1
|
Feng P, Hu X, Zhou S, Liu X, Zeng L, Liu Y. Golgi protein 73: the driver of inflammation in the immune and tumor microenvironment. Front Immunol 2025; 15:1508034. [PMID: 39845976 PMCID: PMC11750648 DOI: 10.3389/fimmu.2024.1508034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment. GP73 can modulate intracellular signaling pathways to influence cytokine and chemokine networks, resulting in inflammation caused by viral and bacterial infection or immune diseases, and leading tumor microenvironment deteriorated. Additionally, extracellular GP73 can also regulate signaling pathways of target cells by binding to their cell-surface receptors or entering the acceptor cells, thereby facilitating inflammation or promoting tumor development. In this review, we aim to summarize the findings, providing insights for future investigations on GP73 and its potential as a therapeutic target in ameliorating chronic inflammation in the immune and tumor microenvironment.
Collapse
Affiliation(s)
- Pingping Feng
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xianyong Liu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Yiming Liu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Bai W, Li B, Wu P, Li X, Huang X, Shi N, Yang C, Hu F, Xie X. The first structure of human Golm1 coiled coil domain reveals an unexpected tetramer and highlights its structural diversity. Int J Biol Macromol 2024; 275:133624. [PMID: 38964685 DOI: 10.1016/j.ijbiomac.2024.133624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Golgi membrane protein 1 (Golm1), a transmembrane protein with diverse subcellular localizations, has garnered significant attention in recent years due to its strong association with the development and progression of liver diseases and numerous cancers. Interestingly, although Golm1 is a membrane protein, the C-terminal of Golm1, which contains a coiled coil domain and a flexible acid region, can also be detected in the plasma of patients with various liver diseases. Notably, the coiled coil domain of serum Golm1 is postulated to play a pivotal role in physiological and pathological functions. However, little is currently known about the structure of this coiled coil domain and the full-length protein, which may limit our understanding of Golm1. Therefore, this study aims to address this gap in knowledge and reports the first crystal structure of the coiled coil domain of Golm1 at a resolution of 2.28 Å. Meanwhile, we have also confirmed that the Golm1 coiled coil domain in solution can form tetramer. Our results reveal that Golm1 can form a novel tetrameric structure that differs from the previous reported dimeric structure Golm1 could assemble, which may provide novel insights into the diversity of physiological functions and pathological roles.
Collapse
Affiliation(s)
- Wenfeng Bai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Bowen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Pei Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinzhu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaochen Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Congcong Yang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Department of Etiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350002, China.
| | - Xi Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
3
|
Frans MT, Kuipers EM, Bianchi F, van den Bogaart G. Unveiling the impact of GOLM1/GP73 on cytokine production in cancer and infectious disease. Immunol Cell Biol 2023; 101:727-734. [PMID: 37332154 DOI: 10.1111/imcb.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
The Golgi membrane protein GOLM1/GP73/GOLPH2 has been found to impact cytokine production in both infectious disease and cancer. In viral infections, GOLM1 levels are increased, and this lowers the production of type I interferons and other inflammatory cytokines. However, elevated GOLM1 expression levels due to mutations are linked to a higher production of interleukin (IL)-6 during Candida infections, potentially explaining an increased susceptibility to candidemia in individuals carrying these mutations. In cancer, the protease Furin produces a soluble form of GOLM1 that has oncogenic properties by promoting the production of the chemokine CCL2 and suppressing the production of inflammatory cytokines such as IL-12 and interferon gamma. This review will focus on the role of GOLM1 in cytokine production, highlighting how it can both promote and inhibit cytokine production. It is crucial to understand this in order to effectively target GOLM1 for therapeutic purposes in diseases associated with abnormal cytokine production, including cancer and infectious disease.
