1
|
Husna R, Kurup CP, Ansari MA, Mohd-Naim NF, Ahmed MU. An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum. RSC Adv 2023; 13:3890-3898. [PMID: 36756582 PMCID: PMC9890643 DOI: 10.1039/d2ra06600a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
For early detection and diagnosis of cancer, it is essential to develop an electrochemical biosensor that is quick, accurate, and sensitive. Here, we use gold nanorod (AuNR) and gold nanowire (AuNW) nanocomposites (AuNR/AuNW/CS) as electrode modifiers on a glassy carbon electrode (GCE) to construct a sensitive label-free electrochemical aptasensor to detect ApoA1. The thiolated ApoA1-specific aptamers were immobilized onto the modified electrode surface through self-assembled monolayers. Electrochemical techniques, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were used to analyze the fabrication steps. The concentration of ApoA1 was measured with DPV on the aptasensor, with a linear range of 0.1 to 1000 pg mL-1 and a detection limit of 0.04 pg mL-1. When compared to results from ELISA tests (which have a detection limit of 80 pg mL-1), the results achieved here were over 2000 times better. The aptasensor's performance was successfully evaluated using human serum spiked with ApoA1, suggesting that it has great potential for practical application. The electrochemical apatsensor additionally demonstrated outstanding selectivity responses and strong stability toward the target analyte.
Collapse
Affiliation(s)
- Raudhatul Husna
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Chitra Padmakumari Kurup
- PAPRSB Institute of Health Sciences, Universiti Brunei DarussalamJalan Tungku LinkGadong BE 1410Brunei Darussalam
| | - Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam .,PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
2
|
Kurup C, Mohd-Naim NF, Keasberry NA, Zakaria SNA, Bansal V, Ahmed MU. Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum. ACS OMEGA 2022; 7:38709-38716. [PMID: 36340071 PMCID: PMC9631400 DOI: 10.1021/acsomega.2c04300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 05/11/2023]
Abstract
A molybdenum sulfide/zirconium oxide/Nafion (MoS2/ZrO2/Naf) based electrochemiluminescence (ECL) aptasensor for the selective and ultrasensitive detection of ApoA1 is proposed, with Ru(bpy)3 2+ as the luminophore. The chitosan (CS) modification on the nanocomposite layer allowed glutaraldehyde (GLUT) cross-linking, resulting in the immobilization of ApoA1 aptamers. Scanning electron microscopy, tunneling electron microscopy, and energy dispersive X-ray spectroscopy were used to characterize the nanocomposite, while electrochemiluminescence (ECL), cyclic voltammetry, and electrochemical impedance spectroscopy were used to analyze the aptasensor assembly. The nanocomposite was used as an electrode modifier, which increased the intensity of the ECL signal. Due to the anionic environment produced on the sensor surface following the specific interaction of the ApoA1 biomarker with the sensor, more Ru(bpy)3 2+ were able to be electrostatically attached to the aptamer-ApoA1 complex, resulting in enhanced ECL signal. The ECL aptasensor demonstrated outstanding sensitivity for ApoA1 under optimal experimental conditions, with a detection limit of 53 fg/mL and a wide linear dynamic range of 0.1-1000 pg/mL. The potential practical applicability of this aptasensor was validated by analyzing ApoA1 in human serum samples, with recovery rates of 94-108% (n = 3). The proposed assay was found to be substantially better compared to the commercially available enzyme-linked immunosorbent assay method, as reflected from over 1500 times improvement in the detection limit for ApoA1.
