1
|
Dutta D, Hoque AA, Paul B, Begum S, Sarkar UA, Mukherjee B. Molecular insights into the antineoplastic potential of apigenin and its derivatives: paving the way for nanotherapeutic innovations. Expert Opin Drug Deliv 2025; 22:639-658. [PMID: 40063738 DOI: 10.1080/17425247.2025.2477664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Apigenin, a widely distributed bioactive flavonoid, has recently gained excellent attention among researchers as an effective anticancer drug that can alternate cancer-signaling pathways, induce programmed cell death, and reduce tumor growth in various cancer types. Despite its impressive anti-neoplastic activity, high hydrophobicity, and nonspecific biodistribution make apigenin difficult for pharmaceutical applications. AREAS COVERED We highlighted the therapeutic potential of apigenin and its derivatives in different cancer types, along with their mechanism of action. Nanoengineered drug delivery systems have remarkable applications in minimizing drug degradation and enhancing the therapeutic efficacy of drugs with sustained release, prolonged blood retention time, and reduced off-target toxicities. This review has evaluated and explored the molecular interactions of this novel flavonoid in various cancer signaling pathways to selectively inhibit neoplastic development in multiple cancer types. To ensure the complete coverage of the explored research area, Google Scholar, PubMed, and Web of Science were used to find not only the most relevant but also connected and similar articles. EXPERT OPINION A comprehensive overview of apigenin nanotherapy in cancer treatment can establish a platform to overcome its difficulties for pharmaceutical applications and efficient clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shahnaz Begum
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Uday Aditya Sarkar
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Najafi A, Mohammadi H, Sharifi SD, Rahimi A. Apigenin supplementation substantially improves rooster sperm freezability and post-thaw function. Sci Rep 2024; 14:4527. [PMID: 38402367 PMCID: PMC10894267 DOI: 10.1038/s41598-024-55057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
This pioneering research investigated apigenin potential to augment rooster sperm cryosurvival in an extender model. Apigenin is a natural antioxidant flavonoid showing promise for improved post-thaw sperm function. However, its effects on avian semen cryopreservation remain unexplored. This first study supplemented rooster sperm Lake extender with 0, 50, 100, 200, 400 μmol/L apigenin to determine the optimal concentrations for post-thaw quality. Supplementation with 100 μmol/L apigenin resulted in significant enhancements in total motility (from 41.5% up to 71.5%), progressive motility (18.1% to 29.1%) (p < 0.05), membrane integrity (40% to 68%), mitochondrial function (p < 0.001), viability (37% to 62%) and total antioxidant capacity (p < 0.001) compared to the control. It also substantially reduced percentages of abnormal morphology, reactive oxygen species and apoptosis (p < 0.001). Although 200 μmol/L apigenin significantly enhanced some attributes, effects were markedly lower than 100 μmol/L. Higher doses did not improve cryoprotective parameters. This indicates 100 μmol/L as the optimal apigenin concentration. This represents the first report of apigenin protecting rooster sperm from cryodamage. The natural antioxidant improved post-thaw sperm quality, likely by suppressing oxidative stress and apoptosis. Apigenin shows promise for enhancing rooster sperm cryosurvival.
Collapse
Affiliation(s)
- Abouzar Najafi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Amin Rahimi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
- Chaltasian Agri.-Animal Production Complex, Varamin, Tehran, Iran
| |
Collapse
|
3
|
Zhu L, Zhang H, Zhang X, Xia L, Zhang J. Research progress on antisepsis effect of apigenin and its mechanism of action. Heliyon 2023; 9:e22290. [PMID: 38045180 PMCID: PMC10689953 DOI: 10.1016/j.heliyon.2023.e22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Sepsis is an abnormal immune response to infections and can trigger MODS. Despite the availability of advanced clinical techniques and monitoring methods, the mortality rate of the disease is still high, posing a heavy burden to patients and the whole society. Hence, the research on novel drugs and targets is particularly important. As a natural phyto-flavonoid, apigenin boasts anti-inflammatory, antioxidant, anti-cancer, anti-viral, and anti-bacterial effects. Besides, in-vitro experiments and animal models have also revealed the crucial role of apigenin in the treatment of infectious diseases and sepsis. In this context, this paper reviews the pharmacological activity and underlying mechanisms of action of apigenin in sepsis treatment and organ protection, as well as the potential apigenin-based therapeutic strategies against sepsis. Therefore, this review will shed new light on the scientific research and clinical treatment of sepsis.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Hairong Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - JiaJia Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| |
