1
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
2
|
Riegerová P, Brejcha J, Bezděková D, Chum T, Mašínová E, Čermáková N, Ovsepian SV, Cebecauer M, Štefl M. Expression and Localization of AβPP in SH-SY5Y Cells Depends on Differentiation State. J Alzheimers Dis 2021; 82:485-491. [PMID: 34057078 PMCID: PMC8385523 DOI: 10.3233/jad-201409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Neuroblastoma cell line SH-SY5Y, due to its capacity to differentiate into neurons, easy handling, and low cost, is a common experimental model to study molecular events leading to Alzheimer's disease (AD). However, it is prevalently used in its undifferentiated state, which does not resemble neurons affected by the disease. Here, we show that the expression and localization of amyloid-β protein precursor (AβPP), one of the key molecules involved in AD pathogenesis, is dramatically altered in SH-SY5Y cells fully differentiated by combined treatment with retinoic acid and BDNF. We show that insufficient differentiation of SH-SY5Y cells results in AβPP mislocalization.
Collapse
Affiliation(s)
- Petra Riegerová
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jindřich Brejcha
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Bezděková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Chum
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Mašínová
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nikola Čermáková
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Saak V. Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Štefl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Guha S, Johnson GVW, Nehrke K. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Mol Neurobiol 2020; 57:5103-5120. [PMID: 32851560 PMCID: PMC7544674 DOI: 10.1007/s12035-020-02084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, 14642, NY, USA
| |
Collapse
|
4
|
Xiang J, Wang ZH, Ahn EH, Liu X, Yu SP, Manfredsson FP, Sandoval IM, Ju G, Wu S, Ye K. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer's disease pathologies. Proc Natl Acad Sci U S A 2019; 116:9094-9102. [PMID: 31004063 PMCID: PMC6500177 DOI: 10.1073/pnas.1901348116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BDNF, an essential trophic factor implicated in synaptic plasticity and neuronal survival, is reduced in Alzheimer's disease (AD). BDNF deficiency's association with Tau pathology in AD is well documented. However, the molecular mechanisms accounting for these events remain incompletely understood. Here we show that BDNF deprivation triggers Tau proteolytic cleavage by activating δ-secretase [i.e., asparagine endopeptidase (AEP)], and the resultant Tau N368 fragment binds TrkB receptors and blocks its neurotrophic signals, inducing neuronal cell death. Knockout of BDNF or TrkB receptors provokes δ-secretase activation via reducing T322 phosphorylation by Akt and subsequent Tau N368 cleavage, inducing AD-like pathology and cognitive dysfunction, which can be restored by expression of uncleavable Tau N255A/N368A mutant. Blocking the Tau N368-TrkB complex using Tau repeat-domain 1 peptide reverses this pathology. Thus, our findings support that BDNF reduction mediates Tau pathology via activating δ-secretase in AD.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032 Shaanxi, People's Republic of China
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Shan-Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Ivette M Sandoval
- Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Gong Ju
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032 Shaanxi, People's Republic of China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032 Shaanxi, People's Republic of China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
5
|
Somatostatin-Mediated Changes in Microtubule-Associated Proteins and Retinoic Acid–Induced Neurite Outgrowth in SH-SY5Y Cells. J Mol Neurosci 2019; 68:120-134. [DOI: 10.1007/s12031-019-01291-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
|
6
|
Ulrich G, Salvadè A, Boersema P, Calì T, Foglieni C, Sola M, Picotti P, Papin S, Paganetti P. Phosphorylation of nuclear Tau is modulated by distinct cellular pathways. Sci Rep 2018; 8:17702. [PMID: 30531974 PMCID: PMC6286375 DOI: 10.1038/s41598-018-36374-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 11/28/2022] Open
Abstract
Post-translational protein modification controls the function of Tau as a scaffold protein linking a variety of molecular partners. This is most studied in the context of microtubules, where Tau regulates their stability as well as the distribution of cellular components to defined compartments. However, Tau is also located in the cell nucleus; and is found to protect DNA. Quantitative assessment of Tau modification in the nucleus when compared to the cytosol may elucidate how subcellular distribution and function of Tau is regulated. We undertook an unbiased approach by combing bimolecular fluorescent complementation and mass spectrometry in order to show that Tau phosphorylation at specific residues is increased in the nucleus of proliferating pluripotent neuronal C17.2 and neuroblastoma SY5Y cells. These findings were validated with the use of nuclear targeted Tau and subcellular fractionation, in particular for the phosphorylation at T181, T212 and S404. We also report that the DNA damaging drug Etoposide increases the translocation of Tau to the nucleus whilst reducing its phosphorylation. We propose that overt phosphorylation of Tau, a hallmark of neurodegenerative disorders defined as tauopathies, may negatively regulate the function of nuclear Tau in protecting against DNA damage.
