1
|
Xu X, Gao Z, Wu Y, Yin H, Ren Q, Zhang J, Liu Y, Yang S, Bayasgalan C, Tserendorj A, Yang X, Chen Z. Discovery and vertical transmission analysis of Dabieshan Tick Virus in Haemaphysalis longicornis ticks from Chengde, China. Front Microbiol 2024; 15:1365356. [PMID: 38468853 PMCID: PMC10925692 DOI: 10.3389/fmicb.2024.1365356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Ticks are important blood-sucking ectoparasites that can transmit various pathogens, posing significant threats to the wellbeing of humans and livestock. Dabieshan tick virus (DBTV) was initially discovered in 2015 in Haemaphysalis longicornis ticks from the Dabieshan mountain region in Hubei Province, China. In recent years, DBTV has been discovered in various regions of China, including Shandong, Zhejiang, Liaoning, Hubei, Yunnan, and Guizhou Provinces. However, the researches on tick-borne transmission of DBTV are scarce. Methods This study utilized the small RNA sequencing (sRNA-seq) method to identify tick-associated viruses in ticks collected from Chengde in Hebei Province and Yongcheng in Henan Province, leading to the discovery of a new DBTV strain in Hebei. The complete coding genome of DBTV Hebei strain was obtained through RNA-seq and Sanger sequencing. Furthermore, the transmission experiment of DBTV in H. longicornis was examined in laboratory for the first time. Results DBTV was detected in newly molted adult H. longicornis ticks collected in Chengde, Hebei Province. Additionally, DBTV was also detected in both unfed nymphs and engorged females of H. longicornis collected from Chengde, with a positive rate of 20% and 56.25%, respectively. The complete coding genome of DBTV (OP682840 and OP716696) were obtained, and phylogenetic analysis revealed that the DBTV Hebei strain clustered with previously reported DBTV strains. Furthermore, this virus was observed in engorged females, eggs, and larvae of the subsequent generation. Discussion It is necessary to expand the scope of DBTV investigation, particularly in northern China. This study demonstrated that DBTV can be transmitted from engorged females to larvae of the next generation. Moreover, the detection of DBTV in unfed nymphs and adults (which moulted from engorged nymphs) collected from the filed of Chengde suggests that H. longicornis serves as a potential transmission host and reservoir for DBTV through transstadial and transovarial transmission. However, there remains a lack of research on the isolation and pathogenicity of DBTV, highlighting the need for further studies to mitigate potential harm to the health of animals and humans.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhihua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Youhong Wu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Prevention and Control, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qiaoyun Ren
- State Key Laboratory of Animal Disease Prevention and Control, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yongsheng Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Shunli Yang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | | | - Ariunaa Tserendorj
- School of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Wild Hedgehogs and Their Parasitic Ticks Coinfected with Multiple Tick-Borne Pathogens in Jiangsu Province, Eastern China. Microbiol Spectr 2022; 10:e0213822. [PMID: 36000911 PMCID: PMC9602733 DOI: 10.1128/spectrum.02138-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The increasing awareness of emerging tickborne pathogens (TBPs) has inspired much research. In the present study, the coinfections of TBPs both in ticks and their wild hedgehog hosts in Jiangsu province, Eastern China were determined by metagenome next-generation sequencing and nested PCR. As a result, Rickettsia japonica (81.1%), novel Rickettsia sp. SFGR-1 (5.1%), Anaplasma bovis (12%), A. platys (6.3%), novel Ehrlichia spp. Ehr-1 (16%) and Ehr-2 (0.6%), E. ewingii-like strain (0.6%), Coxiella burnetii (10.9%), and a novel Coxiella-like endosymbiont (CLE) strain (61.1%) were detected in Haemaphysalis flava ticks. A. bovis (43.8%), Ehrlichia sp. Ehr-1 (83.3%), and C. burnetii (80%) were detected in Erinaceus amurensis hedgehogs. Coinfection rates with various TBPs were 71.5% and 83.3% in ticks and hedgehogs, respectively, both with double-pathogen/endosymbiont coinfection rates over 50%. We found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various TBPs as a reservoir host, including CLE identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information crucial for assessing the potential infection risks to humans, thus benefiting the development of strategies to prevent and control tick-borne diseases. IMPORTANCE In the present study, we found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various tickborne pathogens (TBPs) as a reservoir host, including Coxiella-like endosymbiont (CLE) identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information on TBPs harbored and transmitted by ticks and their hosts, for assessing the potential infection risks to humans, thus benefiting the developing strategies for tick-borne diseases prevention and control.
