1
|
Pannak S, Wanchana S, Aesomnuk W, Pitaloka MK, Jamboonsri W, Siangliw M, Meyers BC, Toojinda T, Arikit S. Functional Bph14 from Rathu Heenati promotes resistance to BPH at the early seedling stage of rice (Oryza sativa L.) as revealed by QTL-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:25. [PMID: 36781491 DOI: 10.1007/s00122-023-04318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.
Collapse
Affiliation(s)
- Sarinthip Pannak
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Watchareewan Jamboonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
2
|
Rahman MM, Nam H, Choi N, Kim J. Development of Molecular-Based Species Identification and Optimization of Reaction Conditions for Molecular Diagnosis of Three Major Asian Planthoppers (Hemiptera: Delphacidae). INSECTS 2023; 14:124. [PMID: 36835693 PMCID: PMC9962309 DOI: 10.3390/insects14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Asian planthoppers (Hemiptera: Delphacidae) that include brown planthoppers (BPH, Nilaparvata lugens, Stål), white-backed planthoppers (WBPH, Sogatella furcifera, Horváth), and small brown planthoppers (SBPH, Laodelphax striatellus, Fallén) are the primary sucking-type pests of rice. These three insects share morphological and sequence similarities. As insecticide resistance patterns and control strategies vary according to species, the accurate discrimination of these species is important. Here, we developed six species-specific primers based on partial mitochondrial genome sequences. The primers were successfully used in multiplex PCR, loop-mediated isothermal amplification (LAMP) assays, and conventional PCR. Here, we used genomic DNA obtained using the DNA-releasing technique (tissue samples were incubated at 95 °C for 5 min with 30 μL nuclease-free water, and the supernatant was used). We showed that multiplex PCR could analyze the density of each species following a mass collection in the field; the LAMP assay can diagnose the species within 40 min; conventional PCR can be widely applied to a large number of field samples, as well as individuals or mass collections. In conclusion, these results demonstrate the potential of the species-specific primers and DNA-releasing technique for accurate multiplex PCR and LAMP assays, which may assist the intensive field monitoring of integrated management of these species.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Hwayeun Nam
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Incheon International Airport Regional Office, Animal and Plant Quarantine Agency, Incheon 22382, Republic of Korea
| | - Nakjung Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Juil Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Program of Applied Biology, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Paschapur A, Subbanna ARNS, Gupta J, Parihar M, Mishra KK. Insect pest scenario in Uttarakhand Himalayas, India, under changing climatic conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1445-1460. [PMID: 35445862 DOI: 10.1007/s00484-022-02289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The Himalayan mountains are early indicators of climate change, wherein slight changes in climate can lead to a drastic variation in faunal diversity, distribution, invasion of fauna into higher altitudes, rapid population growth, shortening of life cycle and increased number of overwintering species. The insects best represent the faunal diversity. In recent years, due to variation in pattern of rainfall and temperature regimes, several insect pests have moved northwards and are posing great threat to hill agriculture. Few among them are greenhouse whiteflies, thrips and mites in protected cultivation system; blister beetles on flowers of cereals, pulses and oilseeds; invasive insect pests like fall armyworm of maize and tomato pin worm and sporadic pests like grasshoppers that are reaching a status of major key pest in various crops. Keeping in mind the phenomenon of climate change and associated changes in pest population, the present article focuses on emerging insect pest problems in cereals, millets, pulses, oilseeds and vegetables of Indian Himalayas, along with their changing population density with respect to different climatic parameters, the per cent increase in the pest damage over the years and their potential of gaining the status of major pests in near future and causing huge economic losses to hill agriculture.