Collapse
Affiliation(s)
- Giorgio Ulrich
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paul Boersema
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, Zurich, Switzerland
| | - Tito Calì
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Chiara Foglieni
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Martina Sola
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, Zurich, Switzerland
| | - Stéphanie Papin
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland.
| |
Collapse
|
7
|
Herb Formula ZhenRongDan Balances Sex Hormones, Modulates Organ Atrophy, and Restores ER α and ER β Expressions in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5896398. [PMID: 30008786 PMCID: PMC6020479 DOI: 10.1155/2018/5896398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022]
Abstract
Herb mixtures are widely used for treatment of the menopausal syndrome long before the hormonal therapy. However, there is insufficient data for herb remedies in treating menopausal syndromes. Here we aim to investigate the effect of ZhenRongDan (ZRD) in balancing female hormones, regulating expression of estrogen receptors (ERs), and preventing organ atrophy in menopausal rats. Rats that underwent bilateral ovariectomy were used in the experiments; the effects of ZRD on serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and estradiol (E2) levels were observed. Histology of vagina and ERs expression in vagina, uterus, and adrenal gland were also examined. ELISAs were used to analyze the changes of FSH, LH, PRL, and E2 in serum, and the morphological changes of the cervical epithelium cells were observed by Hematoxylin & Eosin (H&E) staining. Immunohistochemistry and western blot were applied to detect estrogen receptors subtypes alpha (ERα) and beta (ERβ) expression in vagina, uterus, and adrenal gland. We found that ZRD could significantly reduce the weight of the adrenal gland and increase the weight of the uterus. It could decrease the release of FSH and LH as well as increasing E2 and PRL levels. Furthermore, ZRD could improve the number of cervical vaginal epithelial cells and increase the thickness of the vaginal wall. And the altered expressions of ERα and ERβ are also restored by ZRD. ZRD could obviously relieve the endocrine disorders, modulate organ atrophy, and restore ERα and ERβ expression in the ovariectomized rat model.
Collapse
|
8
|
Young JE, Fong LK, Frankowski H, Petsko GA, Small SA, Goldstein LSB. Stabilizing the Retromer Complex in a Human Stem Cell Model of Alzheimer's Disease Reduces TAU Phosphorylation Independently of Amyloid Precursor Protein. Stem Cell Reports 2018; 10:1046-1058. [PMID: 29503090 PMCID: PMC5919412 DOI: 10.1016/j.stemcr.2018.01.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Developing effective therapeutics for complex diseases such as late-onset, sporadic Alzheimer’s disease (SAD) is difficult due to genetic and environmental heterogeneity in the human population and the limitations of existing animal models. Here, we used hiPSC-derived neurons to test a compound that stabilizes the retromer, a highly conserved multiprotein assembly that plays a pivotal role in trafficking molecules through the endosomal network. Using this human-specific system, we have confirmed previous data generated in murine models and show that retromer stabilization has a potentially beneficial effect on amyloid beta generation from human stem cell-derived neurons. We further demonstrate that manipulation of retromer complex levels within neurons affects pathogenic TAU phosphorylation in an amyloid-independent manner. Taken together, our work demonstrates that retromer stabilization is a promising candidate for therapeutic development in AD and highlights the advantages of testing novel compounds in a human-specific, neuronal system. A retromer stabilizing molecule reduces Aβ and phospho-TAU levels in human neurons The molecule reduces Aβ and pTau in both SAD and FAD cell lines Retromer stabilization reduces tau phosphorylation in an APP-independent manner Confirms studies in mice and highlights hiPSCs as a preclinical model
Collapse
Affiliation(s)
- Jessica E Young
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Lauren K Fong
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Harald Frankowski
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Gregory A Petsko
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
9
|
St-Cyr Giguère F, Attiori Essis S, Chagniel L, Germain M, Cyr M, Massicotte G. The sphingosine-1-phosphate receptor 1 agonist SEW2871 reduces Tau-Ser262 phosphorylation in rat hippocampal slices. Brain Res 2017; 1658:51-59. [DOI: 10.1016/j.brainres.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
|
10
|
Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat 2016; 80:19-26. [PMID: 27914953 DOI: 10.1016/j.jchemneu.2016.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