Collapse
|
3
|
Xu X, Bei J, Xuan Y, Chen J, Chen D, Barker SC, Kelava S, Zhang X, Gao S, Chen Z. Full-length genome sequence of segmented RNA virus from ticks was obtained using small RNA sequencing data. BMC Genomics 2020; 21:641. [PMID: 32938401 PMCID: PMC7493057 DOI: 10.1186/s12864-020-07060-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2014, a novel tick-borne virus of the Flaviviridae family was first reported in the Mogiana region of Brazil and named the Mogiana tick virus (MGTV). Thereafter, the Jingmen tick virus (JMTV), Kindia tick virus (KITV), and Guangxi tick virus (GXTV)-evolutionarily related to MGTV-were reported. RESULTS In the present study, we used small RNA sequencing (sRNA-seq) to detect viruses in ticks and discovered a new MGTV strain in Amblyomma testudinarium ticks collected in China's Yunnan Province in 2016. We obtained the full-length genome sequence of this MGTV strain Yunnan2016 (GenBank: MT080097, MT080098, MT080099 and MT080100) and recommended it for its inclusion in the NCBI RefSeq database for future studies on MGTV, JMTV, KITV and GXTV. Phylogenetic analysis showed that MGTV, JMTV, KITV and GXTV are monophyletic and belong to a MGTV group. Furthermore, this MGTV group of viruses may be phylogenetically related to geographical regions that were formerly part of the supercontinents Gondwana and Laurasia. CONCLUSIONS To the best of our knowledge, this is the first study in which 5' and 3' sRNAs were used to generate full-length genome sequences of, but not limited to, RNA viruses. We also demonstrated the feasibility of using the sRNA-seq based method for the detection of viruses in pooled two and even possible one small ticks. MGTV may preserve the characteristic of ancient RNA viruses, which can be used to study the origin and evolution of RNA viruses. In addition, MGTV can be used as novel species for studies in phylogeography.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Jinlong Bei
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yibo Xuan
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Jiayuan Chen
- College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, People's Republic of China
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, People's Republic of China
| | - Stephen C Barker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Samuel Kelava
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaoai Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, Tianjin, 300071, People's Republic of China.
| | - Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China.
| |
Collapse
|
4
|
Charles J, Tangudu CS, Hurt SL, Tumescheit C, Firth AE, Garcia-Rejon JE, Machain-Williams C, Blitvich BJ. Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. J Gen Virol 2018; 99:1729-1738. [PMID: 30412047 DOI: 10.1099/jgv.0.001165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A metagenomics approach was used to detect novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico. A total of 1359 mosquitoes of 7 species and 5 genera (Aedes, Anopheles, Culex, Mansonia and Psorophora) were sorted into 37 pools, homogenized and inoculated onto monolayers of Aedes albopictus (C6/36) cells. A second blind passage was performed and then total RNA was extracted and analysed by RNA-seq. Two novel viruses, designated Uxmal virus and Mayapan virus, were identified. Uxmal virus was isolated from three pools of Aedes (Ochlerotatus) taeniorhynchus and phylogenetic data indicate that it should be classified within the recently proposed taxon Negevirus. Mayapan virus was recovered from two pools of Psorophora ferox and is most closely related to unclassified Nodaviridae-like viruses. Two recognized viruses were also detected: Culex flavivirus (family Flaviviridae) and Houston virus (family Mesoniviridae), with one and two isolates being recovered, respectively. The in vitro host ranges of all four viruses were determined by assessing their replicative abilities in cell lines of avian, human, monkey, hamster, murine, lepidopteran and mosquito (Aedes, Anopheles and Culex) origin, revealing that all viruses possess vertebrate replication-incompetent phenotypes. In conclusion, we report the isolation of both novel and recognized RNA viruses from mosquitoes collected in Mexico, and add to the growing plethora of viruses discovered recently through the use of metagenomics.