Collapse
Affiliation(s)
- Amit Paschapur
- Crop Protection Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India.
| | - A R N S Subbanna
- Crop Protection Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Jaiprakash Gupta
- Crop Protection Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Manoj Parihar
- Crop Protection Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Krishna Kant Mishra
- Crop Protection Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| |
Collapse
|
4
|
Ali MP, Rahman MS, Nowrin F, Haque SS, Qin X, Haque MA, Uddin MM, Landis DA, Howlader MTH. Salinity Influences Plant-Pest-Predator Tritrophic Interactions. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1470-1479. [PMID: 34231849 DOI: 10.1093/jee/toab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 06/13/2023]
Abstract
Climate change-induced salinity intrusion into agricultural soils is known to negatively impact crop production and food security. However, the effects of salinity increase on plant-herbivore-natural enemy systems and repercussions for pest suppression services are largely unknown. Here, we examine the effects of increased salinity on communities of rice (Oryza sativa), brown planthopper (BPH), Nilaparvata lugens, and green mirid bug (GMB), Cyrtorhinus lividipennis, under greenhouse conditions. We found that elevated salinity significantly suppressed the growth of two rice cultivars. Meanwhile, BPH population size also generally decreased due to poor host plant quality induced by elevated salinity. The highest BPH density occurred at 2.0 dS/m salinity and declined thereafter with increasing salinity, irrespective of rice cultivar. The highest population density of GMB also occurred under control conditions and decreased significantly with increasing salinity. Higher salinity directly affected the rice crop by reducing plant quality measured with reference to biomass production and plant height, whereas inducing population developmental asynchrony between BPH and GMB observed at 2 dS/m salinity and potentially uncoupling prey-predator dynamics. Our results suggest that increased salinity has harmful effects on plants, herbivores, natural enemies, as well as plant-pest-predator interactions. The effects measured here suggest that the bottom-up effects of predatory insects on rice pests will likely decline in rice produced in coastal areas where salinity intrusion is common. Our findings indicate that elevated salinity influences tritrophic interactions in rice production landscapes, and further research should address resilient rice insect pest management combining multipests and predators in a changing environment.
Collapse
Affiliation(s)
- M P Ali
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - M S Rahman
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - Farzana Nowrin
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - S S Haque
- Entomology Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
| | - Xinghu Qin
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - M A Haque
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - M M Uddin
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Douglas A Landis
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - M T H Howlader
- Department of Entomology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| |
Collapse
|
5
|
Aryal JP, Sapkota TB, Rahut DB, Marenya P, Stirling CM. Climate risks and adaptation strategies of farmers in East Africa and South Asia. Sci Rep 2021; 11:10489. [PMID: 34006938 PMCID: PMC8131377 DOI: 10.1038/s41598-021-89391-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/16/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding major climate risks, adaptation strategies, and factors influencing the choice of those strategies is crucial to reduce farmers’ vulnerability. Employing comprehensive data from 2822 farm households in Ethiopia and Kenya (East Africa; EA) and 1902 farm households in Bangladesh, India, and Nepal (South Asia; SA), this study investigates the main climate risks that farmers faced and the adaptation strategies they used. Among others, excessive rainfall and heightened crop pest/disease incidence are commonly observed climate-induced risks in all study areas, while cyclones and salinity are unique to Bangladesh. Drought is prevalent in Ethiopia, India, Kenya, and Nepal. Farmers in those countries responded with strategies that include change in farming practices, sustainable land management, reduce consumption, sell assets, use savings and borrowings, seek alternative employment and assistance from government or NGO. In general, farmers faced several multiple climate risks simultaneously and they responded with multiple adaptation strategies. Therefore, this study used a multivariate probit (MVP) approach to examine the factors influencing the adoption of adaptation strategies. Unlike other studies, we also tested and corrected for possible endogeneity in model estimation. All the countries mentioned have low adaptive capacity to address climate change, which is further weakened by inadequate governance and inefficient institutions. We observed significant differences in the choice of adaptation strategies between male-headed households (MHHs) and female-headed households (FHHs), as well as across countries. Generally, MHHs are more likely to seek additional employment and change agricultural practices, while FHHs and households headed by older persons tend to reduce consumption and rely on savings and borrowings. Institutional support for adaptation is much less in EA compared to SA. Training on alternative farming practices, enhancing non-farm employment options, better institutional support, and social security for older farmers are crucial for climate change adaptation in both regions.