Collapse
Affiliation(s)
- Chitra
P. Kurup
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Noor F. Mohd-Naim
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- PAPRSB
Institute of Health Sciences, Universiti
Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Natasha A. Keasberry
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Siti N. A. Zakaria
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Vipul Bansal
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory
(NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria3000, Australia
| | - Minhaz U. Ahmed
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- ;
| |
Collapse
|
3
|
Si Y, Chen K, Ngo HG, Guan JS, Totoro A, Zhou Z, Kim S, Kim T, Zhou L, Liu X. Targeted EV to Deliver Chemotherapy to Treat Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:146. [PMID: 35057042 PMCID: PMC8781632 DOI: 10.3390/pharmaceutics14010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are heterogeneous and metastatic, and targeted therapy is highly needed for TNBC treatment. Recent studies showed that extracellular vesicles (EV) have great potential to deliver therapies to treat cancers. This study aimed to develop and evaluate a natural compound, verrucarin A (Ver-A), delivered by targeted EV, to treat TNBC. First, the surface expression of epidermal growth factor receptor (EGFR) and CD47 were confirmed with immunohistochemistry (IHC) staining of patient tissue microarray, flow cytometry and Western blotting. EVs were isolated from HEK 293F culture and surface tagged with anti-EGFR/CD47 mAbs to construct mAb-EV. The flow cytometry, confocal imaging and live-animal In Vivo Imaging System (IVIS) demonstrated that mAb-EV could effectively target TNBC and deliver the drug. The drug Ver-A, with dosage-dependent high cytotoxicity to TNBC cells, was packed in mAb-EV. The anti-TNBC efficacy study showed that Ver-A blocked tumor growth in both 4T1 xenografted immunocompetent mouse models and TNBC patient-derived xenograft models with minimal side effects. This study demonstrated that the targeted mAb-EV-Ver-A had great potential to treat TNBCs.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Jia Shiung Guan
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Taehyun Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| |
Collapse
|
4
|
Seidl C, Flaten Z, Li D. Characterization of human plasma lipoproteins using anion exchange fast protein liquid chromatography and targeted mass spectrometry assay. Proteomics 2021; 21:e2000224. [PMID: 33471423 DOI: 10.1002/pmic.202000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
We described a targeted mass spectrometry assay based on selected reaction monitoring (SRM) for five apolipoproteins (apoA1, apoB, apoJ, apoD, and apoE) in plasma lipoproteins isolated by anion exchange fast protein liquid chromatography using only 100 μL of plasma. We performed analytical characterization of the SRM assay and evaluated reproducibility of the entire workflow. The limit of detections for apoA1, apoB, apoD, apoJ, and apoE were 0.6, 4.6, 0.8, 1.2, and 0.7 nM, respectively; the limit of quantifications was 8.3 nM for all peptides except apoD (4.2 nM). The SRM assay was linear from 0.4 to 1667 nM. The intra-day and inter-day and total repeatability (CV%) of the assay ranged from 2.2% to 21.7% for all five peptides. The intra-day and inter-day and total reproducibility of the entire workflow ranged from 12.2% to 43.9% for all five peptides in fractionated high-density lipoprotein, low-density lipoprotein, and IDL. In the future, we will apply this workflow to investigate the association of fractionated plasma lipoproteins with amyloid deposition and cognitive changes in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Seidl
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary Flaten
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Danni Li
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
6
|
Temporal Dynamics of High-Density Lipoprotein Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 2020; 10:biom10040520. [PMID: 32235466 PMCID: PMC7226298 DOI: 10.3390/biom10040520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
We examined the effect of mild hyperglycemia on high-density lipoprotein (HDL) metabolism and kinetics in diet-controlled subjects with type 2 diabetes (T2D). 2H2O-labeling coupled with mass spectrometry was applied to quantify HDL cholesterol turnover and HDL proteome dynamics in subjects with T2D (n = 9) and age- and BMI-matched healthy controls (n = 8). The activities of lecithin–cholesterol acyltransferase (LCAT), cholesterol ester transfer protein (CETP), and the proinflammatory index of HDL were quantified. Plasma adiponectin levels were reduced in subjects with T2D, which was directly associated with suppressed ABCA1-dependent cholesterol efflux capacity of HDL. The fractional catabolic rates of HDL cholesterol, apolipoprotein A-II (ApoA-II), ApoJ, ApoA-IV, transthyretin, complement C3, and vitamin D-binding protein (all p < 0.05) were increased in subjects with T2D. Despite increased HDL flux of acute-phase HDL proteins, there was no change in the proinflammatory index of HDL. Although LCAT and CETP activities were not affected in subjects with T2D, LCAT was inversely associated with blood glucose and CETP was inversely associated with plasma adiponectin. The degradation rates of ApoA-II and ApoA-IV were correlated with hemoglobin A1c. In conclusion, there were in vivo impairments in HDL proteome dynamics and HDL metabolism in diet-controlled patients with T2D.
Collapse
|
7
|
Abstract
Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection. Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed. Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.