Collapse
Affiliation(s)
- Jermilia Charles
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Chandra S Tangudu
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Stefanie L Hurt
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Andrew E Firth
- 2Department of Pathology, University of Cambridge, Cambridge, UK
| | - Julian E Garcia-Rejon
- 3Laboratorio de Arbovirologia, Centro de Investigaciones Regionales 'Dr Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Carlos Machain-Williams
- 3Laboratorio de Arbovirologia, Centro de Investigaciones Regionales 'Dr Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Bradley J Blitvich
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Zhang R, Huang Z, Yu G, Zhang Z. Characterization of microbiota diversity of field-collected Haemaphysalis longicornis (Acari: Ixodidae) with regard to sex and blood meals. J Basic Microbiol 2018; 59:215-223. [PMID: 30387176 DOI: 10.1002/jobm.201800372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
Haemaphysalis longicornis is a prominent tick species in China, and the major vector of an emerging tick-borne disease: severe fever with thrombocytopenia syndrome (SFTS). Microbiome diversity of ticks is influenced by several factors. In this study, we investigated microbiome diversity in field-collected female and male H. longicornis ticks and compared the microbial composition of fed and unfed ticks and of those feeding on different hosts using barcode sequencing of V3-V4 region of 16S RNA gene. Regardless of sex, host, and feeding status; the highest abundance among all samples was found for the genus Coxiella. The relative numbers of Coxiella sequences decreased with the length of the blood feeding, whereas the numbers of Staphylococcus and Corynebacterium increased gradually. The dominance of Coxiella across all samples indicates that it is an obligate symbiont of H. longicornis. Overall, higher microbiome richness was detected in male ticks than in female ticks. Fed ticks showed a more diverse microbe composition than unfed ticks, and ticks fed on goats exhibited the highest diversity. These findings of this study can serve as a basis for future studies of microbiota biology and interactions between the microbes and pathogens of H. longicornis.
Collapse
Affiliation(s)
- Ruiling Zhang
- Taishan Medical University, Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taian, P. R. China.,School of Basic Medical Sciences, Taishan Medical University, Taian, P. R. China
| | - Zhendong Huang
- Taishan Medical University, Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taian, P. R. China.,School of Basic Medical Sciences, Taishan Medical University, Taian, P. R. China
| | - Guangfu Yu
- Taishan Medical University, Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taian, P. R. China.,School of Basic Medical Sciences, Taishan Medical University, Taian, P. R. China
| | - Zhong Zhang
- Taishan Medical University, Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taian, P. R. China.,School of Basic Medical Sciences, Taishan Medical University, Taian, P. R. China
| |
Collapse
|
6
|
Complete Genome Sequence of Houston Virus, a Newly Discovered Mosquito-Specific Virus Isolated from Culex quinquefasciatus in Mexico. Microbiol Resour Announc 2018; 7:MRA00808-18. [PMID: 30533617 PMCID: PMC6256593 DOI: 10.1128/mra.00808-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
We fully sequenced the genome of Houston virus, a recently discovered mosquito-associated virus belonging to the newly established family Mesoniviridae. The isolate was recovered from Culex quinquefasciatus in southern Mexico, which shows that the geographic range of Houston virus is not restricted to the United States in North America. We fully sequenced the genome of Houston virus, a recently discovered mosquito-associated virus belonging to the newly established family Mesoniviridae. The isolate was recovered from Culex quinquefasciatus in southern Mexico, which shows that the geographic range of Houston virus is not restricted to the United States in North America.