Collapse
Affiliation(s)
- Myrthe T Frans
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ella M Kuipers
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Liu L, Huang Y, Fu Y, Rao J, Zeng F, Ji M, Xu X, Zhu J, Du W, Liu Z. Hepatitis B virus promotes hepatocellular carcinoma development by activating GP73 to repress the innate immune response. Infect Agent Cancer 2022; 17:52. [PMID: 36195933 PMCID: PMC9533540 DOI: 10.1186/s13027-022-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Hepatitis B virus (HBV) causes acute and chronic infection in the clinic. Hepatocellular carcinoma (HCC) is closely linked to HBV infection. Serum Golgi protein 73 (GP73) increases during HBV infection. However, the role of GP73 during HBV infection and the occurrence of HBV-related HCC is still poorly understood. Methods The underlying role of HBV-induced GP73 in regulating HCC development was investigated in this study. GP73 expression in HBV-related clinical HCC tissues and in HBV-infected hepatoma cells and primary human hepatocytes was evaluated by immunohistochemistry, ELISAs, Western blotting and quantitative real-time PCR (qRT-PCR) analysis. Tumorigenicity of GP73 overexpressed cells was detected by flow cytometry, qRT-PCR, xenograft nude mouse analyses and sphere formation assays. The effects of GP73 and HBV infection on host innate immune responses in hepatocytes were further investigated by Western blotting and qRT-PCR analysis. Results Initially, we confirmed that HBV-positive HCC tissues had significantly higher expression of GP73. Ectopic expression of the HBV gene could induce GP73 expression in primary human hepatocytes and hepatoma cells in vitro. In addition, we discovered that GP73 promotes HCC in both normal liver cells and hepatoma cells. We also found that ectopic expression of HBV genes increases GP73 expression, suppressing the host's innate immune responses in hepatocytes. Conclusions Our results demonstrate that HBV facilitates HCC development by activating GP73 to repress the host's innate immune response. This study adds to our understanding of the pathogenesis of HBV infection-induced HCC. The findings also provide preclinical support for GP73 as a potential HCC prevention or treatment target. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00462-y.
Collapse
Affiliation(s)
- Long Liu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanping Huang
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanan Fu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Jingjing Rao
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Feng Zeng
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Manshan Ji
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiang Xu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jianyong Zhu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Weixing Du
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Zhixin Liu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China. .,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China. .,Institution of Virology, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
Liu MY, Huang L, Wu JF, Zhang HB, Ai WB, Zhang RT. Possible roles of Golgi protein-73 in liver diseases. Ann Hepatol 2022; 27:100720. [PMID: 35577277 DOI: 10.1016/j.aohep.2022.100720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Golgi protein 73 (also known as GP73 or GOLPH2) is a transmembrane glycoprotein present in the Golgi apparatus. In diseased states, GP73 is expressed by hepatocytes rather than by bile duct epithelial cells. Many studies have reported that serum GP73 (sGP73) is a marker for hepatocellular carcinoma (HCC). For HCC diagnosis, the sensitivities of sGP73 were higher than that of other markers but the specificities were lower. Considering that the concentration of GP73 is consistent with the stage of liver fibrosis and cirrhosis, some studies have implied that GP73 may be a marker for liver fibrosis and cirrhosis. Increased sGP73 levels may result from hepatic inflammatory activity. During liver inflammation, GP73 facilitates liver tissue regeneration. By summarizing the studies on GP73 in liver diseases, we wish to focus on the mechanism of GP73 in diseases.
Collapse
Affiliation(s)
- Meng-Yuan Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lu Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Hong-Bing Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang 443100, Hubei, China.
| | - Rui-Tao Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Medical College, China Three Gorges University; Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| |
Collapse
|
6
|
Liu Y, Hu X, Liu S, Zhou S, Chen Z, Jin H. Golgi Phosphoprotein 73: The Driver of Epithelial-Mesenchymal Transition in Cancer. Front Oncol 2021; 11:783860. [PMID: 34950590 PMCID: PMC8688837 DOI: 10.3389/fonc.2021.783860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated protein residing on cis-Golgi cisternae and highly expressed in various types of cancer tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer patients, it has been regarded as a novel serum biomarker for the diagnosis of different cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of GP73 in cancer development are still poorly understood. In recent years, it has been discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have overviewed the latest findings of the functional roles of GP73 in elevating cancer progression, especially in facilitating EMT and cancer metastasis through modulating expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved research fields of GP73 have been lightened, which might be helpful to elucidate the regulatory mechanisms of GP73 on EMT and provide potential approaches in therapeutics against cancer metastasis.