Collapse
Affiliation(s)
- Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
8
|
Soupene E, Larkin SK, Kuypers FA. Featured Article: Depletion of HDL 3 high density lipoprotein and altered functionality of HDL 2 in blood from sickle cell patients. Exp Biol Med (Maywood) 2017; 242:1244-1253. [PMID: 28436274 DOI: 10.1177/1535370217706966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In sickle cell disease (SCD), alterations of cholesterol metabolism is in part related to abnormal levels and activity of plasma proteins such as lecithin cholesterol acyltransferase (LCAT), and apolipoprotein A-I (ApoA-I). In addition, the size distribution of ApoA-I high density lipoproteins (HDL) differs from normal blood. The ratio of the amount of HDL2 particle relative to the smaller higher density pre-β HDL (HDL3) particle was shifted toward HDL2. This lipoprotein imbalance is exacerbated during acute vaso-occlusive episodes (VOE) as the relative levels of HDL3 decrease. HDL3 deficiency in SCD plasma was found to relate to a slower ApoA-I exchange rate, which suggests an impaired ABCA1-mediated cholesterol efflux in SCD. HDL2 isolated from SCD plasma displayed an antioxidant capacity normally associated with HDL3, providing evidence for a change in function of HDL2 in SCD as compared to HDL2 in normal plasma. Although SCD plasma is depleted in HDL3, this altered capacity of HDL2 could account for the lack of difference in pro-inflammatory HDL levels in SCD as compared to normal. Exposure of human umbilical vein endothelial cells to HDL2 isolated from SCD plasma resulted in higher mRNA levels of the acute phase protein long pentraxin 3 (PTX3) as compared to incubation with HDL2 from control plasma. Addition of the heme-scavenger hemopexin protein prevented increased expression of PTX3 in sickle HDL2-treated cells. These findings suggest that ApoA-I lipoprotein composition and functions are altered in SCD plasma, and that whole blood transfusion may be considered as a blood replacement therapy in SCD. Impact statement Our study adds to the growing evidence that the dysfunctional red blood cell (RBC) in sickle cell disease (SCD) affects the plasma environment, which contributes significantly in the vasculopathy that defines the disease. Remodeling of anti-inflammatory high density lipoprotein (HDL) to pro-inflammatory entities can occur during the acute phase response. SCD plasma is depleted of the pre-β particle (HDL3), which is essential for stimulation of reverse cholesterol from macrophages, and the function of the larger HDL2 particle is altered. These dysfunctions are exacerbated during vaso-occlusive episodes. Interaction of lipoproteins with endothelium increases formation of inflammatory mediators, a process counteracted by the heme-scavenger hemopexin. This links hemolysis to lipoprotein-mediated inflammation in SCD, and hemopexin treatment could be considered. The use of RBC concentrates in transfusion therapy of SCD patients underestimates the importance of the dysfunctional plasma compartment, and transfusion of whole blood or plasma may be warranted.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Sandra K Larkin
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
9
|
Ji X, Feng Y, Tian H, Meng W, Wang W, Liu N, Zhang J, Wang L, Wang J, Gao H. The Mechanism of Proinflammatory HDL Generation in Sickle Cell Disease Is Linked to Cell-Free Hemoglobin via Haptoglobin. PLoS One 2016; 11:e0164264. [PMID: 27716784 PMCID: PMC5055316 DOI: 10.1371/journal.pone.0164264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
In sickle cell disease (SCD), the inflammatory properties of high-density lipoprotein (HDL) can be changed by cell-free hemoglobin (Hb), which is released into the blood during hemolysis. Hb in the plasma of SCD patients or mice can bind with HDL specifically inducing an inflammatory reaction. In our study, we found increased amounts of inflammatory factor proteins in the chronic oxidative state of SCD with higher levels of Hb, haptoglobin (Hp) and hemopexin (Hx) in the apolipoprotein A-I (ApoA-1) particles of HDL and the role of HDL is changed from being anti-inflammatory to proinflammatory. Our results also suggest Hp and Hx, the scavengers of Hb in HDL, are positively associated with inflammatory levels in SCD patients. HDL retained its inflammatory inhibition role in Hp−/− mice, with less Hb accumulation. Hx may further prevent inflammatory reaction because its level will be even higher when lack of Hx. We therefore demonstrated that Hp is indispensable during the process whereby Hb associates with HDL and plays a clear proinflammatory role. Therefore, it is essential to break the binding between Hb and Hp for treatment. The dissociation of Hb/Hp/Hx complexes may also play an important role in the study of other inflammatory angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xiang Ji
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Yimin Feng
- Clinical Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Hui Tian
- ICU, The Affiliated Hospital of Qiingdao University, Qingdao 266012, Shandong, China
| | - Wei Meng
- Cardiology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Weiling Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Na Liu
