1
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Xia Y, Wang H, Shao M, Liu X, Sun F. MAP3K19 Promotes the Progression of Tuberculosis-Induced Pulmonary Fibrosis Through Activation of the TGF-β/Smad2 Signaling Pathway. Mol Biotechnol 2024; 66:3300-3310. [PMID: 37906388 DOI: 10.1007/s12033-023-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Tuberculosis-induced pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease, which severely affects lung ventilation and air exchange, leading to respiratory distress, impaired lung function, and ultimately death. As previously reported, epithelial-mesenchymal transition (EMT) and fibrosis in type II alveolar epithelial cells (AEC II) are two critical processes that contributes to the initiation and progression of tuberculosis-related PF, but the underlying pathological mechanisms remain unclear. In this study, through performing Real-Time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, and immunofluorescence staining assay, we confirmed that the expression levels of EMT and fibrosis-related biomarkers were significantly increased in lung tissues with tuberculosis-associated PF in vivo and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) strain-infected AEC II cells in vitro. Besides, we noticed that the mitogen-activated protein kinase 19 (MAP3K19) was aberrantly overexpressed in PF models, and silencing of MAP3K19 significantly reduced the expression levels of fibronectin, collagen type I, and alpha-smooth muscle actin to decrease fibrosis, and upregulated E-cadherin and downregulated vimentin to suppress EMT in BCG-treated AEC II cells. Then, we uncovered the underlying mechanisms and found that BCG synergized with MAP3K19 to activate the pro-inflammatory transforming growth factor-beta (TGF-β)/Smad2 signal pathway in AEC II cells, and BCG-induced EMT process and fibrosis in AEC II cells were all abrogated by co-treating cells with TGF-β/Smad2 signal pathway inhibitor LY2109761. In summary, our results uncovered the underlying mechanisms by which the MAP3K19/TGF-β/Smad2 signaling pathway regulated EMT and fibrotic phenotypes of AEC II cells to facilitate the development of tuberculosis-associated PF, and these findings will provide new ideas and biomarkers to ameliorate tuberculosis-induced PF in clinic.
Collapse
Affiliation(s)
- Yu Xia
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China.
| | - Haiyue Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Meihua Shao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| | - Feng Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyu Shan Road, Urumqi, 830054, China
| |
Collapse
|
4
|
Shao W, Wang Y, Liu L, Ren Y, Wang J, Cui Y, Liu J, Zhang X, Zhang S, Liu S, Jiang E, Feng S, Pei X. Combining serum microRNAs and machine learning algorithms for diagnosing infectious fever after HSCT. Ann Hematol 2024; 103:2089-2102. [PMID: 38691145 DOI: 10.1007/s00277-024-05755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yixuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yiran Ren
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuqing Cui
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuangjie Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
5
|
Dasgupta D, Ghosh S, Dey I, Majumdar S, Chowdhury S, Das S, Banerjee S, Saha M, Ghosh A, Roy N, Manna A, Ray S, Agarwal S, Bhaumik P, Datta S, Chowdhury A, Banerjee S. Influence of polymorphisms in TNF-α and IL1β on susceptibility to alcohol induced liver diseases and therapeutic potential of miR-124-3p impeding TNF-α/IL1β mediated multi-cellular signaling in liver microenvironment. Front Immunol 2023; 14:1241755. [PMID: 38146363 PMCID: PMC10749309 DOI: 10.3389/fimmu.2023.1241755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1β/IL8/MCP1/IL6/TGFβ) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1β were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1β was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1β-31CT+TT than TNF-α-238GG/IL1β-31CC. The TNF-α/IL1β promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1β over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFβ and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1β were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFβR2/MCP1, and ICAM1 respectively. Conclusion Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1β gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1β and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Indrashish Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Swagata Majumdar
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Saheli Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhas Das
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sanjana Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mehelana Saha
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Neelanjana Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alak Manna
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Ray
- Department Gastro-Surgery, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shaleen Agarwal
- Liver Transplant and Biliary Sciences, Max Saket West Super Speciality Hospital, New Delhi, India
| | - Pradeep Bhaumik
- Department of Medicine, Agartala Government Medical College, West Tripura, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