Collapse
Affiliation(s)
- Jeetendra Prakash Aryal
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, Mexico.
| | - Tek Bahadur Sapkota
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, Mexico.
| | - Dil Bahadur Rahut
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, Mexico. .,Asian Development Bank Institute (ADBI), Kasumigaseki Building 8F, 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo, 100-6008, Japan.
| | - Paswel Marenya
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Clare M Stirling
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, Texcoco, 56237, Mexico.,Global R&D Technology Lead, Cocoa Life, Mondelez International, Birmingham, UK
| |
Collapse
|
6
|
Rahut DB, Aryal JP, Marenya P. Understanding climate-risk coping strategies among farm households: Evidence from five countries in Eastern and Southern Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145236. [PMID: 33736234 DOI: 10.1016/j.scitotenv.2021.145236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Climate change is having a catastrophic impact on the livelihoods of farm households in Eastern and Southern Africa (ESA). This study employs comprehensive data obtained in 2018 from 4351 farm households in five countries to appraise the key climate hazards experienced by farmers, the risk coping methods adopted, and factor influencing the use of these methods. Although droughts, floods, hailstorms, and crop pests/diseases are major climate-induced risks in ESA, droughts are predominant in all these countries. Farm households in ESA have adopted various strategies to address climate risk, which includes changing farming practices, reducing consumption, using savings and borrowing, and seeking new employment. Farming families headed by a female, married, or an elderly member opt to change farming methods and decrease consumption, whereas they are less inclined to look for alternate livelihood options. Farming families with higher livestock endowments commonly use savings or borrow and are unlikely to change farming methods, decrease consumption, and search for alternate employment. Better-off families tend to change farming methods but are unlikely to adopt other risk coping options. Farming families with non-farm livelihood options are unlikely to change farming methods, use savings/borrowings, or decrease consumption, whereas they tend to search for alternate employment. Training on agriculture and economic status are crucial for climate change adaptation in these regions. Findings exhibit substantial differences among the study countries regarding the adoption of coping strategies. Compared to farmers in Kenya, farmers in other countries change agricultural methods to cope with climate shocks. Ethiopian farmers, compared to their Kenyan counterparts, decrease consumption to deal with climate risks, whereas, farmers in Tanzania, Malawi, and Mozambique are less likely to use this option. Similarly, the likelihood of seeking alternative employment as a risk coping strategy is lower among Ethiopian farmers, while it is higher among the farmers in other countries.
Collapse
Affiliation(s)
- Dil Bahadur Rahut
- Asian Development Bank Institute (ADBI), Tokyo, Japan; International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| | | | - Paswel Marenya
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya.
| |
Collapse
|
7
|
Elevated temperatures diminish the effects of a highly resistant rice variety on the brown planthopper. Sci Rep 2021; 11:262. [PMID: 33420350 PMCID: PMC7794346 DOI: 10.1038/s41598-020-80704-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
This study compares the effects of temperature (constant at 15, 20, 25, 30 and 35 °C) on adult longevity, oviposition, and nymph development of the brown planthopper, Nilaparvata lugens, on susceptible and resistant rice varieties. The resistant variety contained the BPH32 gene. In our experiments, nymphs failed to develop to adults at 15, 20 and 35 °C on either variety. Host resistance had its greatest effect in reducing adult survival at 20–25 °C and its greatest effect in reducing nymph weight gain at 25 °C. This corresponded with optimal temperatures for adult survival (20–25 °C) and nymph development (25–30 °C). At 25 and 30 °C, adult females achieved up to three oviposition cycles on the susceptible variety, but only one cycle on the resistant variety. Maximum egg-laying occurred at 30 °C due to larger numbers of egg batches produced during the first oviposition cycle on both the susceptible and resistant varieties, and larger batches during the second and third oviposition cycles on the susceptible variety; however, resistance had its greatest effect in reducing fecundity at 25 °C. This revealed a mismatch between the optimal temperatures for resistance and for egg production in immigrating females. Increasing global temperatures could reduce the effectiveness of anti-herbivore resistance in rice and other crops where such mismatches occur.