- Pharmacological Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jun Zhang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Lingshu Wang
- Endocrinology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jian Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Haiqing Gao
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
- * E-mail:
| |
Collapse
|
10
|
Kashyap S, Kheniser K, Li L, Bena J, Kasumov T. The therapeutic efficacy of intensive medical therapy in ameliorating high-density lipoprotein dysfunction in subjects with type two diabetes. Lipids Health Dis 2016; 15:141. [PMID: 27567897 PMCID: PMC5002094 DOI: 10.1186/s12944-016-0314-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/23/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND To determine whether 12 months of intensive medical therapy (IMT) improves HDL functionality parameters in subjects with type II diabetes (T2D). METHODS Retrospective, randomized, and controlled 12-month IMT intervention trial that enrolled 13-subjects with T2D (age 51- years, fasting glucose 147 mg/dL, body mass index [BMI] 36.5 kg/m(2)) and nine healthy control (46-years, fasting glucose 90 mg/dL, BMI 26.5 kg/m2). Subjects with T2D underwent IMT and HDL functionality measures (pro-inflammatory index of high-density lipoprotein (pHDL)), paraoxonase one (PON1), ceruloplasmin (Cp), and myeloperoxidase (MPO) activity were performed on samples at baseline and at 12-months following IMT. RESULTS At baseline, pHDL index was significantly higher in subjects with T2D (p < 0.001) and apolipoprotein A-1 levels were significantly lower (p = 0.013) vs. CONTROLS After 12-months, there was a trend for improved pHDL activity (p = 0.083), as indicated by intent-to-treat analysis, but when the non-adherent subject was omitted (per-protocol), significant attenuations in pHDL activity (p = 0.040) were noted; Δ pHDL activity at 12-months was associated with Δ weight (r = 0.62, p = 0.032) and Δ fasting glucose (r = 0.65, p = 0.022). Moreover, PON1 activity significantly improved (p < 0.001). The aforementioned occurred in association with improvements in inflammatory markers (i.e., C-reactive protein & tumor necrosis factor), hemoglobin A1C, fasting glucose, triglycerides, high-density lipoprotein levels and adipokines. CONCLUSION IMT ameliorates pHDL index and significantly improves anti-oxidative function, as measured by PON1. Improvements in weight and fasting glucose mediated the decrease in pHDL index. Pharmacological aids and lifestyle modification are required to improve cardiovascular risk factors, subsequent mortality risk, and promote T2D remission. Application of either form of therapy alone may only have relatively miniscule effects on the aforementioned factors, in relation to the aggregate.
Collapse
Affiliation(s)
- Sangeeta Kashyap
- Departemnt of Endocrinology and Metabolism, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Karim Kheniser
- Departemnt of Endocrinology and Metabolism, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ling Li
- Department of Core Facilities, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - James Bena
- Department of Quantitative Health Sciences, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Takhar Kasumov
- Department of Hepatology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Present address: Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St. R. 44, PO Box 95, Rootstown, OH, 44272, USA.
| |
Collapse
|
11
|
Li L, Bebek G, Previs SF, Smith JD, Sadygov RG, McCullough AJ, Willard B, Kasumov T. Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD. J Proteome Res 2016; 15:3388-404. [PMID: 27439437 DOI: 10.1021/acs.jproteome.6b00601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiovascular disease. Because the liver is the major source of circulatory proteins, it is not surprising that hepatic disease could lead to alterations in the plasma proteome, which are therein implicated in atherosclerosis. The current study used low-density lipoprotein receptor-deficient (LDLR(-/-)) mice to examine the impact of Western diet (WD)-induced NAFLD on plasma proteome homeostasis. Using a (2)H2O-metabolic labeling method, we found that a WD led to a proinflammatory distribution of circulatory proteins analyzed in apoB-depleted plasma, which was attributed to an increased production. The fractional turnover rates of short-lived proteins that are implicated in stress-response, lipid metabolism, and transport functions were significantly increased with WD (P < 0.05). Pathway analyses revealed that alterations in plasma proteome dynamics were related to the suppression of hepatic PPARα, which was confirmed based on reduced gene and protein expression of PPARα in mice fed a WD. These changes were associated with ∼4-fold increase (P < 0.0001) in the proinflammatory property of apoB-depleted plasma. In conclusion, the proteome dynamics method reveals proinflammatory remodeling of the plasma proteome relevant to liver disease. The approach used herein may provide a useful metric of in vivo liver function and better enable studies of novel therapies surrounding NAFLD and other diseases.