Collapse
|
4
|
Mroczek J, Pikula S, Suski S, Weremiejczyk L, Biesaga M, Strzelecka-Kiliszek A. Apigenin Modulates AnxA6- and TNAP-Mediated Osteoblast Mineralization. Int J Mol Sci 2022; 23:13179. [PMID: 36361965 PMCID: PMC9658728 DOI: 10.3390/ijms232113179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/21/2023] Open
Abstract
Mineralization-competent cells like osteoblasts and chondrocytes release matrix vesicles (MVs) which accumulate Ca2+ and Pi, creating an optimal environment for apatite formation. The mineralization process requires the involvement of proteins, such as annexins (Anx) and tissue-nonspecific alkaline phosphatase (TNAP), as well as low molecular-weight compounds. Apigenin, a flavonoid compound, has been reported to affect bone metabolism, but there are doubts about its mechanism of action under physiological and pathological conditions. In this report, apigenin potency to modulate annexin A6 (AnxA6)- and TNAP-mediated osteoblast mineralization was explored using three cell lines: human fetal osteoblastic hFOB 1.19, human osteosarcoma Saos-2, and human coronary artery smooth muscle cells HCASMC. We compared the mineralization competence, the morphology and composition of minerals, and the protein distribution in control and apigenin-treated cells and vesicles. The mineralization ability was monitored by AR-S/CPC analysis, and TNAP activity was determined by ELISA assay. Apigenin affected the mineral structure and modulated TNAP activity depending on the concentration. We also observed increased mineralization in Saos-2 cells. Based on TEM-EDX, we found that apigenin influenced the mineral composition. This flavonoid also disturbed the intracellular distribution of AnxA6 and TNAP, especially blocking AnxA6 aggregation and TNAP attachment to the membrane, as examined by FM analysis of cells and TEM-gold analysis of vesicles. In summary, apigenin modulates the mineralization process by regulating AnxA6 and TNAP, as well as through various effects on normal and cancer bone tissues or atherosclerotic soft tissue.
Collapse
Affiliation(s)
- Joanna Mroczek
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Szymon Suski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Lilianna Weremiejczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Magdalena Biesaga
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | | |
Collapse
|
5
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
6
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
7
|
Sarigul Sezenoz A, Akkoyun I, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G, Oto S. Antiproliferative and Mitochondrial Protective Effects of Apigenin in an Oxygen-Induced Retinopathy In Vivo Mouse Model. J Ocul Pharmacol Ther 2021; 37:580-590. [PMID: 34665015 DOI: 10.1089/jop.2021.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose: To investigate the effects of a common dietary flavonoid apigenin on retinal endothelial cell proliferation, retinal morphological structure, and apoptotic cell death in an oxygen-induced retinopathy (OIR) mouse model to evaluate the possibility of the use of apigenin in the treatment of ocular neovascular diseases (ONDs). Methods: Ninety-six newborn C57BL/6J mice were included. Eight groups were randomized, each including 12 mice. Two negative control groups were kept in room air: the first without any injection and the second received intravitreal (IV) dimethyl sulfoxide (DMSO), which is the solvent we used. The OIR groups were exposed to 75% ± 2% oxygen from postnatal days (PD) 7 to 12. On PD 12, the mice were randomly assigned to 6 groups: 2 OIR control groups (1 received no injection, 1 received IV-DMSO), 2 IV-apigenin groups (10 and 20 μg/mL), and 2 intraperitoneal (IP)-apigenin groups (10 and 20 mg/kg). We quantified retinal endothelial cell proliferation by counting neovascular tufts in cross-sections and examined histological and ultrastructural changes through light and electron microscopy. We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL). Results: We detected a significant increase in endothelial cell proliferation in the OIR groups. Groups receiving apigenin, both IP and IV, had significant decreases in endothelial cells, atypical mitochondrion count, and apoptotic cells compared with the groups receiving no injections. None of the apigenin-injected groups revealed cystic degeneration or cell loss. Conclusions: Apigenin suppresses neovascularization, has antiapoptotic and antioxidative effects in an OIR mouse model, and can be considered a promising agent for treating OND. Clinical trial (Project number: DA15/19).