Collapse
Affiliation(s)
- Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiyao Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Liu L, Zhu J, Yang J, Li X, Yuan J, Wu J, Liu Z. GP73 facilitates hepatitis B virus replication by repressing the NF-κB signaling pathway. J Med Virol 2020; 92:3327-3335. [PMID: 32077512 DOI: 10.1002/jmv.25718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide, and 600 000 deaths are caused by HBV-related hepatic failure. Golgi protein 73 (GP73) is a serum biomarker for liver diseases, including chronic hepatitis B. Here, we determine the effect of HBV infection on GP73 production and characterized the role of GP73 in HBV replication. Initially, we show that GP73 is highly produced in the sera of HBV-positive patients with chronic liver diseases and in HBV-stimulated leukocytes. In addition, HBV stimulation promotes GP73 production in peripheral blood mononuclear cells isolated from healthy donors and in macrophages derived from human acute monocytic leukemia cells (THP-1). Notably, the hepatitis B surface antigen (HBsAg), but not HBV replication, is required for the activation of GP73 expression. Moreover, in HepG2 cells and Huh7 cells, GP73 facilitates HBV replication and represses nuclear factor kappa B p50 expression, which in turn represses HBV replication and GP73 expression. Finally, we demonstrate that GP73 facilitates HBV replication by repressing the innate immune response and the nuclear factor kappa B signaling pathway. Taken together, we revealed a distinct positive feedback mechanism between HBV replication and GP73 production and suggest that GP73 acts as a potential antiviral target for HBV infection.
Collapse
Affiliation(s)
- Long Liu
- School of Basic Medical Sciences, Department of Respiratory, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jianyong Zhu
- School of Basic Medical Sciences, Department of Respiratory, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- School of Basic Medical Sciences, Department of Respiratory, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohua Li
- Department of Emergency, Dongfeng Maojian Hospital, Sinopharm Group Corporation, Shiyan, China
| | - Jie Yuan
- School of Basic Medical Sciences, Department of Respiratory, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhixin Liu
- School of Basic Medical Sciences, Department of Respiratory, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Gatselis NK, Tornai T, Shums Z, Zachou K, Saitis A, Gabeta S, Albesa R, Norman GL, Papp M, Dalekos GN. Golgi protein-73: A biomarker for assessing cirrhosis and prognosis of liver disease patients. World J Gastroenterol 2020; 26:5130-5145. [PMID: 32982114 PMCID: PMC7495033 DOI: 10.3748/wjg.v26.i34.5130] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reliable biomarkers of cirrhosis, hepatocellular carcinoma (HCC), or progression of chronic liver diseases are missing. In this context, Golgi protein-73 (GP73) also called Golgi phosphoprotein-2, was originally defined as a resident Golgi type II transmembrane protein expressed in epithelial cells. As a result, GP73 expression was found primarily in biliary epithelial cells, with only slight detection in hepatocytes. However, in patients with acute or chronic liver diseases and especially in HCC, the expression of GP73 is significantly up-regulated in hepatocytes. So far, few studies have assessed GP73 as a diagnostic or prognostic marker of liver fibrosis and disease progression. AIM To assess serum GP73 efficacy as a diagnostic marker of cirrhosis and/or HCC or as predictor of liver disease progression. METHODS GP73 serum levels were retrospectively determined by a novel GP73 ELISA (QUANTA Lite® GP73, Inova Diagnostics, Inc., Research Use Only) in a large cohort of 632 consecutive patients with chronic viral and non-viral liver diseases collected from two tertiary Academic centers in Larissa, Greece (n = 366) and Debrecen, Hungary (n = 266). Aspartate aminotransferase (AST)/Platelets (PLT) ratio index (APRI) was also calculated at the relevant time points in all patients. Two hundred and three patients had chronic hepatitis B, 183 chronic hepatitis C, 198 alcoholic liver disease, 28 autoimmune cholestatic liver diseases, 15 autoimmune hepatitis, and 5 with other liver-related disorders. The duration of follow-up was 50 (57) mo [median (interquartile range)]. The development of cirrhosis, liver decompensation and/or HCC during follow-up were assessed according to internationally accepted guidelines. In particular, the surveillance for the development of HCC was performed regularly with ultrasound imaging and alpha-fetoprotein (AFP) determination every 6 mo in cirrhotic and every 12 mo in non-cirrhotic patients. RESULTS