1
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
2
|
Prabhakara C, Godbole R, Sil P, Jahnavi S, Gulzar SEJ, van Zanten TS, Sheth D, Subhash N, Chandra A, Shivaraj A, Panikulam P, U I, Nuthakki VK, Puthiyapurayil TP, Ahmed R, Najar AH, Lingamallu SM, Das S, Mahajan B, Vemula P, Bharate SB, Singh PP, Vishwakarma R, Guha A, Sundaramurthy V, Mayor S. Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLoS Pathog 2021; 17:e1009706. [PMID: 34252168 PMCID: PMC8297935 DOI: 10.1371/journal.ppat.1009706] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.
Collapse
Affiliation(s)
| | - Rashmi Godbole
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Parijat Sil
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Sowmya Jahnavi
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Shah-e-Jahan Gulzar
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- SASTRA University, Thanjavur, India
| | | | - Dhruv Sheth
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Neeraja Subhash
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- SASTRA University, Thanjavur, India
| | - Anchal Chandra
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | | | - Ibrahim U
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | | | - Riyaz Ahmed
- CSIR—Indian Institute of Integrative Medicine, Jammu, India
| | | | - Sai Manoz Lingamallu
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Karnataka, India
| | - Snigdhadev Das
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | | | - Praveen Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
| | | | | | | | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM), Bengaluru, India
| | | | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| |
Collapse
|
3
|
Sachdeva K, Goel M, Sundaramurthy V. Heterogeneity in the endocytic capacity of individual macrophage in a population determines its subsequent phagocytosis, infectivity and subcellular trafficking. Traffic 2020; 21:522-533. [DOI: 10.1111/tra.12752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Kuldeep Sachdeva
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Manisha Goel
- National Center for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | | |
Collapse
|
4
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
5
|
Chaplot K, Pimpale L, Ramalingam B, Deivasigamani S, Kamat SS, Ratnaparkhi GS. SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via reactive oxygen species-induced proteasomal degradation in a Drosophila model of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm.033803. [PMID: 30635270 PMCID: PMC6398501 DOI: 10.1242/dmm.033803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is an incurable, late-onset motor neuron disease, linked strongly to various causative genetic loci. ALS8 codes for a missense mutation, P56S, in VAMP-associated protein B (VAPB) that causes the protein to misfold and form cellular aggregates. Uncovering genes and mechanisms that affect aggregation dynamics would greatly help increase our understanding of the disease and lead to potential therapeutics. We developed a quantitative high-throughput Drosophila S2R+ cell-based kinetic assay coupled with fluorescent microscopy to score for genes involved in the modulation of aggregates of the fly orthologue, VAP(P58S), fused with GFP. A targeted RNA interference screen against 900 genes identified 150 hits that modify aggregation, including the ALS loci Sod1 and TDP43 (also known as TBPH), as well as genes belonging to the mTOR pathway. Further, a system to measure the extent of VAP(P58S) aggregation in the Drosophila larval brain was developed in order to validate the hits from the cell-based screen. In the larval brain, we find that reduction of SOD1 levels or decreased mTOR signalling reduces aggregation, presumably by increasing the levels of cellular reactive oxygen species (ROS). The mechanism of aggregate clearance is, primarily, proteasomal degradation, which appears to be triggered by an increase in ROS. We have thus uncovered an interesting interplay between SOD1, ROS and mTOR signalling that regulates the dynamics of VAP aggregation. Mechanistic processes underlying such cellular regulatory networks will lead to better understanding of the initiation and progression of ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kriti Chaplot
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Lokesh Pimpale
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | | | | | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018; 208:853-874. [PMID: 29487145 PMCID: PMC5844339 DOI: 10.1534/genetics.117.300077] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.
Collapse
Affiliation(s)
- Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Fillip Port
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| |
Collapse
|
7
|
Chang AY, Marshall WF. Organelles - understanding noise and heterogeneity in cell biology at an intermediate scale. J Cell Sci 2017; 130:819-826. [PMID: 28183729 DOI: 10.1242/jcs.181024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular 'noise' that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients.