Collapse
Affiliation(s)
| | - Imren Akkoyun
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Attila Dagdeviren
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Didem Bacanli
- Baskent University Laboratory Animal Breeding and Research Center, Ankara, Turkey
| | - Gursel Yilmaz
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Sibel Oto
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Xu L, Zaky MY, Yousuf W, Ullah A, Abdelbaset GR, Zhang Y, Ahmed OM, Liu S, Liu H. The Anticancer Potential of Apigenin Via Immunoregulation. Curr Pharm Des 2021; 27:479-489. [PMID: 32660399 DOI: 10.2174/1381612826666200713171137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Apigenin is an edible flavonoid widely distributed in natural plants, including most vegetables and fruits. Previous studies have revealed that apigenin possesses multiple biological functions by demonstrating antiinflammatory, anti-oxidative, anti-bacterial, anti-viral, anti-tumor and cardiovascular protective effects. Furthermore, recent progressions have disclosed a novel perspective of the anti-cancer roles of apigenin through its immunoregulatory functions. With the rapid progression of the groundbreaking strategies being developed for cancer immunotherapy, its immunoregulatory roles are being recognized as intriguing features of the multifaceted apigenin. However, the current understanding of this emerging role of apigenin still remains limited. Therefore, in the present review, recent advances on the immunoregulatory properties of apigenin in various diseases with a special focus on neoplasm, are summarized. Clinical strategies of cancer immunotherapy are briefly introduced and findings on apigenin linked to immunoregulatory roles in immunotherapy-associated aspects are brought together. The bioactivity, bioavailability, toxicity and potential of apigenin, to be considered as a therapeutic agent in anti-tumor immunotherapy, is discussed. Disclosed molecular mechanisms underlying the immunoregulatory roles of apigenin in cancer immunotherapy are also summarized. Based on findings from the literature, apigenin has the potential to serve as a prospective adjuvant for anti-cancer immunotherapy and warrants further investigations.
Collapse
Affiliation(s)
- Lu Xu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mohamed Y Zaky
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Waleed Yousuf
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anwar Ullah
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Gehad R Abdelbaset
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Yingqiu Zhang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Osama M Ahmed
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Shuyan Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Hussain T, Murtaza G, Yang H, Kalhoro MS, Kalhoro DH. Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases. Curr Pharm Des 2020; 26:2610-2619. [PMID: 32268861 DOI: 10.2174/1381612826666200408101550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. METHODS This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. RESULTS Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. CONCLUSION Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan,Pakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore, Islamabad, Pakistan
| | - Ghulam Murtaza
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences (SBBUVAS), Sakrand, 67210, Sindh, Pakistan
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Muhammad S Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, 12120, Thailand
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh
Agriculture University, Tandojam, Sindh, 70050, Pakistan
| |
Collapse
|
10
|
Mona A.M. Abo-Zeid, Farghaly AA, Hassan EM, Abdel-Samie NS. Phenolic Compounds of Codiaeum variegatum Spirale Lessened Cytotoxic and Genotoxic Effects of Mitomycin C in Mice Somatic and Germ Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Che DN, Cho BO, Shin JY, Kang HJ, Kim JS, Oh H, Kim YS, Jang SI. Apigenin Inhibits IL-31 Cytokine in Human Mast Cell and Mouse Skin Tissues. Molecules 2019; 24:molecules24071290. [PMID: 30987029 PMCID: PMC6479805 DOI: 10.3390/molecules24071290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/26/2022] Open
Abstract
IL-31 is a recently discovered cytokine that is produced not only in T-cells but also in mast cells. It is strongly implicated to play a key role in inflammatory diseases and in the pathogenesis of itch in atopic dermatitis. Apigenin, a flavonoid of plant origin has numerous biological applications. In this study, we showed that apigenin modulates IL-31 mRNA, protein expression, and release in stimulated human mast (HMC-1) by inhibiting the phosphorylation activation of MAPK and NF-κB. To determine whether apigenin has similar effects in vivo, using Compound 48/80, we developed an atopic dermatitis itch model in mice and found an increase in IL-31 expression in the skin. We also revealed that apigenin prevents the infiltration and degranulation of mast cells and suppressed mRNA and protein expression of IL-31 in the skin of mice. These results provide a new suggestion of the potential applicability of apigenin for treatment of various inflammatory diseases and itch mediated by IL-31.
Collapse
Affiliation(s)
- Denis Nchang Che
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea.
| | - Byoung Ok Cho
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea.
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Korea.
| | - Jae Young Shin
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Korea.
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Korea.
| | - Ji-Su Kim
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea.
| | - Hyeonhwa Oh
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
| | - Seon Il Jang
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea.
- Research Institute, Ato Q&A Co., Ltd., Jeonju-si, Jeollabuk-do 54840, Korea.
| |
Collapse
|
13
|
Borgonetti V, Governa P, Montopoli M, Biagi M. Cannabis sativa L. Constituents and Their Role in Neuroinflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180703130525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interest in Cannabis sativa L. phytocomplex as a medicinal tool is a recently-emerging topic. Neurodegenerative diseases represent a promising field of application for cannabis and its preparations, as most of this pathologic conditions relies on an inflammatory etiology. Several cannabis constituents display anti-inflammatory effects targeting multiple pathways. In this review, a comprehensive overview of the available literature on C. sativa constituents activities in neuroinflammation is given. On the basis that the anti-inflammatory activity of cannabis is not attributable to only a single constituent, we discuss the possible advantages of administering the whole phytocomplex in order to fully exploit the “entourage effect” in neuroinflammatory-related conditions.