Collapse
|
7
|
Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks Tick Borne Dis 2018; 9:1241-1251. [DOI: 10.1016/j.ttbdis.2018.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022]
|
8
|
Romoli O, Gendrin M. The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors 2018; 11:200. [PMID: 29558973 PMCID: PMC5861617 DOI: 10.1186/s13071-018-2784-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
The microbiota of Anopheles mosquitoes interferes with mosquito infection by Plasmodium and influences mosquito fitness, therefore affecting vectorial capacity. This natural barrier to malaria transmission has been regarded with growing interest in the last 20 years, as it may be a source of new transmission-blocking strategies. The last decade has seen tremendous progress in the functional characterisation of the tripartite interactions between the mosquito, its microbiota and Plasmodium parasites. In this review, we provide insights into the effects of the mosquito microbiota on Plasmodium infection and on mosquito physiology, and on how these aspects together influence vectorial capacity. We also discuss three current challenges in the field, namely the need for a more relevant microbiota composition in experimental mosquitoes involved in vector biology studies, for a better characterisation of the non-bacterial microbiota, and for further functional studies of the microbiota present outside the gut.
Collapse
Affiliation(s)
- Ottavia Romoli
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana, France. .,Parasites and Insect Vectors Department, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
Moura-Martiniano NO, Machado-Ferreira E, Gazêta GS, Soares CAG. Relative transcription of autophagy-related genes in Amblyomma sculptum and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:401-428. [PMID: 29181673 DOI: 10.1007/s10493-017-0193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Ticks endure stressful off-host periods and perform as vectors of a diversity of infectious agents, thus engaging pathways that expectedly demand for autophagy. Little is known of ticks' autophagy, a conserved eukaryotic machinery assisting in homeostasis processes that also participates in tissue-dependent metabolic functions. Here, the autophagy-related ATG4 (autophagin-1), ATG6 (beclin-1) and ATG8 (LC3) mRNAs from the human diseases vector Amblyomma sculptum and the cattle-tick Rhipicephalus microplus were identified. Comparative qPCR quantifications evidenced different transcriptional status for the ATG genes in the salivary glands (SG), ovaries and intestines of actively feeding ticks. These ATGs had increased relative transcription under nutrient-deprivation, as determined by validation tests with R. microplus embryo-derivative cells BME26 and A. sculptum SG explants incubations in HBSS. Starvation lead to 4-31.8× and ~ 60-500× increments on the ATGs mRNA loads in BME26 and A. sculptum SG explants, respectively. PI3K inhibitor 3MA treatment also affected ATGs expression in BME26. Some ATGs were more transcribed in the SGs than in the ovaries of cattle-ticks. Amblyomma sculptum/R. microplus interspecific comparisons showed that ATG4 and ATG6 were 0.18× less expressed in A. sculptum SGs, but ~ 10-100× more expressed in their ovaries when compared to R. microplus organs. ATG4 and ATG8a transcript loads were ~ 120× and ~ 40× higher, respectively, in A. sculptum intestines when compared to cattle-ticks of similar weight category. ATGs expression in A. sculptum intestines increased with tick weight, indicating Atgs contribution to intracellular blood digestion. Possible roles of the autophagy machinery and their organ-specific expression profile on vector biology are discussed.
Collapse
Affiliation(s)
- Nicole O Moura-Martiniano
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Machado-Ferreira
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto S Gazêta
- Laboratório de Referência Nacional em Vetores das Riquetsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos Augusto Gomes Soares
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- , Ilha do Fundão, CCS, Bloco A, Lab. A2-120. Rua Professor Rodolpho Paulo Rocco S/N, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|