Increased serum levels of GP73 (> 20 units) were detected at initial evaluation in 277 out of 632 patients (43.8%). GP73-seropositivity correlated at baseline with the presence of cirrhosis (96.4% vs 51.5%, P < 0.001), decompensation of cirrhosis (60.3% vs 35.5%, P < 0.001), presence of HCC (18.4% vs 7.9%, P < 0.001) and advanced HCC stage (52.9% vs 14.8%, P = 0.002). GP73 had higher diagnostic accuracy for the presence of cirrhosis compared to APRI score [Area under the curve (AUC) (95%CI): 0.909 (0.885-0.934) vs 0.849 (0.813-0.886), P = 0.003]. Combination of GP73 with APRI improved further the accuracy (AUC: 0.925) compared to GP73 (AUC: 0.909, P = 0.005) or APRI alone (AUC: 0.849, P < 0.001). GP73 levels were significantly higher in HCC patients compared to non-HCC [22.5 (29.2) vs 16 (20.3) units, P < 0.001) and positively associated with BCLC stage [stage 0: 13.9 (10.8); stage A: 17.1 (16.8); stage B: 19.6 (22.3); stage C: 32.2 (30.8); stage D: 45.3 (86.6) units, P < 0.001] and tumor dimensions [very early: 13.9 (10.8); intermediate: 19.6 (18.4); advanced: 29.1 (33.6) units, P = 0.004]. However, the discriminative ability for HCC diagnosis was relatively low [AUC (95%CI): 0.623 (0.570-0.675)]. Kaplan-Meier analysis showed that the detection of GP73 in patients with compensated cirrhosis at baseline, was prognostic of higher rates of decompensation (P = 0.036), HCC development (P = 0.08), and liver-related deaths (P < 0.001) during follow-up. CONCLUSION GP73 alone appears efficient for detecting cirrhosis and superior to APRI determination. In combination with APRI, its diagnostic performance can be further improved. Most importantly, the simple GP73 measurement proved promising for predicting a worse outcome of patients with both viral and non-viral chronic liver diseases.
Collapse
Affiliation(s)
- Nikolaos K Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| | - Tamás Tornai
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Faculty of Medicine, Debrecen H-4032, Hungary
| | - Zakera Shums
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| | - Asterios Saitis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
| | - Roger Albesa
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Gary L Norman
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Mária Papp
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Faculty of Medicine, Debrecen H-4032, Hungary
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| |
Collapse
|
9
|
Qian X, Zheng S, Wang L, Yao M, Guan G, Wen X, Zhang L, Xu Q, Chen X, Zhao J, Duan Z, Lu F. Exploring the Diagnostic Potential of Serum Golgi Protein 73 for Hepatic Necroinflammation and Fibrosis in Chronic HCV Infection with Different Stages of Liver Injuries. DISEASE MARKERS 2019; 2019:3862024. [PMID: 31636735 PMCID: PMC6766121 DOI: 10.1155/2019/3862024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM Serum Golgi protein 73 (GP73) is a promising alternative biomarker of chronic liver diseases, but most data are from patients with HBV infection rather than HCV. MATERIALS AND METHODS Two independent cohorts of chronic hepatitis C (CHC) patients from the 5th Medical Centre of the Chinese PLA General Hospital (n = 174) and Beijing Youan Hospital (n = 120) with different histories of HCV infection were enrolled. The correlations between serum GP73 and other biochemical indices, as well as its correlations with different stages of liver disease progression, were investigated. The receiver operating characteristic (ROC) curve was employed to evaluate the diagnostic potential of serum GP73 for liver necroinflammation and fibrosis, and comparisons of the diagnostic efficiency with traditional indices of hepatic liver injuries were further investigated. RESULTS Levels of serum GP73 were found significantly elevated in patients with moderate to severe inflammatory grade (G ≥ 2) and/or with advanced fibrotic stages (F ≥ 3) in both cohorts (P < 0.05, respectively), as compared to those with a normal or mild liver lesion. Further ROC analysis demonstrated that serum GP73 was comparable to serum ALT and AST in diagnosing the liver necroinflammation grade at G ≥ 2, but its diagnostic values for advanced fibrosis (F ≥ 3) and cirrhosis (F = 4) were limited when compared to APRI and FIB-4, and FIB-4 exhibited the best performance. Notably, an obvious elevation of serum GP73 was observed after patients received PEG-IFN and ribavirin treatment. CONCLUSIONS Serum GP73 is an important biomarker in evaluating and monitoring the disease progression including liver necroinflammation and fibrosis in patients with chronic HCV infection, but the value is limited for diagnosing advanced fibrosis and cirrhosis in comparison with APRI and FIB-4.