6
|
Raimundo JRS, da Costa Aguiar Alves B, Encinas JFA, Siqueira AM, de Gois KC, Perez MM, Petri G, Dos Santos JFR, Fonseca FLA, da Veiga GL. Expression of TNFR1, VEGFA, CD147 and MCT1 as early biomarkers of diabetes complications and the impact of aging on this profile. Sci Rep 2023; 13:17927. [PMID: 37863950 PMCID: PMC10589356 DOI: 10.1038/s41598-023-41061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023] Open
Abstract
Hyperglycemia leads to microvascular lesions in various tissues. In diabetic nephropathy-DN, alterations in usual markers reflect an already installed disease. The study of new biomarkers for the early detection of diabetic complications can bring new prevention perspectives. Rats were divided into diabetic adult-DMA-or elderly-DME and control sham adult-CSA-or control sham elderly-CSE. Blood and urine samples were collected for biochemical analysis. Bulbar region, cardiac, hepatic and renal tissues were collected for target gene expression studies. As result, DMA showed decreased TNFR1, MCT1 and CD147 expression in the bulbar region, TNFR1 in the heart, VEGFA and CD147 in the kidney and TNFR1 in blood. Positive correlations were found between TNFR1 and MCT1 in the bulbar region and HbA1c and plasma creatinine, respectively. DME showed positive correlation in the bulbar region between TNFR1 and glycemia, in addition to negative correlations between CD147 in the heart versus glycemia and urea. We concluded that the initial hyperglycemic stimulus already promotes changes in the expression of genes involved in the inflammatory and metabolic pathways, and aging alters this profile. These changes prior to the onset of diseases such as DN, show that they have potential for early biomarkers studies.
Collapse
Affiliation(s)
- Joyce Regina Santos Raimundo
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Jéssica Freitas Araujo Encinas
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Andressa Moreira Siqueira
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Katharyna Cardoso de Gois
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Matheus Moreira Perez
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Giuliana Petri
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - José Francisco Ramos Dos Santos
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Campus Diadema, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
7
|
Wei J, Guo F, Song Y, Xu K, Lin F, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Transcriptional analysis of human peripheral blood mononuclear cells stimulated by Mycobacterium tuberculosis antigen. Front Cell Infect Microbiol 2023; 13:1255905. [PMID: 37818041 PMCID: PMC10561294 DOI: 10.3389/fcimb.2023.1255905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Background Mycobacterium tuberculosis antigen (Mtb-Ag) is a polypeptide component with a molecular weight of 10-14 kDa that is obtained from the supernatant of the H37Ra strain after heat treatment. It stimulates the activation and proliferation of γδT cells in the blood to produce an immune response against tuberculosis. Mtb-Ag is therefore crucial for classifying and detecting the central genes and key pathways involved in TB initiation and progression. Methods In this study, we performed high-throughput RNA sequencing of peripheral blood mononuclear cells (PBMC) from Mtb-Ag-stimulated and control samples to identify differentially expressed genes and used them for gene ontology (GO) and a Kyoto Encyclopedia of Genomes (KEGG) enrichment analysis. Meanwhile, we used PPI protein interaction network and Cytoscape analysis to identify key genes and qRT-PCR to verify differential gene expression. Single-gene enrichment analysis (GSEA) was used further to elucidate the potential biological functions of key genes. Analysis of immune cell infiltration and correlation of key genes with immune cells after Mtb-Ag-stimulated using R language. Results We identified 597 differentially expressed genes in Mtb-Ag stimulated PBMCs. KEGG and GSEA enrichment analyzed the cellular pathways related to immune function, and DEGs were found to be primarily involved in the TNF signaling pathway, the IL-17 signaling pathway, the JAK-STAT signaling pathway, cytokine-cytokine receptor interactions, and the NF-κB signaling pathway. Wayne analysis using GSEA, KEGG, and the protein-protein interaction (PPI) network showed that 34 genes, including PTGS2, IL-1β, IL-6, TNF and IFN-γ et al., were co-expressed in the five pathways and all were up-regulated by Mtb-Ag stimulation. Twenty-four DEGs were identified using qRT-PCR, including fourteen up-regulated genes (SERPINB7, IL20, IFNG, CSF2, PTGS2, TNF-α, IL36G, IL6, IL10, IL1A, CXCL1, CXCL8, IL4, and CXCL3) and ten down-regulated genes (RTN1, CSF1R CD14, C5AR1, CXCL16, PLXNB2, OLIG1, EEPD1, ENG, and CCR1). These findings were consistent with the RNA-Seq results. Conclusion The transcriptomic features associated with Mtb-Ag provide the scientific basis for exploring the intracellular immune mechanisms against Mtb. However, more studies on these DEGs in pathways associated with Mtb-Ag stimulation are needed to elucidate the underlying pathologic mechanisms of Mtb-Ag during Mtb infection.