Collapse
Affiliation(s)
| | | | | | - Marco Biagi
- SIFITLab, Via Laterina 8, 53100 Siena, Italy
| |
Collapse
|
14
|
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel) 2019; 8:antiox8020035. [PMID: 30764536 PMCID: PMC6407021 DOI: 10.3390/antiox8020035] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.
Collapse
Affiliation(s)
- Rashida Ginwala
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
15
|
Kasiri N, Rahmati M, Ahmadi L, Eskandari N. The significant impact of apigenin on different aspects of autoimmune disease. Inflammopharmacology 2018; 26:1359-1373. [PMID: 30229507 DOI: 10.1007/s10787-018-0531-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
Autoimmune diseases are among the highest diseases to diagnose and treat. The current "gold standard" of care for these diseases is immunosuppressive drugs which interfere with overall immune responses; their long-term high-dose treatments would expose the patient to opportunistic, life-threatening and long-term malignant infections. Considering the side effects and toxicity of these drug and also the beneficial effects of herbal compounds among their consumers, the professional investigation on the exact mechanism of the plant's major element has grown much attention in the last years. Apigenin as an extracting compound of plants, such as parsley and celery, which has a variety of biological effects, such as anti-inflammatory, anti-cancer and antioxidant effects. This review is intended to summarize the various effects of Apigenin on several autoimmune diseases which have been worked on so far. The pluralization of the obtained results has revealed Apigenin's effects on pro-inflammatory cytokines such as IL-1β, chemokines such as ICAM-1, immune cells proliferation such as T cells, apoptosis, and various signaling pathways. According to these preclinical findings, we recommend that further robust unbiased studies should be done to use Apigenin as a supplementary or therapeutic element in autoimmune disease.
Collapse
Affiliation(s)
- Neda Kasiri
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Mahshid Rahmati
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Leila Ahmadi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Box 8174673461, Isfahan, Iran. .,Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Kashyap D, Sharma A, Tuli HS, Sak K, Garg VK, Buttar HS, Setzer WN, Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018; 48:457-471. [DOI: 10.1016/j.jff.2018.07.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Luteolin Induces Apoptosis and Autophagy in Mouse Macrophage ANA-1 Cells via the Bcl-2 Pathway. J Immunol Res 2018; 2018:4623919. [PMID: 30246034 PMCID: PMC6136535 DOI: 10.1155/2018/4623919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Plants rich in luteolin have been used as Chinese traditional medicines for inflammatory diseases, hypertension, and cancer. However, little is known about the effect of luteolin on the apoptosis or autophagy of the macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of luteolin. The viability of the cells was determined by an MTT assay, apoptosis was determined by flow cytometric analysis, the level of cell autophagy was observed by confocal microscopy, and the expression levels of apoptotic or autophagic and antiapoptotic or antiautophagic proteins were detected by Western blot analysis. The results showed that luteolin decreased the viability of ANA-1 cells and induced apoptosis and autophagy. Luteolin induced apoptosis accompanied by downregulation of the expression of Bcl-2 and upregulation of the expression of caspase 3 and caspase 8. And luteolin increased FITC-LC3 punctate fluorescence accompanied by the increased expression levels of LC3-I, ATG7, and ATG12, while it suppressed the expression level of Beclin-1. Luteolin treatment resulted in obvious activation of the p38, JNK, and Akt signaling pathways, which is important in modulating apoptosis and autophagy. Thus, we concluded that luteolin induced the apoptosis and autophagy of ANA-1 cells most likely by regulating the p38, JNK, and Akt pathways, inhibiting the activity of Bcl-2 and Beclin-1 and upregulating caspase 3 and caspase 8 expression. These results provide novel insights into a therapeutic strategy to prevent and possibly treat macrophage-related diseases through luteolin-induced apoptosis and autophagy.
Collapse
|
18
|
Yang J, Pi C, Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 2018; 103:699-707. [PMID: 29680738 DOI: 10.1016/j.biopha.2018.04.072] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Apigenin is a dietary flavonoid with known antioxidant and antitumor effects against several types of cancers by promoting cell death and inducing cell cycle arrest. Apigenin also regulates a variety of intracellular signal transduction pathways during apoptosis or autophagy. However, the precise mechanism underlying the anticancer effects of apigenin in liver cancer remains poorly understood. In this study, we demonstrated that apigenin has anticancer activity against hepatocellular carcinoma cells. Apigenin inhibited the cell growth and induced cell death in a dose- and time-dependent manner in HepG2 cells. We found that apigenin treatment increased the expression of LC3-II and the number of GFP-LC3 puncta. Moreover, inhibition of autophagy with 3-MA and Atg5 gene silencing strengthened apigenin-induced proliferation inhibition and apoptosis. Our data has indicated that apigenin-induced autophagy has a protective effect against cell death. Additionally, apigenin induced apoptosis and autophagy through inhibition of PI3K/Akt/mTOR pathway. Most importantly, in vivo data showed that administration of apigenin decreased tumor growth and autophagy inhibition by 3-MA significantly enhanced the anticancer effect of apigenin. Collectively, our results reveal that apigenin inhibits cell proliferation and induces autophagy via suppressing the PI3K/Akt/mTOR pathway. Our results also suggest combination of autophagy inhibitors and apigenin would be a potential chemotherapeutic strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiali Yang
- Department of Pharmacy, Zaozhuang Mental Health Center, Zaozhuang, 277103, China
| | - Cuicui Pi
- Department of Pharmacy, Zaozhuang Mental Health Center, Zaozhuang, 277103, China
| | - Guanghui Wang
- Department of Pharmacy, Zaozhuang Municipal Hospital, No.41 of Longtou Middle Road, Shizhong District, Zaozhuang, 277100, China.