Collapse
|
8
|
Horgan FG, Arida A, Ardestani G, Almazan MLP. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS One 2020; 15:e0235506. [PMID: 32603337 PMCID: PMC7326231 DOI: 10.1371/journal.pone.0235506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
The brown planthopper (Nilapavata lugens: BPH) and whitebacked planthopper (Sogatella furcifera: WBPH) co-occur as the principal pests of rice in Asia. A review of previous studies suggests that the two species have similar temperature tolerances and similar temperature thresholds for development. However, the distribution and seasonality of WBPH suggest that its temperature optima for performance (survival, oviposition and growth) may be lower than for BPH. We compared adult longevity, oviposition, nymph survival and development success, as well as nymph biomass in both species across a gradient of constant temperatures from 15°C-40°C, at 5°C intervals. The most suitable temperatures for oviposition, nymph biomass and development success were 5-10°C lower for WBPH than for BPH. Furthermore, compared to BPH, WBPH demonstrated clear differences in oviposition on different rice subspecies and on rice at different growth stages at 25°C and 30°C, but not at other temperatures. The results suggest that aspects of herbivore performance within tolerable temperature ranges, which are not often included in temperature models, may be more useful than thermal tolerances or development thresholds in predicting the effects of global warming on pest damage to crops.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, Co. Cork, Ireland
| | - Arriza Arida
- International Rice Research Institute, Metro Manila, Philippines
| | - Goli Ardestani
- International Rice Research Institute, Metro Manila, Philippines
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
| | | |
Collapse
|
9
|
Ali MP, Bari MN, Haque SS, Kabir MMM, Nowrin F, Choudhury TR, Mankin RW, Ahmed N. Response of a rice insect pest, Scirpophaga incertulas (Lepidoptera: Pyralidae) in warmer world. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00055-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Increases in global mean temperature, changes in rainfall patterns, and extreme climatic events are expected results of climate change. The individual effects of elevated temperature and precipitation on insect pests due to the impact of climate change have been widely modeled individually but their combined effects are poorly understood.
Results
Ten years of monthly abundance of an important economic rice insect pest, the rice yellow stem borer (YSB), Scirpophaga incertulas Walker (Lepidoptera: Pyralidae), was modeled in relation to temperature and rainfall using cross-correlation functions, general linear models, ARIMA models and simple linear regressions. The results suggested that increasing temperature and rainfall separately had a positive effect on growth rate of YSB. However, the combined effect of high temperature and rainfall was negative Temperature affected abundance of YSB negatively at high rainfall, but positively at intermediate to low rainfall level. The growth rate of YSB was found to be high at relatively low temperature and abundant rainfall.
Conclusion
The combined effects of temperature and rainfall showed a quadratic response of YSB abundance, which indicated that outbreak risk of YSB may be reduced if climate change results in increasing temperature and rainfall. It should be noted that we could address only a few of the important factors which could influence our model prediction.
