratio of 2∶1 offspring success from high- versus low-fecundity parents, our model predicted a ratio of 1.42∶1, which would translate into weaker selection. Empirical ratios of juvenile offspring and of flowers produced conformed well to the model's prediction. Extending the model shows how spatial relationships of parents and seed dispersal patterns modify inferences about relative fitness based solely on fecundity.
Collapse
|
9
|
Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD. Novel Consequences of Bird Pollination for Plant Mating. TRENDS IN PLANT SCIENCE 2017; 22:395-410. [PMID: 28412035 DOI: 10.1016/j.tplants.2017.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/12/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Pollinator behaviour has profound effects on plant mating. Pollinators are predicted to minimise energetic costs during foraging bouts by moving between nearby flowers. However, a review of plant mating system studies reveals a mismatch between behavioural predictions and pollen-mediated gene dispersal in bird-pollinated plants. Paternal diversity of these plants is twice that of plants pollinated solely by insects. Comparison with the behaviour of other pollinator groups suggests that birds promote pollen dispersal through a combination of high mobility, limited grooming, and intra- and interspecies aggression. Future opportunities to test these predictions include seed paternity assignment following pollinator exclusion experiments, single pollen grain genotyping, new tracking technologies for small pollinators, and motion-triggered cameras and ethological experimentation for quantifying pollinator behaviour.
Collapse
Affiliation(s)
- Siegfried L Krauss
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Ryan D Phillips
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jeffrey D Karron
- Department of Biological Sciences, PO Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - David G Roberts
- Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, Fraser Avenue, Kings Park, WA 6005, Australia; Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| | - Stephen D Hopper
- Centre of Excellence in Natural Resource Management and School of Plant Biology, University of Western Australia, 35 Stirling Terrace, Albany, WA 6330, Australia
| |
Collapse
|
10
|
Rhodes MK, Fant JB, Skogen KA. Pollinator identity and spatial isolation influence multiple paternity in an annual plant. Mol Ecol 2017; 26:4296-4308. [PMID: 28334485 DOI: 10.1111/mec.14115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 03/01/2017] [Indexed: 11/27/2022]
Abstract
The occurrence and extent of multiple paternity is an important component of variation in plant mating dynamics. However, links between pollinator activity and multiple paternity are generally lacking, especially for plant species that attract functionally diverse floral visitors. In this study, we separated the influence of two functionally distinct floral visitors (hawkmoths and solitary bees) and characterized their impacts on multiple paternity in a self-incompatible, annual forb, Oenothera harringtonii (Onagraceae). We also situated pollinator-mediated effects in a spatial context by linking variation in multiple paternity to variation in plant spatial isolation. We documented pronounced differences in the number of paternal sires as function of pollinator identity: on average, the primary pollinator (hawkmoths) facilitated mating with nearly twice as many pollen donors relative to the secondary pollinator (solitary bees). This effect was consistent for both isolated and nonisolated individuals, but spatial isolation imposed pronounced reductions on multiple paternity regardless of pollinator identity. Considering that pollinator abundance and pollen dispersal distance did not vary significantly with pollinator identity, we attribute variation in realized mating dynamics primarily to differences in pollinator morphology and behaviour as opposed to pollinator abundance or mating incompatibility arising from underlying spatial genetic structure. Our findings demonstrate that functionally distinct pollinators can have strongly divergent effects on polyandry in plants and further suggest that both pollinator identity and spatial heterogeneity have important roles in plant mating dynamics.
Collapse
Affiliation(s)
- Matthew K Rhodes
- Division of Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA.,Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, O.T. Hogan Hall, Room 2-144, Evanston, IL, 60208, USA
| | - Jeremie B Fant
- Division of Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA
| | - Krissa A Skogen
- Division of Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA
| |
Collapse
|
11
|
Suárez-Montes P, Chávez-Pesqueira M, Núñez-Farfán J. Life history and past demography maintain genetic structure, outcrossing rate, contemporary pollen gene flow of an understory herb in a highly fragmented rainforest. PeerJ 2016; 4:e2764. [PMID: 28028460 PMCID: PMC5183091 DOI: 10.7717/peerj.2764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. METHODS Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28-30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. RESULTS Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne ) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra aurantiaca shows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep ) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum. DISCUSSION Habitat fragmentation has not increased genetic differentiation or reduced genetic diversity of A. aurantiaca despite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure of A. aurantiaca seem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape.