Collapse
Affiliation(s)
- Xiangjun Qian
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Sujun Zheng
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Leijie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mingjie Yao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiajie Wen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ling Zhang
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China
| | - Qiang Xu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, the 5th Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
10
|
Xia Y, Zhang Y, Shen M, Xu H, Li Z, He N. Golgi protein 73 and its diagnostic value in liver diseases. Cell Prolif 2019; 52:e12538. [PMID: 30341783 PMCID: PMC6496820 DOI: 10.1111/cpr.12538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Golgi protein 73 (GP73, also referred to as Golph 2) with 400 amino acids is a 73 kDa transmembrane glycoprotein typically found in the cis-Golg complex. It is primarily expressed in epithelial cells, which has been found upregulated in hepatocytes in patients suffering from both viral and non-viral liver diseases. GP73 has drawn increasing attention for its potential application in the diagnosis of liver diseases such as hepatitis, liver cirrhosis and liver cancer. Herein, we reviewed the discovery history of GP73 and summarized studies by many groups around the world, aiming at understanding its structure, expression, function, detection methods and the relationship between GP73 and liver diseases in various settings.
Collapse
Affiliation(s)
- Yanyan Xia
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanying Zhang
- Department of Molecular BiologyJiangsu Cancer HospitalNanjingChina
| | - Mengjiao Shen
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongpan Xu
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhiyang Li
- Center of Laboratory MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Nongyue He
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| |
Collapse
|
11
|
Teerlink CC, Huff C, Stevens J, Yu Y, Holmen SL, Silvis MR, Trombetti K, Zhao H, Grossman D, Farnham JM, Wen J, Facelli JC, Thomas A, Babst M, Florell SR, Meyer L, Zone JJ, Leachman S, Cannon-Albright LA. A Nonsynonymous Variant in the GOLM1 Gene in Cutaneous Malignant Melanoma. J Natl Cancer Inst 2018; 110:1380-1385. [PMID: 29659923 PMCID: PMC6292789 DOI: 10.1093/jnci/djy058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background Statistically significant linkage of melanoma to chromosome 9q21 was previously reported in a Danish pedigree resource and independently confirmed in Utah high-risk pedigrees, indicating strong evidence that this region contains a melanoma predisposition gene. Methods Whole-exome sequencing of pairs of related melanoma case subjects from two pedigrees with evidence of 9q21 linkage was performed to identify the responsible predisposition gene. Candidate variants were tested for association with melanoma in an independent set of 454 unrelated familial melanoma case subjects and 396 unrelated cancer-free control subjects from Utah, and 1534 melanoma case subjects and 1146 noncancer control subjects from Texas (MD Anderson) via a two-sided Fisher exact test. Results A rare nonsynonymous variant in Golgi Membrane Protein 1 (GOLM1), rs149739829, shared in two hypothesized predisposition carriers in one linked pedigree was observed. Segregation of this variant in additional affected relatives of the index carriers was confirmed. A statistically significant excess of carriers of the variant was observed among Utah case subjects and control subjects (odds ratio [OR] = 9.81, 95% confidence interval [CI] = 8.35 to 11.26, P < .001) and statistically significantly confirmed in Texas case subjects and control subjects (OR = 2.45, 95% CI = 1.65 to 3.25, P = .02). Conclusion These findings support GOLM1 as a candidate melanoma predisposition gene.