Collapse
|
10
|
Wang C, Fei M, Meng L, Harvey JA, Li B. Effects of elevated CO 2 and temperature on survival and wing dimorphism of two species of rice planthoppers (Hemiptera: Delphacidae) under interaction. PEST MANAGEMENT SCIENCE 2020; 76:2087-2094. [PMID: 31944534 DOI: 10.1002/ps.5747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anthropogenic climate change (ACC) may have significant impacts on insect herbivore communities including pests. Two of the most important climate-change related factors are increased atmospheric concentrations of carbon dioxide (CO2 ), and increasing mean global temperature. Although increasing attention is being paid to the biological and ecological effects of ACC, important processes such as interspecific interaction between insect herbivores have been little explored. Here, in a field experiment using the FACE (free-air CO2 enrichment) system, we investigated the effect of elevated CO2 and temperature on survival and wing dimorphism of two species of rice planthoppers, Laodelphax striatellus and Nilaparvata lugens under interaction. RESULTS The two species were grouped into five treatments of relative density (0/50, 13/37, 25/25, and 37/13, 50/0), each of which was allocated to one of a factorial combination of two CO2 concentrations and two temperature treatments (elevated and ambient levels). Our results revealed that climatic treatment has no effects on survivorship of interspecific competing planthoppers. However, climatic treatment affected wing-form of planthoppers under interspecific interaction. For females of N. lugens, in the 37/13 ratio, proportion macropterours form was lower under elevated CO2 + temperature than under the ambient environment or than under elevated temperature. For females of L. striatellus, proportion macropterous form did not differ among climatic treatments at each ratio treatment. CONCLUSION These findings illustrate that climate change-related factors, by affecting the macropetry of interspecific competing planthoppers, may influence planthopper fitness. We provide new information that could assist with forecasting outbreaks of these migratory pests. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiyun Wang
- Department of Entomology, College of Plant Protection, Nanjing Agriculture University, Nanjing, P. R. China
| | - Minghui Fei
- Department of Entomology, College of Plant Protection, Nanjing Agriculture University, Nanjing, P. R. China
| | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agriculture University, Nanjing, P. R. China
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agriculture University, Nanjing, P. R. China
| |
Collapse
|
11
|
Predicting Rice Pest Population Occurrence with Satellite-Derived Crop Phenology, Ground Meteorological Observation, and Machine Learning: A Case Study for the Central Plain of Thailand. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The brown planthopper Nilaparvata lugens (BPH) is one of the most harmful insect pests in rice paddy fields, which causes considerable yield loss and consequent economic problems, particularly in the central plain of Thailand. Accurate and timely forecasting of pest population incidence would support farmers in planning effective mitigation. In this study, artificial neural network (ANN), random forest (RF) and classic linear multiple regression (MLR) analyses were applied and compared to forecast the BPH population using weather and host-plant phenology factors during the crop dry season from 2006 to 2016 in the central plain of Thailand. Data from satellite earth observation was used to monitor crop phenology factors affecting BPH population density. An ANN model with integrated ground-based meteorological variables and satellite-derived host plant variables was more accurate for short-term forecasting of the peak abundance of BPH when compared with RF and MLR, according to a reasonably validating dataset (RMSE of natural log-transformed (ln) BPH light trap catches = 1.686, 1.737, and 2.015, respectively). This finding indicates that the utilization of ground meteorological observations, satellite-derived NDVI time series, and ANN have the potential to predict BPH population density in support of integrated pest management programs. We expect the results from this study can be applied in conjunction with the satellite-based rice monitoring system developed by the Geo-Informatic and Space Technology Development Agency of Thailand (GISTDA; http://rice.gistda.or.th) to support an effective pest early warning system.
Collapse
|
12
|
Mao K, Jin R, Li W, Ren Z, Qin X, He S, Li J, Wan H. The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:80-86. [PMID: 31027584 DOI: 10.1016/j.pestbp.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of insecticides is associated with a variety of factors including temperature, and global warming is bound to lead to the outbreak of pests; therefore, it is important to study the influence of temperature on insecticide toxicity and pest control. In this study, the influence of temperature on the toxicity of insecticides to Nilaparvata lugens (BPH) was determined. The results showed that the sensitivity of BPH to cycloxaprid (LC50 = 42.5-0.388 mg/L), nitenpyram (LC50 = 3.49-0.187 mg/L), triflumezopyrim (LC50 = 0.354-0.0533 mg/L) and chlorpyrifos (LC50 = 36.3-7.41 mg/L) increased significantly when the temperature changed from 18 °C to 36 °C. BPH sensitivity to etofenprox (LC50 = 9.04-54.2 mg/L) was also affected by temperature. Additionally, the feeding amount and the activities of three detoxification enzymes [cytochrome P450 (P450), glutathione S-transferase (GST) and carboxylesterase (CarE)] of BPH at different temperatures were also measured. The feeding amounts were positively correlated with temperature increases while the activities of P450 and GST were significantly inhibited. The correlation analysis showed that changes in P450 activity (but not GST activity) were closely related to the sensitivity of BPH to cycloxaprid, nitenpyram, chlorpyrifos, and etofenprox according to the variation in temperatures. This study provides a theoretical basis for the rational use of chemical pesticides under the global warming trend and provides a reference for the integrated management of BPH in the field.