| |
Collapse
|
19
|
Vrhovac Madunić I, Madunić J, Antunović M, Paradžik M, Garaj-Vrhovac V, Breljak D, Marijanović I, Gajski G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch Pharmacol 2018. [PMID: 29541820 DOI: 10.1007/s00210-018-1486-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apigenin is found in several dietary plant foods such as vegetables and fruits. To investigate potential anticancer properties of apigenin on human breast cancer, ER-positive MCF-7 and triple-negative MDA MB-231 cells were used. Moreover, toxicological safety of apigenin towards normal cells was evaluated in human lymphocytes. Cytotoxicity of apigenin towards cancer cells was evaluated by MTT assay whereas further genotoxic and oxidative stress parameters were measured by comet and lipid peroxidation assays, respectively. In order to examine the type of cell death induced by apigenin, several biomarkers were used. Toxicological safety towards normal cells was evaluated by cell viability and comet assays. After the treatment with apigenin, we observed changes in cell morphology in a dose- (10 to 100 μM) and time-dependent manner. Moreover, apigenin caused cell death in both cell lines leading to significant toxicity and dominantly to apoptosis. Furthermore, apigenin proved to be genotoxic towards the selected cancer cells with a potential to induce oxidative damage to lipids. Of great importance is that no significant cytogenotoxic effects were detected in normal cells. The observed cytogenotoxic and pro-cell death activities of apigenin coupled with its low toxicity towards normal cells indicate that this natural product could be used as a future anticancer modality. Therefore, further analysis to determine the exact mechanism of action and in vivo studies on animal models are warranted.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Josip Madunić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Maja Antunović
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Inga Marijanović
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a/2, 10000, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
20
|
Zhao J, Li X, Xie F, Yang Z, Pan X, Zhu M, Shang P, Nie C, Liu H, Xie J. Immunomodulatory effects of cigarette smoke condensate in mouse macrophage cell line. Int J Immunopathol Pharmacol 2017; 30:315-321. [PMID: 28627972 PMCID: PMC5815266 DOI: 10.1177/0394632017716370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence has demonstrated that the secretion of cytokines may be associated with cigarette smoke-induced immunomodulatory effects, but a comprehensive analysis of the cytokine profile for cigarette smoke condensate (CSC) exposure is lacking. The aims of this study were to (1) examine the release of 20 cytokines induced by CSC from 12 brands of cigarettes in macrophages cells (Ana-1) and (2) to investigate the general characteristics of the immunomodulatory effects of CSC. Luminex technology was used to simultaneously determine the levels of 20 cytokines (interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), keratinocyte-derived Chemokine (KC), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), induced protein 10 (IP-10), tumor necrosis factor α (TNF-α), vascular endothelial growth factor (VEGF), monkine inducible by γ interferon (MIG), and fibroblast growth factor (FGF)-basic) in the supernatants from Ana-1 cells treated with the CSC. The results showed that the release of eight cytokines was altered (IL-5, IL-6, IL-12, TNF-α, VEGF, IP-10, MCP-1, and MIP-1α) compared with the control. These cytokines fall into two major subtypes: proinflammatory cytokines, including IL-5, IL-6, IL-12, TNF-α, and VEGF, and chemokines, including IP-10, MCP-1, and MIP-1α. Compared with control, the remaining 12 cytokines were not significantly affected by CSC from the 12 brands of cigarettes. As a general characteristic, CSC exerts potently suppressive immunomodulatory effects on cytokine production of Ana-1 cells. Proinflammatory cytokines and chemokines may account for or contribute to the immunosuppressive properties of CSC.