Collapse
Affiliation(s)
- Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kirby Trombetti
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Hua Zhao
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - James M Farnham
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jingran Wen
- Utah Department of Health, Salt Lake City, UT
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT
| | - Alun Thomas
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Markus Babst
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Scott R Florell
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - Laurence Meyer
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - John J Zone
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - Sancy Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
12
|
Liu Y, Zhang X, Sun T, Jiang J, Li Y, Chen M, Wei Z, Jiang W, Zhou L. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility. Oncotarget 2017; 7:21404-15. [PMID: 26870893 PMCID: PMC5008294 DOI: 10.18632/oncotarget.7271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/24/2016] [Indexed: 12/31/2022] Open
Abstract
Golgi phosphoprotein 2 (GP73) is highly expressed in hepatocellular carcinoma (HCC) cells, where it serves as a biomarker and indicator of disease progression. We used MTS assays, anchorage-independent cell colony formation assays and a xenograft tumor model to show that GP73-specific siRNAs inhibit HCC proliferation in HepG2, SMMC-7721, and Huh7 cell lines and in vivo. Following GP73 silencing, levels of p-Rb, a factor related to metastasis, were reduced, but cell cycle progression was unaffected. Our results suggest that GP73 silencing may not directly suppress proliferation, but may instead inhibit cell motility. Results from proliferation assays suggest GP73 reduces expression of epithelial mesenchymal transition (EMT)-related factors and promotes cell motility, while transwell migration and invasion assays indicated a possible role in metastasis. Immunofluorescence co-localization microscopy and immunoblotting showed that GP73 decreases expression of N-cadherin and E-cadherin, two key factors in EMT, which may in turn decrease intracellular adhesive forces and promote cell motility. This study confirmed that GP73 expression leads to increased expression of EMT-related proteins and that GP73 silencing reduces HCC cell migration in vitro. These findings suggest that GP73 silencing through siRNA delivery may provide a novel low-toxicity therapy for the inhibition of tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Yiming Liu
- Medical Biotechnology Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaodi Zhang
- Medical Biotechnology Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ting Sun
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Junchang Jiang
- Department of Pathology, RunRun-Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ying Li
- Clinical Laboratory, Children's Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mingliang Chen
- Medical Biotechnology Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhen Wei
- Laboratory Animal Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiqin Jiang
- Cancer Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Linfu Zhou
- Medical Biotechnology Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
13
|
Current Status and Future Prospects of Biomarkers in the Diagnosis of Hepatocellular Carcinoma. Int J Biol Markers 2017; 32:e361-e369. [PMID: 28967065 DOI: 10.5301/ijbm.5000299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has one of the highest death rates of any cancer in the world, and its incidence is increasing worldwide. Early-stage diagnosis of HCC is thus crucial for medical treatment. Detection of tumor biomarkers is one of the main methods for the early diagnosis of HCC. At present, α-fetoprotein (AFP) is the most practical serum biomarker for HCC diagnosis. However, the diagnostic accuracy of HCC with serum AFP exhibits both sensitivity and specificity far below satisfaction, especially with small sizes of HCC. As a result, the discovery of new biomarkers and/or their combination to enhance both the sensitivity and specificity for laboratory diagnosis of HCC is a crucial goal. With the development of new technology and advances in research, a number of new and specific biomarkers of HCC have been discovered. These biomarkers and their applications for the diagnosis, treatment monitoring and prognosis prediction of HCC, are reviewed in this article.
Collapse
|
14
|
Hu L, Li J, Cai H, Yao W, Xiao J, Li YP, Qiu X, Xia H, Peng T. Avasimibe: A novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res 2017; 148:5-14. [PMID: 29074218 DOI: 10.1016/j.antiviral.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals (DAAs), which target hepatitis C virus (HCV) proteins, have exhibited impressive efficacy in the management of chronic hepatitis C. However, the concerns regarding high costs, drug resistance mutations and subsequent unexpected side effects still call for the development of host-targeting agents (HTAs) that target host factors involved in the viral life cycle and exhibit pan-genotypic antiviral activity. Given the close relationship between lipid metabolism and the HCV life cycle, we investigated the anti-HCV activity of a series of lipid-lowering drugs that have been approved by government administrations or proven safety in clinical trials. Our results showed that avasimibe, an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), exhibited marked pan-genotypic inhibitory activity and superior inhibition against HCV when combined with DAAs. Moreover, avasimibe significantly impaired the assembly of infectious HCV virions. Mechanistic studies demonstrated that avasimibe induced downregulation of microsomal triglyceride transfer protein expression, resulting in reduced apolipoprotein E and apolipoprotein B secretion. Therefore, the pan-genotypic antiviral activity and clinically proven safety endow avasimibe exceptional potential as a candidate for combination therapy with DAAs. In addition, the discovery of the antiviral properties of ACAT inhibitors also suggests that inhibiting the synthesis of cholesteryl esters might be an additional target for the therapeutic intervention for chronic HCV infection.
