1
|
Ferreira EM, Cunha MV, Duarte EL, Mira A, Pinto D, Mendes I, Pereira AC, Pinto T, Acevedo P, Santos SM. Mapping high-risk areas for Mycobacterium tuberculosis complex bacteria transmission: Linking host space use and environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176053. [PMID: 39244050 DOI: 10.1016/j.scitotenv.2024.176053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In many Mediterranean ecosystems, animal tuberculosis (TB), caused by Mycobacterium bovis, an ecovar of Mycobacterium tuberculosis complex (MTBC), is maintained by multi-host communities. It is hypothesised that interspecies transmission is mainly indirect via shared contaminated environments. Therefore, identifying spatial areas where MTBC bacteria occur and quantifying space use by susceptible hosts might help predict the spatial likelihood of transmission across the landscape. Here, we aimed to evaluate the transmission risk of MTBC in a multi-host system involving wildlife (ungulates and carnivores) and cattle (Bos taurus). We collected eighty-nine samples from natural substrates (water, soil, and mud) at 38 sampling sites in a TB endemic area within a Mediterranean agroforestry system in Portugal. These samples were analysed by real-time PCR to detect MTBC DNA. Additionally, host-specific space use intensity maps were obtained through camera-trapping covering the same sampling sites. Results evidenced that a significant proportion of samples were positive for MTBC DNA (49 %), suggesting that the contamination is widespread in the area. Moreover, they showed that the probability of MTBC occurrence in the environment was significantly influenced by topographic features (i.e., slope), although other non-significant predictor related with soil conditions (SMI: soil moisture index) incorporated the MTBC contamination model. The integration of host space use intensity maps with the spatial detection of MTBC showed that the red deer (Cervus elaphus) and wild boar (Sus scrofa) exhibited the highest percentages of high-risk areas for MTBC transmission. Furthermore, when considering the co-occurrence of multiple hosts, transmission risk analyses revealed that 26.5 % of the study area represented high-risk conditions for MTBC transmission, mainly in forest areas.
Collapse
Affiliation(s)
- Eduardo M Ferreira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa L Duarte
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Departamento de Medicina Veterinária, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal.
| | - António Mira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Inês Mendes
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Pinto
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Sara M Santos
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| |
Collapse
|
2
|
Walter WD, Hanley B, Them CE, Mitchell CI, Kelly J, Grove D, Hollingshead N, Abbott RC, Schuler KL. Predicting the odds of chronic wasting disease with Habitat Risk software. Spat Spatiotemporal Epidemiol 2024; 49:100650. [PMID: 38876563 DOI: 10.1016/j.sste.2024.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was first detected in captive cervids in Colorado, United States (US) in 1967, but has since spread into free-ranging white-tailed deer (Odocoileus virginianus) across the US and Canada as well as to Scandinavia and South Korea. In some areas, the disease is considered endemic in wild deer populations, and governmental wildlife agencies have employed epidemiological models to understand long-term environmental risk. However, continued rapid spread of CWD into new regions of the continent has underscored the need for extension of these models into broader tools applicable for wide use by wildlife agencies. Additionally, efforts to semi-automate models will facilitate access of technical scientific methods to broader users. We introduce software (Habitat Risk) designed to link a previously published epidemiological model with spatially referenced environmental and disease testing data to enable agency personnel to make up-to-date, localized, data-driven predictions regarding the odds of CWD detection in surrounding areas after an outbreak is discovered. Habitat Risk requires pre-processing publicly available environmental datasets and standardization of disease testing (surveillance) data, after which an autonomous computational workflow terminates in a user interface that displays an interactive map of disease risk. We demonstrated the use of the Habitat Risk software with surveillance data of white-tailed deer from Tennessee, USA.