Collapse
Affiliation(s)
- Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhihua Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiujie Pan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Maoxiang Zhu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Cong Nie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
21
|
Masuelli L, Benvenuto M, Mattera R, Di Stefano E, Zago E, Taffera G, Tresoldi I, Giganti MG, Frajese GV, Berardi G, Modesti A, Bei R. In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma. Front Pharmacol 2017; 8:373. [PMID: 28674496 PMCID: PMC5474957 DOI: 10.3389/fphar.2017.00373] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Erika Zago
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Gloria Taffera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Giovanni Vanni Frajese
- Department of Sports Science, Human and Health, University of Rome "Foro Italico",Rome, Italy
| | - Ginevra Berardi
- Department of Chemistry, University of Rome "Sapienza",Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy.,Center for Regenerative Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy.,Center for Regenerative Medicine, University of Rome "Tor Vergata",Rome, Italy
| |
Collapse
|
22
|
Arast Y, Seyed Razi N, Seydi E, Naserzadeh P, Nazemi M, Pourahmad J. Selective Toxicity of Non Polar Bioactive Compounds of Persian Gulf Sea Squirt Phallusia Nigra on Skin Mitochondria Isolated from Rat Model of Melanoma. Asian Pac J Cancer Prev 2017; 18:811-818. [PMID: 28441791 PMCID: PMC5464504 DOI: 10.22034/apjcp.2017.18.3.811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Skin cancer is the most prevalent cancer and one of the major causes of mortality worldwide. Marin animals have attracted much attention in recent years as useful substances having application in medicine. It was shown that Phallusia nigra (P. nigra) known as sea squirt could play an important role in cancer therapy. Methods: This study was designed to figure out the probable selective toxicity of n-hexane, diethyl ether, methanolic and aqueous extracts of P. nigra on cancerous mitochondria isolated from the skin of melanoma induced rats. In our study, mitochondria were isolated from the skin tissue of both melanoma induced and normal healthyrats. Different concentrations of four different extracts of P. nigra (250, 500 and 1000 µg/ml) were added to mitochondrial samples obtained from both groups, separately. Results: Our results showed that n-hexane, diethyl ether and methanolic extracts (but not aqueous extract) of P. nigra in all concentrations applied (250, 500 and 1000 µg/ml) significantly induced toxic alterations only in the cancerous but not normal healthy skin mitochondria including; increased reactive oxygen species (ROS) formation, mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release. Flow-cytometry analysis demonstrated that n-hexane, diethyl ether and methanolic extracts of P. nigra progressively induced apoptosis and necrosis only on melanoma cells but not healthy skin cells. Conclusions: Our results suggest that non polar bioactive compounds in P. nigra may be hopeful candidates for further studies including molecular identification, confirmatory in vivo experiments and finally clinical trials designed for new drug treatment of melanoma skin cancer.
Collapse
Affiliation(s)
- Yalda Arast
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
23
|
Seyed Razi N, Seydi E, Nazemi M, Arast Y, Pourahmad J. Selective Toxicity of Persian Gulf Sea Squirt (Phallusia nigra) Extract on Isolated Mitochondria Obtained from Liver Hepatocytes of Hepatocellular Carcinoma Induced Rat. HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.41489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Whitehouse S, Chen PL, Greenshields AL, Nightingale M, Hoskin DW, Bedard K. Resveratrol, piperine and apigenin differ in their NADPH-oxidase inhibitory and reactive oxygen species-scavenging properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1494-1503. [PMID: 27765370 DOI: 10.1016/j.phymed.2016.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Many plant-derived chemicals have been studied for their potential benefits in ailments including inflammation, cancer, neurodegeneration, and cardiovascular disease. The health benefits of phytochemicals are often attributed to the targeting of reactive oxygen species (ROS). However, it is not always clear whether these agents act directly as antioxidants to remove ROS, or whether they act indirectly by blocking ROS production by enzymes such as NADPH oxidase (NOX) enzymes, or by influencing the expression of cellular pro- and anti- oxidants. HYPOTHESIS/PURPOSE Here we evaluate the pro- and anti-oxidant and NOX-inhibiting qualities of four phytochemicals: celastrol, resveratrol, apigenin, and piperine. STUDY DESIGN This work was done using the H661 cell line expressing little or no NOX, modified H661 cells expressing NOX1 and its subunits, and an EBV-transformed B-lymphoblastoid cell line expressing endogenous NOX2. ROS were measured using Amplex Red and nitroblue tetrazolium assays. In addition, direct ROS scavenging of hydrogen peroxide or superoxide generated were measured using Amplex Red and methyl cypridina luciferin analog (MCLA). RESULTS Of the four plant-derived compounds evaluated, only celastrol displayed NOX inhibitory activities, while celastrol and resveratrol both displayed ROS scavenging activity. Very little impact on ROS was observed with apigenin, or piperine. CONCLUSION The results of this study reveal the differences that exist between cell-free and intracellular pro-oxidant and antioxidant activities of several plant-derived compounds.