Collapse
Affiliation(s)
- Longbo Hu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinqian Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua Cai
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenxia Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
15
|
Zhang X, Zhu C, Wang T, Jiang H, Ren Y, Zhang Q, Wu K, Liu F, Liu Y, Wu J. GP73 represses host innate immune response to promote virus replication by facilitating MAVS and TRAF6 degradation. PLoS Pathog 2017; 13:e1006321. [PMID: 28394926 PMCID: PMC5398727 DOI: 10.1371/journal.ppat.1006321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 04/20/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) and Golgi protein 73 (GP73) is a serum biomarker for liver diseases and HCC. However, the mechanism underlying GP73 regulates HCV infection is largely unknown. Here, we revealed that GP73 acts as a novel negative regulator of host innate immunity to facilitate HCV infection. GP73 expression is activated and correlated with interferon-beta (IFN-β) production during HCV infection in patients’ serum, primary human hepatocytes (PHHs) and human hepatoma cells through mitochondrial antiviral signaling protein (MAVS), TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) pathway. Detailed studies revealed that HCV infection activates MAVS that in turn recruits TRAF6 via TRAF-interacting-motifs (TIMs), and TRAF6 subsequently directly recruits GP73 to MAVS via coiled-coil domain. After binding with MAVS and TRAF6, GP73 promotes MAVS and TRAF6 degradation through proteasome-dependent pathway. Moreover, GP73 attenuates IFN-β promoter, IFN-stimulated response element (ISRE) and nuclear factor κB (NF-κB) promoter and down-regulates IFN-β, IFN-λ1, interleukin-6 (IL-6) and IFN-stimulated gene 56 (ISG56), leading to the repression of host innate immunity. Finally, knock-down of GP73 down-regulates HCV infection and replication in Huh7-MAVSR cells and primary human hepatocytes (PHHs), but such repression is rescued by GP73m4 (a mutant GP73 resists to GP73-shRNA#4) in Huh7-MAVSR cells, suggesting that GP73 facilitates HCV infection. Taken together, we demonstrated that GP73 acts as a negative regulator of innate immunity to facilitate HCV infection by interacting with MAVS/TRAF6 and promoting MAVS/TRAF6 degradation. This study provides new insights into the mechanism of HCV infection and pathogenesis, and suggests that GP73 is a new potential antiviral target in the prevention and treatment of HCV associated diseases. Golgi protein 73 (GP73) is a serum biomarker for liver diseases and hepatocellular carcinoma (HCC). In this study, the authors reveal that GP73 acts as a novel negative regulator of host innate immunity to facilitate hepatitis C virus (HCV) infection. GP73 expression is activated and correlated with IFN-β production during HCV infection in patients’ serum, primary human hepatocytes (PHHs) and human hepatoma cells through mitochondrial antiviral signaling protein (MAVS), TNF receptor-associated factor 6 (TRAF6) and MEK/ERK pathway. They further demonstrate that during viral infection, MAVS recruits TRAF6 that subsequently directly binds with GP73. After binding with MAVS and TRAF6, GP73 promotes MAVS and TRAF6 degradation. Moreover, GP73 attenuates IFN-β promoter, IFN-stimulated response element (ISRE) and NF-κB promoter and down-regulates IFN-β, IFN-λ1, interleukin-6 (IL-6) and IFN-stimulated gene 56 (ISG56), leading to the repression of host innate immunity and the facilitation of virus infection. These results reveal a novel mechanism by which GP73 acts as a novel negative regulator of host innate immunity to facilitate virus infection and also provide new insights into the therapeutic design of anti-HCV drugs.
Collapse
Affiliation(s)
- Xuewu Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Chengliang Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Tianci Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Hui Jiang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Yahui Ren
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Qi Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
- * E-mail: (JW); (YL); (FL)
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
- * E-mail: (JW); (YL); (FL)
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, P. R. China
- * E-mail: (JW); (YL); (FL)
| |
Collapse
|
16
|
Zhang X, Wang T, Dai X, Zhang Y, Jiang H, Zhang Q, Liu F, Wu K, Liu Y, Zhou H, Wu J. Golgi protein 73 facilitates the interaction of hepatitis C virus NS5A with apolipoprotein E to promote viral particle secretion. Biochem Biophys Res Commun 2016; 479:683-689. [PMID: 27697522 DOI: 10.1016/j.bbrc.2016.09.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection is one of the leading causes of chronic liver diseases and hepatocellular carcinoma (HCC). Golgi protein 73 (GP73), a resident Golgi membrane protein, is a novel serum biomarker for the diagnosis of liver diseases and HCC. Although previous studies have demonstrated that HCV upregulates GP73 expression and GP73 promotes HCV secretion through its interaction with apolipoprotein E (ApoE), the exact mechanism underlying GP73 regulates HCV secretion remains unclear. In this study, we demonstrated that GP73 mediates the interaction of ApoE with HCV NS5A protein to promote HCV secretion. We revealed that GP73 is colocalized with HCV replication complex in infected-Huh7.5.1 cells. Further studies demonstrated that GP73 interacted with both NS5A and ApoE proteins. Furthermore, knockdown of GP73 significantly reduced the binding of NS5A with ApoE, and the production of virus particles in culture supernatant. Taken together, our studies revealed that GP73 promotes HCV secretion by directly mediating the interaction of ApoE with HCV replication complex through binding with HCV NS5A.