Collapse
Affiliation(s)
- W David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish & Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | - Brenda Hanley
- Wildlife Health Lab, Cornell University, 240 Farrier Road, Ithaca, NY, 14853, USA
| | - Cara E Them
- Cara Them Consulting, LLC, Corvallis, 973300, USA
| | | | - James Kelly
- Tennessee Wildlife Resources Agency, Nashville, Tennessee, 37211, USA
| | - Daniel Grove
- Tennessee Wildlife Resources Agency, Nashville, Tennessee, 37211, USA
| | | | - Rachel C Abbott
- Wildlife Health Lab, Cornell University, 240 Farrier Road, Ithaca, NY, 14853, USA
| | - Krysten L Schuler
- Wildlife Health Lab, Cornell University, 240 Farrier Road, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Pandey A, Feuka AB, Cosgrove M, Moriarty M, Duffiney A, VerCauteren KC, Campa H, Pepin KM. Wildlife vaccination strategies for eliminating bovine tuberculosis in white-tailed deer populations. PLoS Comput Biol 2024; 20:e1011287. [PMID: 38175850 DOI: 10.1371/journal.pcbi.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Abigail B Feuka
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Melinda Cosgrove
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Megan Moriarty
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Anthony Duffiney
- Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Okemos, Michigan, United States of America
| | - Kurt C VerCauteren
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Henry Campa
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| |
Collapse
|
4
|
Herraiz C, Vicente J, Gortázar C, Acevedo P. Large scale spatio-temporal modelling of risk factors associated with tuberculosis exposure at the wildlife-livestock interface. Prev Vet Med 2023; 220:106049. [PMID: 37866131 DOI: 10.1016/j.prevetmed.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The management of animal tuberculosis (TB) is a priority for European Union animal health authorities. However, and despite all the efforts made to date, a significant part of Spain has as yet been unable to obtain the officially tuberculosis-free (OTF) status. Information regarding wildlife disease status is usually scarce, signifying that the role played by wildlife is usually ignored or poorly assessed in large-scale TB risk factor studies. The National Wildlife Health Surveillance Plan in Spain now provides information on infection rates in wildlife reservoirs at a national level, but there are limitations as regards the sample size, the spatio-temporal distribution of the samples, and the lack of homogeneity of the diagnostic techniques employed. The objective of the study described herein was, therefore, to employ a Bayesian approach with the intention of identifying the risk factors associated with four TB rates in cattle: prevalence, incidence, maintenance and persistence in Spain during the period 2014-2019. The modeling approach included highly informative spatio-temporal latent effects with which to control the limitations of the data. Variation partitioning procedures were carried out, and the pure effect of each factor was mapped in order to identify the most relevant factors associated with TB dynamics in cattle in each region. This made it possible to disclose that the movement of cattle, particularly from counties with herd incidence > 1%, was the main driver of the TB dynamics in cattle. The abundance of herds bred for bullfighting was retained in all four models, but had less weight than the movements. After accounting for farm-related factors, the TB prevalence in wild boar was retained in all the models and was significantly related to incidence, maintenance and persistence. With regard to the incidence, variation partitioning revealed that wildlife was the most explicative factor, thus suggesting that it plays a role in the introduction of the pathogen into uninfected herds, and consequently highlighting its importance in breakdowns. These results show, for the first time on a national scale, that wild ungulates play a relevant role in the spatio-temporal variability of TB in cattle, particularly as regards their disease status. Moreover, the spatial representation of the pure effect of each factor made it possible to identify which factors are driving the disease dynamics in each region, thus showing that it is a valuable tool with which to focus efforts towards achieving the OTF status.