Collapse
Affiliation(s)
- Scott Whitehouse
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Pei-Lin Chen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Anna L Greenshields
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Mat Nightingale
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2.
| |
Collapse
|
25
|
Seydi E, Motallebi A, Dastbaz M, Dehghan S, Salimi A, Nazemi M, Pourahmad J. Selective Toxicity of Persian Gulf Sea Cucumber (Holothuria parva) and Sponge (Haliclona oculata) Methanolic Extracts on Liver Mitochondria Isolated from an Animal Model of Hepatocellular Carcinoma. HEPATITIS MONTHLY 2015; 15:e33073. [PMID: 26977167 PMCID: PMC4774342 DOI: 10.5812/hepatmon.33073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown that sea cucumbers and sponges contain antioxidants and anti-cancer compounds. OBJECTIVES This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva) and sponge (Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna. MATERIALS AND METHODS To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN) injections (200 mg/kg i.p. by a single dose), and then the cancer was promoted with 2-acetylaminofluorene (2-AAF) (0.02 w/w) for two weeks. Histopathological evaluations were performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein), were determined for confirmation of hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes. RESULTS Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL) and H. oculata methanolic extracts (200, 400, and 800 µg/mL) increased reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), mitochondrial swelling, and cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous liver hepatocytes. These extracts also induced caspase-3 activation, which is known as a final mediator of apoptosis, in the hepatocytes obtained only from cancerous, not non-cancerous, rat livers. CONCLUSIONS Our results suggest that H. parva and H. oculata may be promising therapeutic candidates for the treatment of HCC, following further confirmatory in vivo experiments and clinical trials.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abbasali Motallebi
- Research and Education and Extension Organization (AREEO) and Iranian Fisheries Research Organization, Ministry of Jihad-e-Agriculture, Tehran, IR Iran
| | - Maryam Dastbaz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Sahar Dehghan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, IR Iran
| | - Melika Nazemi
- Research and Education and Extension Organization (AREEO) and Iranian Fisheries Research Organization, Ministry of Jihad-e-Agriculture, Tehran, IR Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
26
|
Chen L, Zhao W. Apigenin protects against bleomycin-induced lung fibrosis in rats. Exp Ther Med 2015; 11:230-234. [PMID: 26889245 DOI: 10.3892/etm.2015.2885] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 08/26/2015] [Indexed: 12/26/2022] Open
Abstract
Apigenin is a non-toxic and non-mutagenic flavone that exists abundantly in numerous herbs and vegetables. Apigenin exerts anti-proliferative and anti-inflammatory properties. The aim of the present study was to investigate the effects of apigenin on bleomycin-induced lung fibrosis in rats. A single intratracheal instillation of bleomycin (5 mg/kg) was administered and rats were sacrificed on 7 and 28 days post bleomycin instillation. The instillation of bleomycin resulted in decreased body weight and an increase in the lung index. In addition, bleomycin administration increased the hydroxyproline content, myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β levels and decreased the superoxide dismutase (SOD) activity in the rat lung tissues. Excessive collagen deposits were detected in the lung tissues in bleomycin-treated rats compared with normal control rats. Notably, the oral administration of apigenin (10, 15 and 20 mg/kg/day) appeared to prevent the fibrotic process. The treatment suppressed the increases in hydroxyproline content, MPO activity, TNF-α and TGF-β levels and attenuated the reduction of SOD activity that were induced by bleomycin. Furthermore, excessive collagen deposition was inhibited by the apigenin treatment. Collectively, these results suggest that apigenin may function as a potent anti-inflammatory and anti-fibrotic agent against bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Respiratory Medicine, Pingmei Shenma Medical Group General Hospital, Pingdingshan, Henan 467000, P.R. China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
27
|
Andueza A, García-Garzón A, Ruiz de Galarreta M, Ansorena E, Iraburu MJ, López-Zabalza MJ, Martínez-Irujo JJ. Oxidation pathways underlying the pro-oxidant effects of apigenin. Free Radic Biol Med 2015; 87:169-80. [PMID: 26119779 DOI: 10.1016/j.freeradbiomed.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Apigenin, a natural flavone, is emerging as a promising compound for the treatment of several diseases. One of the hallmarks of apigenin is the generation of intracellular reactive oxygen species (ROS), as judged by the oxidation of reduced dichlorofluorescein derivatives seen in many cell types. This study aimed to reveal some mechanisms by which apigenin can be oxidized and how apigenin-derived radicals affect the oxidation of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (H(2)DCF), a probe usually employed to detect intracellular ROS. Apigenin induced a rapid oxidation of H(2)DCF in two different immortalized cell lines derived from rat and human hepatic stellate cells. However, apigenin did not generate ROS in these cells, as judged by dihydroethidium oxidation and extracellular hydrogen peroxide production. In cell-free experiments we found that oxidation of apigenin leads to the generation of a phenoxyl radical, which directly oxidizes H(2)DCF with catalytic amounts of hydrogen peroxide. The net balance of the reaction was the oxidation of the probe by molecular oxygen due to redox cycling of apigenin. This flavonoid was also able to deplete NADH and glutathione by a similar mechanism. Interestingly, H(2)DCF oxidation was significantly accelerated by apigenin in the presence of horseradish peroxidase and xanthine oxidase, but not with other enzymes showing peroxidase-like activity, such as cytochrome c or catalase. We conclude that in cells treated with apigenin oxidation of reduced dichlorofluorescein derivatives does not measure intracellular ROS and that pro- and antioxidant effects of flavonoids deduced from these experiments are inconclusive and must be confirmed by other techniques.