Collapse
Affiliation(s)
| | - Gurkan Bebek
- Department of Nutrition, Center for Proteomics and Bioinformatics, Electrical Engineering and Computer Science Department, Case Western Reserve University , Cleveland, Ohio 44195, United States
| | - Stephen F Previs
- School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | - Rovshan G Sadygov
- The University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | |
Collapse
|
12
|
Soupene E, Borja MS, Borda M, Larkin SK, Kuypers FA. Featured Article: Alterations of lecithin cholesterol acyltransferase activity and apolipoprotein A-I functionality in human sickle blood. Exp Biol Med (Maywood) 2016; 241:1933-1942. [PMID: 27354333 DOI: 10.1177/1535370216657447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/04/2016] [Indexed: 01/25/2023] Open
Abstract
In sickle cell disease (SCD) cholesterol metabolism appears dysfunctional as evidenced by abnormal plasma cholesterol content in a subpopulation of SCD patients. Specific activity of the high density lipoprotein (HDL)-bound lecithin cholesterol acyltransferase (LCAT) enzyme, which catalyzes esterification of cholesterol, and generates lysoPC (LPC) was significantly lower in sickle plasma compared to normal. Inhibitory amounts of LPC were present in sickle plasma, and the red blood cell (RBC) lysophosphatidylcholine acyltransferase (LPCAT), essential for the removal of LPC, displayed a broad range of activity. The functionality of sickle HDL appeared to be altered as evidenced by a decreased HDL-Apolipoprotein A-I exchange in sickle plasma as compared to control. Increased levels of oxidized proteins including ApoA-I were detected in sickle plasma. In vitro incubation of sickle plasma with washed erythrocytes affected the ApoA-I-exchange supporting the view that the RBC blood compartment can affect cholesterol metabolism in plasma. HDL functionality appeared to decrease during acute vaso-occlusive episodes in sickle patients and was associated with an increase of secretory PLA2, a marker for increased inflammation. Simvastatin treatment to improve the anti-inflammatory function of HDL did not ameliorate HDL-ApoA-I exchange in sickle patients. Thus, the cumulative effect of an inflammatory and highly oxidative environment in sickle blood contributes to a decrease in cholesterol esterification and HDL function, related to hypocholesterolemia in SCD.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mark S Borja
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mauricio Borda
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Sandra K Larkin
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| |
Collapse
|
13
|
Kelesidis T, Roberts CK, Huynh D, Martínez-Maza O, Currier JS, Reddy ST, Yang OO. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL. PLoS One 2014; 9:e111716. [PMID: 25368900 PMCID: PMC4219769 DOI: 10.1371/journal.pone.0111716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022] Open
Abstract
Current cell-based assays for determining the functional properties of high-density lipoproteins (HDL) have limitations. We report here the development of a new, robust fluorometric cell-free biochemical assay that measures HDL lipid peroxidation (HDLox) based on the oxidation of the fluorochrome Amplex Red. HDLox correlated with previously validated cell-based (r = 0.47, p<0.001) and cell-free assays (r = 0.46, p<0.001). HDLox distinguished dysfunctional HDL in established animal models of atherosclerosis and Human Immunodeficiency Virus (HIV) patients. Using an immunoaffinity method for capturing HDL, we demonstrate the utility of this novel assay for measuring HDLox in a high throughput format. Furthermore, HDLox correlated significantly with measures of cardiovascular diseases including carotid intima media thickness (r = 0.35, p<0.01) and subendocardial viability ratio (r = -0.21, p = 0.05) and physiological parameters such as metabolic and anthropometric parameters (p<0.05). In conclusion, we report the development of a new fluorometric method that offers a reproducible and rapid means for determining HDL function/quality that is suitable for high throughput implementation.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian K. Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California Los Angeles, Los Angeles, California, United States of America
| | - Diana Huynh
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Otoniel Martínez-Maza
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Judith S. Currier
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Otto O. Yang
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|