Intracellular aggregation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is a major neuropathological hallmark of taupathies such as Alzheimer's disease. Okadaic acid (OKA) is a potent inhibitor of PP2A, leading to abnormal tau phosphorylation. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is selectively downregulated in AD. In this study, we investigated the effects of OKA induced tau hyperphosphorylation on secreted and cellular levels of BDNF in primary cortical neurons that were treated with 25nM OKA. Tau phosphorylation at threonine 231 (Thr231) sites was assessed by Western blot using antibodies against phospho-Thr231. Non-phosphorylated tau protein was detected with the Tau-1 antibody. Levels of BDNF secreted to the culture medium were determined by ELISA at the 8th and 24th hours of treatment. Cellular localization and protein expression of BDNF and tau were assessed by immunofluorescent labeling and fluorescent intensity measurements at 24h of treatment. Tau hyperphosphorylation was confirmed with increase in Thr231 and the decrease in Tau-1 signals after 8h of OKA treatment, compared with the control groups, secreted BDNF levels in the OKA-treated group were significantly lower after 24h of treatment but were not significantly different at 8h of treatment. BDNF immunoreactivity was seen in cytoplasm and neurites of the neurons in control group. BDNF immunoreactivity significantly decreased in the OKA treated group and this attenuation was significant especially at neurites. Our results suggest that the decrease in BDNF secretion and the BDNF expression might depend on the disruption of microtubule structure caused by tau hyperphosphorylation.
Collapse
|
11
|
The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex. Neural Plast 2016; 2016:3707406. [PMID: 26881107 PMCID: PMC4735929 DOI: 10.1155/2016/3707406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.
Collapse
|
12
|
Kadri F, Pacifici M, Wilk A, Parker-Struckhoff A, Del Valle L, Hauser KF, Knapp PE, Parsons C, Jeansonne D, Lassak A, Peruzzi F. HIV-1-Tat Protein Inhibits SC35-mediated Tau Exon 10 Inclusion through Up-regulation of DYRK1A Kinase. J Biol Chem 2015; 290:30931-46. [PMID: 26534959 PMCID: PMC4692221 DOI: 10.1074/jbc.m115.675751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 transactivator protein Tat is implicated in the neuronal damage that contributes to neurocognitive impairment affecting people living with HIV/AIDS. Aberrant splicing of TAU exon 10 results in tauopathies characterized by alterations in the proportion of TAU isoforms containing three (3R) or four (4R) microtubule-binding repeats. The splicing factor SC35/SRSF2 binds to nuclear RNA and facilitates the incorporation of exon 10 in the TAU molecule. Here, we utilized clinical samples, an animal model, and neuronal cell cultures and found that Tat promotes TAU 3R up-regulation through increased levels of phosphorylated SC35, which is retained in nuclear speckles. This mechanism involved Tat-mediated increased expression of DYRK1A and was prevented by DYRK1A silencing. In addition, we found that Tat associates with TAU RNA, further demonstrating that Tat interferes with host RNA metabolism in the absence of viral infection. Altogether, our data unravel a novel mechanism of Tat-mediated neuronal toxicity through dysregulation of the SC35-dependent alternative splicing of TAU exon 10. Furthermore, the increased immunostaining of DYRK1A in HIV+ brains without pathology points at dysregulation of DYRK1A as an early event in the neuronal complications of HIV infection.
Collapse
Affiliation(s)
- Ferdous Kadri
- From the Department of Medicine, Stanley S. Scott Cancer Center, and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112 and
| | - Marco Pacifici
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| | - Anna Wilk
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| | | | - Luis Del Valle
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| | | | - Pamela E Knapp
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23284
| | | | - Duane Jeansonne
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| | - Adam Lassak
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| | - Francesca Peruzzi
- From the Department of Medicine, Stanley S. Scott Cancer Center, and
| |
Collapse
|
13
|
Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. J Biol Chem 2015; 291:2664-81. [PMID: 26655721 DOI: 10.1074/jbc.m115.679985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability.
Collapse
Affiliation(s)
- Santanu Adhikary
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Moitri Basu
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Siddhartha Roy
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|
14
|
Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes. PLoS One 2015; 10:e0136443. [PMID: 26291709 PMCID: PMC4546295 DOI: 10.1371/journal.pone.0136443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.
Collapse
|