Collapse
Affiliation(s)
- Pilar Suárez-Montes
- Laboratory of Ecological Genetics and Evolution, Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mariana Chávez-Pesqueira
- Laboratory of Ecological Genetics and Evolution, Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Núñez-Farfán
- Laboratory of Ecological Genetics and Evolution, Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico
| |
Collapse
|
12
|
Nora S, Aparicio A, Albaladejo RG. High Correlated Paternity Leads to Negative Effects on Progeny Performance in Two Mediterranean Shrub Species. PLoS One 2016; 11:e0166023. [PMID: 27835658 PMCID: PMC5106039 DOI: 10.1371/journal.pone.0166023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/23/2016] [Indexed: 11/24/2022] Open
Abstract
Anthropogenic habitat deterioration can promote changes in plant mating systems that subsequently may affect progeny performance, thereby conditioning plant recruitment for the next generation. However, very few studies yet tested mating system parameters other than outcrossing rates; and the direct effects of the genetic diversity of the pollen received by maternal plants (i.e. correlated paternity) has often been overlooked. In this study, we investigated the relation between correlated paternity and progeny performance in two common Mediterranean shrubs, Myrtus communis and Pistacia lentiscus. To do so, we collected open-pollinated progeny from selected maternal plants, calculated mating system parameters using microsatellite genotyping and conducted sowing experiments under greenhouse and field conditions. Our results showed that some progeny fitness components were negatively affected by the high correlated paternity of maternal plants. In Myrtus communis, high correlated paternity had a negative effect on the proportion and timing of seedling emergence in the natural field conditions and in the greenhouse sowing experiment, respectively. In Pistacia lentiscus, seedling emergence time under field conditions was also negatively influenced by high correlated paternity and a progeny survival analysis in the field experiment showed greater mortality of seedlings from maternal plants with high correlated paternity. Overall, we found effects of correlated paternity on the progeny performance of Myrtus communis, a self-compatible species. Further, we also detected effects of correlated paternity on the progeny emergence time and survival in Pistacia lentiscus, an obligate outcrossed species. This study represents one of the few existing empirical examples which highlight the influence that correlated paternity may exert on progeny performance in multiple stages during early seedling growth.
Collapse
Affiliation(s)
- Sofia Nora
- Departmento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
- * E-mail:
| | - Abelardo Aparicio
- Departmento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| | - Rafael G. Albaladejo
- Departmento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Paternity analysis reveals wide pollen dispersal and high multiple paternity in a small isolated population of the bird-pollinated Eucalyptus caesia (Myrtaceae). Heredity (Edinb) 2016; 117:460-471. [PMID: 27530908 DOI: 10.1038/hdy.2016.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/31/2016] [Accepted: 06/24/2016] [Indexed: 01/18/2023] Open
Abstract
Optimal foraging behaviour by nectavores is expected to result in a leptokurtic pollen dispersal distribution and predominantly near-neighbour mating. However, complex social interactions among nectarivorous birds may result in different mating patterns to those typically observed in insect-pollinated plants. Mating system, realised pollen dispersal and spatial genetic structure were examined in the bird-pollinated Eucalyptus caesia, a species characterised by small, geographically disjunct populations. Nine microsatellite markers were used to genotype an entire adult stand and 181 seeds from 28 capsules collected from 6 trees. Mating system analysis using MLTR revealed moderate to high outcrossing (tm=0.479-0.806) and low estimates of correlated paternity (rp=0.136±s.e. 0.048). Paternity analysis revealed high outcrossing rates (mean=0.72) and high multiple paternity, with 64 different sires identified for 181 seeds. There was a significant negative relationship between the frequency of outcross mating and distance between mating pairs. Realised mating events were more frequent than expected with random mating for plants <40 m apart. The overall distribution of pollen dispersal distances was platykurtic. Despite extensive pollen dispersal within the stand, three genetic clusters were detected by STRUCTURE analysis. These genetic clusters were strongly differentiated yet geographically interspersed, hypothesised to be a consequence of rare recruitment events coupled with extreme longevity. We suggest that extensive polyandry and pollen dispersal is a consequence of pollination by highly mobile honeyeaters and may buffer E. caesia against the loss of genetic diversity predicted for small and genetically isolated populations.
Collapse
|
14
|
The resilience of forest fragmentation genetics--no longer a paradox--we were just looking in the wrong place. Heredity (Edinb) 2015; 115:97-9. [PMID: 26176685 DOI: 10.1038/hdy.2015.40] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
|
16
|
Whitehead MR, Linde CC, Peakall R. Pollination by sexual deception promotes outcrossing and mate diversity in self-compatible clonal orchids. J Evol Biol 2015; 28:1526-41. [PMID: 26079670 DOI: 10.1111/jeb.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/19/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
The majority of flowering plants rely on animals as pollen vectors. Thus, plant mating systems and pollen dispersal are strongly influenced by pollinator behaviour. In Australian sexually deceptive orchids pollinated by male thynnine wasps, outcrossing and extensive pollen flow is predicted due to floral deception, which minimizes multiple flower visitations within patches, and the movement of pollinators under mate-search rather than foraging behaviours. This hypothesis was tested using microsatellite markers to reconstruct and infer paternity in two clonal, self-compatible orchids. Offspring from naturally pollinated Chiloglottis valida and C. aff. jeanesii were acquired through symbiotic culture of seeds collected over three seasons. In both species, outcrossing was extensive (tm = 0.924-1.00) despite clone sizes up to 11 m wide. The median pollen flow distance based on paternity for both taxa combined was 14.5 m (n = 18, range 0-69 m), being larger than typically found by paternity analyses in other herbaceous plants. Unexpectedly for orchids, some capsules were sired by more than one father, with an average of 1.35 pollen donors per fruit. This is the first genetic confirmation of polyandry in orchid capsules. Further, we report a possible link between multiple paternity and increased seed fitness. Together, these results demonstrate that deceptive pollination by mate-searching wasps enhances offspring fitness by promoting both outcrossing and within-fruit paternal diversity.
Collapse
Affiliation(s)
- M R Whitehead
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - C C Linde
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - R Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|