Collapse
Affiliation(s)
- Cesar Herraiz
- Health and Biotechnology Research Group (SaBio), Institute for Game and Wildlife Research (IREC), CSIC-JCCM-UCLM, 13071 Ciudad Real, Spain
| | - Joaquín Vicente
- Health and Biotechnology Research Group (SaBio), Institute for Game and Wildlife Research (IREC), CSIC-JCCM-UCLM, 13071 Ciudad Real, Spain
| | - Christian Gortázar
- Health and Biotechnology Research Group (SaBio), Institute for Game and Wildlife Research (IREC), CSIC-JCCM-UCLM, 13071 Ciudad Real, Spain
| | - Pelayo Acevedo
- Health and Biotechnology Research Group (SaBio), Institute for Game and Wildlife Research (IREC), CSIC-JCCM-UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
5
|
Bouchez-Zacria M, Courcoul A, Jabert P, Richomme C, Durand B. Environmental determinants of the Mycobacterium bovis concomitant infection in cattle and badgers in France. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Barbier E, Rochelet M, Gal L, Boschiroli ML, Hartmann A. Impact of temperature and soil type on Mycobacterium bovis survival in the environment. PLoS One 2017; 12:e0176315. [PMID: 28448585 PMCID: PMC5407823 DOI: 10.1371/journal.pone.0176315] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/07/2017] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis, the causative agent of the bovine tuberculosis (bTB), mainly affects cattle, its natural reservoir, but also a wide range of domestic and wild mammals. Besides direct transmission via contaminated aerosols, indirect transmission of the M. bovis between wildlife and livestock might occur by inhalation or ingestion of environmental substrates contaminated through infected animal shedding. We monitored the survival of M. bovis in two soil samples chosen for their contrasted physical and-chemical properties (i.e. pH, clay content). The population of M. bovis spiked in sterile soils was enumerated by a culture-based method after 14, 30, 60, 90, 120 and 150 days of incubation at 4°C and 22°C. A qPCR based assay targeting the IS1561' locus was also performed to monitor M. bovis in both sterile and biotic spiked soils. The analysis of survival profiles using culture-based method showed that M. bovis survived longer at lower temperature (4°C versus 22°C) whereas the impact of soil characteristics on M. bovis persistence was not obvious. Furthermore, qPCR-based assay detected M. bovis for a longer period of time than the culture based method with higher gene copy numbers observed in sterile soils than in biotic ones. Impact of soil type on M. bovis persistence need to be deepened in order to fill the gap of knowledge concerning indirect transmission of the disease.
Collapse
Affiliation(s)
- Elodie Barbier
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Murielle Rochelet
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| | - Maria Laura Boschiroli
- Université Paris-Est, Laboratoire National de Référence de la Tuberculose, Unité de Zoonoses Bactériennes, Laboratoire de Santé Animale, ANSES, Maisons-Alfort Cedex, France
| | - Alain Hartmann
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche Comté, Dijon Cedex, France
| |
Collapse
|
7
|
Kaneene JB, Hattey JA, Bolin CA, Averill J, Miller R. Survivability of Mycobacterium bovis on salt and salt-mineral blocks fed to cattle. Am J Vet Res 2017; 78:57-62. [PMID: 28029286 DOI: 10.2460/ajvr.78.1.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the survivability of Mycobacterium bovis on salt and salt-mineral blocks in typical weather conditions in Michigan over two 12-day periods at the height of summer and winter. SAMPLE 4 salt (NaCl) and 4 salt-mineral blocks inoculated with pure cultures of a strain of M bovis currently circulating in Michigan livestock and wildlife. PROCEDURES In the summer and again in the winter, inoculated blocks were placed in secured outdoor facilities where equal numbers of each block type (2/type/season) were exposed to shade or sunlight. Samples were collected from randomly selected areas on the surface of each block beginning within 1 hour after placement (day 0) twice a day for the first 4 days and once a day from days 7 through 11. Bacterial culture of samples was performed to detect viable M bovis. RESULTS Depending on the exposure conditions, salt blocks yielded viable M bovis for up to 2 days after inoculation and salt-mineral blocks yielded viable M bovis for > 3 days. Survival time was greatest on salt-mineral blocks kept outdoors in the shade during the winter. The odds of recovering viable M bovis from salt-mineral block samples were 4.9 times as great during the winter (vs the summer) and 3.0 times as great with exposure to shade (vs sunlight). CONCLUSIONS AND CLINICAL RELEVANCE Results from this study indicated that salt and salt-mineral blocks should be considered potential sources of bovine tuberculosis when designing risk mitigation programs for cattle herds in areas with wildlife reservoirs of M bovis.
Collapse
|
8
|
A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol Infect 2016; 144:2899-2926. [DOI: 10.1017/s095026881600131x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SUMMARYBovine tuberculosis (bTB) is an important disease of cattle caused by infection withMycobacterium bovis, a pathogen that may be extremely difficult to eradicate in the presence of a true wildlife reservoir. Our objective was to identify and review relevant literature and provide a succinct summary of current knowledge of risk factors for transmission of infection of cattle. Search strings were developed to identify publications from electronic databases to February 2015. Abstracts of 4255 papers identified were reviewed by three reviewers to determine whether the entire article was likely to contain relevant information. Risk factors could be broadly grouped as follows: animal (including nutrition and genetics), herd (including bTB and testing history), environment, wildlife and social factors. Many risk factors are inter-related and study designs often do not enable differentiation between cause and consequence of infection. Despite differences in study design and location, some risk factors are consistently identified, e.g. herd size, bTB history, presence of infected wildlife, whereas the evidence for others is less consistent and coherent, e.g. nutrition, local cattle movements. We have identified knowledge gaps where further research may result in an improved understanding of bTB transmission dynamics. The application of targeted, multifactorial disease control regimens that address a range of risk factors simultaneously is likely to be a key to effective, evidence-informed control strategies.