Collapse
Affiliation(s)
- Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenhao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueying Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
13
|
|
14
|
Rashid MM, Ahmed N, Jahan M, Islam KS, Nansen C, Willers JL, Ali MP. Higher Fertilizer Inputs Increase Fitness Traits of Brown Planthopper in Rice. Sci Rep 2017; 7:4719. [PMID: 28680158 PMCID: PMC5498570 DOI: 10.1038/s41598-017-05023-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Rice (Oryza sativa L.) is the primary staple food source for more than half of the world's population. In many developing countries, increased use of fertilizers is a response to increase demand for rice. In this study, we investigated the effects of three principal fertilizer components (nitrogen, phosphorus and potassium) on the development of potted rice plants and their effects on fitness traits of the brown planthopper (BPH) [Nilaparvata lugens (Stål) (Homoptera: Delphacidae)], which is a major pest of rice in Bangladesh and elsewhere. Compared to low fertilizer inputs, high fertilizer treatments induced plant growth but also favored BPH development. The BPH had higher survival, developed faster, and the intrinsic rate of natural increase (r m ) was higher on well-fertilized than under-fertilized plants. Among the fertilizer inputs, nitrogen had the strongest effect on the fitness traits of BPH. Furthermore, both the "Plant vigor hypothesis" and the "Plant stress hypothesis" were supported by the results, the former hypothesis more so than the latter. These hypotheses suggest that the most suitable/attractive hosts for insect herbivores are the most vigorous plants. Our findings emphasized that an exclusive focus on yield increases through only enhanced crop fertilization may have unforeseen, indirect, effects on crop susceptibility to pests, such as BPH.
Collapse
Affiliation(s)
- M M Rashid
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - N Ahmed
- Entomology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - M Jahan
- Department of Entomology, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - K S Islam
- Department of Entomology, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - C Nansen
- Department of Entomology and Nematology, UC Davis Briggs Hall, Room 367, Davis, CA, USA.,State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - J L Willers
- United States Department of Agriculture, Agricultural Research Service, Southern Insect Management Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS, 38776, USA.
| | - M P Ali
- Entomology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| |
Collapse
|
15
|
Managing Water and Soils to Achieve Adaptation and Reduce Methane Emissions and Arsenic Contamination in Asian Rice Production. WATER 2016. [DOI: 10.3390/w8040141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Matsukura K, Yoshida K, Kumashiro S, Matsumura M. Future risk of the maize orange leafhopper, Cicadulina bipunctata, and maize wallaby ear symptom in temperate Japan. POPUL ECOL 2016. [DOI: 10.1007/s10144-015-0535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Silencing a sugar transporter gene reduces growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Sci Rep 2015; 5:12194. [PMID: 26185058 PMCID: PMC4505327 DOI: 10.1038/srep12194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, sugar transporter gene 6 (Nlst6) is a facilitative glucose/fructose transporter (often called a passive carrier) expressed in midgut that mediates sugar transport from the midgut lumen to hemolymph. The influence of down regulating expression of sugar transporter genes on insect growth, development, and fecundity is unknown. Nonetheless, it is reasonable to suspect that transporter-mediated uptake of dietary sugar is essential to the biology of phloem-feeding insects. Based on this reasoning, we posed the hypothesis that silencing, or reducing expression, of a BPH sugar transporter gene would be deleterious to the insects. To test our hypothesis, we examined the effects of Nlst6 knockdown on BPH biology. Reducing expression of Nlst6 led to profound effects on BPHs. It significantly prolonged the pre-oviposition period, shortened the oviposition period, decreased the number of eggs deposited and reduced body weight, compared to controls. Nlst6 knockdown also significantly decreased fat body and ovarian (particularly vitellogenin) protein content as well as vitellogenin gene expression. Experimental BPHs accumulated less fat body glucose compared to controls. We infer that Nlst6 acts in BPH growth and fecundity, and has potential as a novel target gene for control of phloem-feeding pest insects.
Collapse
|