Collapse
Affiliation(s)
- Amy Y Chang
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Cellular Construction, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Barbieri E, Di Fiore PP, Sigismund S. Endocytic control of signaling at the plasma membrane. Curr Opin Cell Biol 2016; 39:21-7. [DOI: 10.1016/j.ceb.2016.01.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/26/2023]
|
9
|
Johannes L, Parton RG, Bassereau P, Mayor S. Building endocytic pits without clathrin. Nat Rev Mol Cell Biol 2015; 16:311-21. [PMID: 25857812 DOI: 10.1038/nrm3968] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
How endocytic pits are built in clathrin- and caveolin-independent endocytosis still remains poorly understood. Recent insight suggests that different forms of clathrin-independent endocytosis might involve the actin-driven focusing of membrane constituents, the lectin-glycosphingolipid-dependent construction of endocytic nanoenvironments, and Bin-Amphiphysin-Rvs (BAR) domain proteins serving as scaffolding modules. We discuss the need for different types of internalization processes in the context of diverse cellular functions, the existence of clathrin-independent mechanisms of cargo recruitment and membrane bending from a biological and physical perspective, and finally propose a generic scheme for the formation of clathrin-independent endocytic pits.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Centre National de la Recherche Scientifique UMR3666, 75005 Paris, France; and INSERM U1143, 75005 Paris, France
| | - Robert G Parton
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia QLD 4072, Australia
| | - Patricia Bassereau
- Institut Curie, PSL Research University, Membrane and Cell Functions Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Centre National de la Recherche Scientifique UMR168, 75005 Paris, France; and Université Pierre et Marie Curie, 75252 Paris, France
| | - Satyajit Mayor
- National Centre for Biological Sciences, Cellular Organization and Signaling Group, and at Institute for Stem Cell Biology and Regenerative Medicine, UAS-GKVK Campus, 560 065 Bangalore, India
| |
Collapse
|
10
|
Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol 2014; 427:695-706. [PMID: 25281900 DOI: 10.1016/j.jmb.2014.09.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 02/06/2023]
Abstract
The nucleus is sculpted toward various morphologies during cellular differentiation and development. Alterations in nuclear shape often result in changes to chromatin organization and genome function. This is thought to be reflective of its role as a cellular mechanotransducer. Recent evidence has highlighted the importance of cytoskeletal organization in defining how nuclear morphology regulates chromatin dynamics. However, the mechanisms underlying cytoskeletal control of chromatin remodeling are not well understood. We demonstrate here the differential influence of perinuclear actin- and microtubule-driven assemblies on nuclear architecture using pharmacological inhibitors and targeted RNA interference knockdown of cytoskeleton components in Drosophila cells. We find evidence that the loss of perinuclear actin assembly results in basolateral enhancement of microtubule organization and this is reflected functionally by enhanced nuclear dynamics. Cytoskeleton reorganization leads to nuclear lamina deformation that influences heterochromatin localization and core histone protein mobility. We also show that modulations in actin-microtubule assembly result in differential gene expression patterns. Taken together, we suggest that perinuclear actin and basolateral microtubule organization exerts mechanical control on nuclear morphology and chromatin dynamics.
Collapse
Affiliation(s)
- Nisha M Ramdas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560 065, India
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Road 119077, Singapore.
| |
Collapse
|
11
|
Gupta GD, Dey G, MG S, Ramalingam B, Shameer K, Thottacherry JJ, Kalappurakkal JM, Howes MT, Chandran R, Das A, Menon S, Parton RG, Sowdhamini R, Thattai M, Mayor S. Population distribution analyses reveal a hierarchy of molecular players underlying parallel endocytic pathways. PLoS One 2014; 9:e100554. [PMID: 24971745 PMCID: PMC4074053 DOI: 10.1371/journal.pone.0100554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 05/28/2014] [Indexed: 12/11/2022] Open
Abstract
Single-cell-resolved measurements reveal heterogeneous distributions of clathrin-dependent (CD) and -independent (CLIC/GEEC: CG) endocytic activity in Drosophila cell populations. dsRNA-mediated knockdown of core versus peripheral endocytic machinery induces strong changes in the mean, or subtle changes in the shapes of these distributions, respectively. By quantifying these subtle shape changes for 27 single-cell features which report on endocytic activity and cell morphology, we organize 1072 Drosophila genes into a tree-like hierarchy. We find that tree nodes contain gene sets enriched in functional classes and protein complexes, providing a portrait of core and peripheral control of CD and CG endocytosis. For 470 genes we obtain additional features from separate assays and classify them into early- or late-acting genes of the endocytic pathways. Detailed analyses of specific genes at intermediate levels of the tree suggest that Vacuolar ATPase and lysosomal genes involved in vacuolar biogenesis play an evolutionarily conserved role in CG endocytosis.
Collapse
Affiliation(s)
- Gagan D. Gupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Gautam Dey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Swetha MG
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Balaji Ramalingam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Joseph Jose Thottacherry
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Mark T. Howes
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Ruma Chandran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Anupam Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Sindhu Menon
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - R. Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Mukund Thattai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS/GKVK Campus, Bangalore, India
| |
Collapse
|