Collapse
|
9
|
Ribeiro-Lima J, Carstensen M, Cornicelli L, Forester JD, Wells SJ. Patterns of Cattle Farm Visitation by White-Tailed Deer in Relation to Risk of Disease Transmission in a Previously Infected Area with Bovine Tuberculosis in Minnesota, USA. Transbound Emerg Dis 2016; 64:1519-1529. [DOI: 10.1111/tbed.12544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- J. Ribeiro-Lima
- Department of Veterinary Population Medicine; University of Minnesota; St. Paul MN USA
| | - M. Carstensen
- Department of Veterinary Population Medicine; University of Minnesota; St. Paul MN USA
- Minnesota Department of Natural Resources; St. Paul MN USA
| | - L. Cornicelli
- Minnesota Department of Natural Resources; St. Paul MN USA
- Department of Fisheries; Wildlife; and Conservation Biology; University of Minnesota; St. Paul MN USA
| | - J. D. Forester
- Department of Fisheries; Wildlife; and Conservation Biology; University of Minnesota; St. Paul MN USA
| | - S. J. Wells
- Department of Veterinary Population Medicine; University of Minnesota; St. Paul MN USA
| |
Collapse
|
10
|
|
11
|
Rettinger A, Broeckl S, Fink M, Prodinger WM, Blum H, Krebs S, Domogalla J, Just F, Gellert S, Straubinger RK, Büttner M. The Region of Difference Four is a Robust Genetic Marker for Subtyping Mycobacterium caprae Isolates and is Linked to Spatial Distribution of Three Subtypes. Transbound Emerg Dis 2015; 64:782-792. [PMID: 26518998 DOI: 10.1111/tbed.12438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/22/2022]
Abstract
Alpine Mycobacterium caprae isolates found in cattle and red deer display at least three genetic variations in the region of difference four (RD4) that can be used for further differentiation of the isolates into the subtypes 'Allgäu', 'Karwendel' and 'Lechtal'. Each genomic subtype is thereby characterized by a specific nucleotide deletion pattern in the 12.7-kb RD4 region. Even though M. caprae infections are frequently documented in cattle and red deer, little is known about the transmission routes. Hence, robust markers for M. caprae subtyping are needed to gain insight into the molecular epidemiology. For this reason, a rapid and robust multiplex PCR was developed for the simultaneous detection of three M. caprae RD4 subtypes and was used to subtype a total number of 241 M. caprae isolates from animals (145 cattle, 95 red deer and one fox) from Bavaria and Austria. All three subtypes occur spatially distributed and are found in cattle and in red deer suggesting transmission between the two species. As subtypes are genetically stable in both species it is hypothesized that the described genetic variations developed within the host due to 'within-host replication'. The results of this study recommend the genomic RD4 region as a reliable diagnostic marker for M. caprae subtype differentiation.
Collapse
Affiliation(s)
- A Rettinger
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - S Broeckl
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - M Fink
- Austrian Agency for Health and Food Safety, Institute for Veterinary Disease Control, Moedling, Austria
| | | | - H Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - S Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - J Domogalla
- Bavarian Environment Agency, Wielenbach, Germany
| | - F Just
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - S Gellert
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - R K Straubinger
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - M Büttner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
12
|
Gortázar C, Che Amat A, O'Brien DJ. Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mamm Rev 2015. [DOI: 10.1111/mam.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Gortázar
- Animal Health; SaBio IREC (CSIC - UCLM - JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Azlan Che Amat
- Faculty of Veterinary Medicine; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Daniel J. O'Brien
- Wildlife Disease Laboratory; Michigan Department of Natural Resources; 4125 Beaumont Rd., Room 250 Lansing Michigan 48910-8106 USA
| |
Collapse
|