Collapse
Affiliation(s)
- Aitor Andueza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Antonia García-Garzón
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | | | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - María J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - María J López-Zabalza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Juan J Martínez-Irujo
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
28
|
Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS One 2015; 10:e0132439. [PMID: 26176704 PMCID: PMC4503536 DOI: 10.1371/journal.pone.0132439] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/16/2015] [Indexed: 02/02/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.
Collapse
|
29
|
Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Mol Cell Biochem 2015; 407:41-50. [PMID: 25994505 DOI: 10.1007/s11010-015-2452-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/16/2015] [Indexed: 02/07/2023]
Abstract
Apigenin is a plant-derived flavonoid and has been reported to prevent bone loss in ovariectomized mice, but the role of apigenin on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been reported. In the present study, the effect of apigenin on osteogenic differentiation of hMSCs was explored. Our results showed that apigenin treatment significantly increased alkaline phosphatase (ALP) activity and mineralization in hMSCs. RT-PCR revealed that apigenin markedly up-regulated the mRNA expression of osteopontin (OPN) and the transcription factors runt-related transcription factor 2 (Runx2). The expression of Runx2 and osterix (OSX) proteins were also increased in hMSCs differentiating into osteoblasts after treatment with apigenin. Furthermore, we investigated the signaling pathways responsible for osteogenic differentiation of apigenin in hMSCs. We found that apigenin treatment significantly increased the levels of p-JNK, p-p38 in hMSCs and addition of the inhibitors of JNK (SP600125) or p38 MAPK (SB203580) eliminated the stimulating effects of apigenin. In addition, addition of SP600125 or SB203580 also blocked apigenin-induced ALP activity, OPN, Runx2, and OSX expression and meanwhile inhibited bone nodule formation. Taken together, these findings suggest apigenin promotes the osteogenesis of hMSCs through activation of JNK and p38 MAPK signal pathways which leads to Runx2 and OSX expressions to induce the formation of bone nodule.
Collapse
|
30
|
Jin Y, Chen S, Duan J, Jia G, Zhang J. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage. J Inorg Biochem 2015; 146:28-36. [PMID: 25725393 DOI: 10.1016/j.jinorgbio.2015.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
With the wide applications of europium-doped Gd2O3 nanoparticles (Gd2O3:Eu(3+) NPs) in biomedical fields, it will inevitably increase the chance of human exposure. It was reported that Gd2O3:Eu(3+) NPs could accumulate in bone. However, there have been few reports about the potential effect of Gd2O3:Eu(3+) NPs on bone marrow stromal cells (BMSCs). In this study, the Gd2O3:Eu(3+) nanotubes were prepared and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) excitation and emission spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The cytotoxicity of Gd2O3:Eu(3+) nanotubes on BMSCs and the associated mechanisms were further studied. The results indicated that they could be uptaken into BMSCs by an energy-dependent and macropinocytosis-mediated endocytosis process, and primarily localized in lysosome. Gd2O3:Eu(3+) nanotubes effectively inhibited the viability of BMSCs in concentration and time-dependent manners. A significant increase in the percentage of late apoptotic/necrotic cells, lactate dehydrogenase (LDH) leakage and the number of PI-stained cells was found after BMSCs were treated by 10, 20, and 40μg/mL of Gd2O3:Eu(3+) nanotubes for 12h. No obvious DNA ladders were detected, but a dispersed band was observed. The above results revealed that Gd2O3:Eu(3+) nanotubes could trigger cell death by necrosis instead of apoptosis. Two mechanisms were involved in Gd2O3:Eu(3+) nanotube-induced BMSCs necrosis: lysosomal rupture and release of cathepsins B; and the overproduction of reactive oxygen species (ROS) injury to the mitochondria and DNA. The study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of these nanomaterials in the future.
Collapse
Affiliation(s)
- Yi Jin
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Basic Medical Science, Hebei University, Baoding 071000, China
| | - Shizhu Chen
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jianlei Duan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Guang Jia
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|