Collapse
Affiliation(s)
- Xuewu Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tianci Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuechen Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yecheng Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hong Zhou
- Department of Clinical Laboratory, Wuhan Medical Treatment Center, Wuhan 430023, China.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Cell-death-inducing DFFA-like Effector B Contributes to the Assembly of Hepatitis C Virus (HCV) Particles and Interacts with HCV NS5A. Sci Rep 2016; 6:27778. [PMID: 27282740 PMCID: PMC4901263 DOI: 10.1038/srep27778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) uses components of the very-low-density lipoprotein (VLDL) pathway for assembly/release. We previously reported that hepatocyte nuclear factor 4α (HNF4α) participates in HCV assembly/release through downstream factors those participate in VLDL assembly/secretion. Cell-death-inducing DFFA-like effector B (CIDEB) is an important regulator of the VLDL pathway. CIDEB is required for entry of HCV particles from cell culture (HCVcc), but the effects of CIDEB on the post-entry steps of the HCV lifecycle are unclear. In the present study, we determined that CIDEB is required for HCV assembly in addition to HCVcc entry. Furthermore, CIDEB interacts with the HCV NS5A protein, and the N terminus of CIDEB and the domain I of NS5A are involved in this interaction. Moreover, CIDEB silencing impairs the association of apolipoprotein E (ApoE) with HCV particles. Interestingly, CIDEB is also required for the post-entry stages of the dengue virus (DENV) life cycle. Collectively, these results indicate that CIDEB is a new host factor that is involved in HCV assembly, presumably by interacting with viral protein, providing new insight into the exploitation of the VLDL regulator CIDEB by HCV.
Collapse
|
18
|
Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 2015; 6:13564-78. [PMID: 25980438 PMCID: PMC4537034 DOI: 10.18632/oncotarget.3769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tao Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Panpan Huang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongfang Zhao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rong Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Buyun Ma
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kan Chen
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fang Huang
- School of Public Health, Zhejiang University, Hangzhou 310058, PR China
| | - Xiumei Zhou
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Caixia Cui
- Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, PR China
| | - Xinyuan Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| |
Collapse
|
19
|
Wang F, Long Q, Gong Y, Hu L, Zhang H, Oettgen P, Peng T. Epithelium-Specific ETS (ESE)-1 upregulated GP73 expression in hepatocellular carcinoma cells. Cell Biosci 2014; 4:76. [PMID: 25530841 PMCID: PMC4271417 DOI: 10.1186/2045-3701-4-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Background Golgi protein-73 (GP73) is a Golgi transmembrane glycoprotein elevated in numerous liver diseases. Clinically, GP73 is strongly elevated in the serum of HCC patients and is thus regarded as a novel potential biomarker for HCC. However, the mechanism leading to GP73 dysregulation in liver diseases remains unknown. Results This study determined that epithelium-specific ETS (ESE)-1, an epithelium-specific transcription factor, and GP73 expressions were induced by IL-1β stimulation in vitro, and both were triggered during liver inflammation in vivo. In hepatocellular carcinoma cells, the overexpression of ESE-1 induced GP73 expression, whereas its knock-down did the opposite. Mechanistically, ESE-1 activated GP73 expression by directly binding to its promoter. Conclusions Our findings supported a novel paradigm for ESE-1 as a transcriptional mediator of GP73. This study provided a possible mechanism for GP73 upregulation in liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/2045-3701-4-76) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Qi Long
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yu Gong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ; Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Hong Zhang
- Guangzhou Overseas Chinese Hospital, Guangzhou, 510630 China
| | - Peter Oettgen
- Division of Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ; Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182 China
| |
Collapse
|