Collapse
Affiliation(s)
- Jing Wei
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fangzheng Guo
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Kun Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Feiyang Lin
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Kangsheng Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- Department of Immunology, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- Department of Immunology, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- Department of Immunology, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory and Diagnostics, Laboratory Medicine College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
8
|
Hicks SD, Zhu D, Sullivan R, Kannikeswaran N, Meert K, Chen W, Suresh S, Sethuraman U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8175. [PMID: 37175883 PMCID: PMC10179619 DOI: 10.3390/ijms24098175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) may impair immune modulating host microRNAs, causing severe disease. Our objectives were to determine the salivary miRNA profile in children with SARS-CoV-2 infection at presentation and compare the expression in those with and without severe outcomes. Children <18 years with SARS-CoV-2 infection evaluated at two hospitals between March 2021 and February 2022 were prospectively enrolled. Severe outcomes included respiratory failure, shock or death. Saliva microRNAs were quantified with RNA sequencing. Data on 197 infected children (severe = 45) were analyzed. Of the known human miRNAs, 1606 (60%) were measured and compared across saliva samples. There were 43 miRNAs with ≥2-fold difference between severe and non-severe cases (adjusted p-value < 0.05). The majority (31/43) were downregulated in severe cases. The largest between-group differences involved miR-4495, miR-296-5p, miR-548ao-3p and miR-1273c. These microRNAs displayed enrichment for 32 gene ontology pathways including viral processing and transforming growth factor beta and Fc-gamma receptor signaling. In conclusion, salivary miRNA levels are perturbed in children with severe COVID-19, with the majority of miRNAs being down regulated. Further studies are required to validate and determine the utility of salivary miRNAs as biomarkers of severe COVID-19.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA;
| | - Rhea Sullivan
- Department of Pediatrics, Pennsylvania State University Medical Center, Hershey, PA 17033, USA; (S.D.H.)
| | - Nirupama Kannikeswaran
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Kathleen Meert
- Division of Critical Care, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Wei Chen
- Population Science, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Srinivasan Suresh
- Department of Pediatrics, University of Pittsburgh, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Usha Sethuraman
- Division of Emergency Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Liu Z, Wang J, Dai F, Zhang D, Li W. DUSP1 mediates BCG induced apoptosis and inflammatory response in THP-1 cells via MAPKs/NF-κB signaling pathway. Sci Rep 2023; 13:2606. [PMID: 36788275 PMCID: PMC9926451 DOI: 10.1038/s41598-023-29900-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Apoptosis and necrosis caused by the interaction between the host and the pathogen, as well as the host's inflammatory response, play an important role in the pathogenesis of TB. Dual-specificity phosphatase 1 (DUSP1) plays a vital role in regulating the host immune responses. However, the role of DUSP1 in the regulation of THP-1 macrophage apoptosis induced by attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection remains unclear. In the present study, we report that infection with BCG significantly induces macrophage apoptosis and induces the production of DUSP1, TNF-α and IL-1β. DUSP1 knockdown significantly inhibited BCG-induced macrophage apoptosis and activation of MAPKs/NF-κB signaling pathway. In addition, DUSP1 knockdown suppressed BCG-induced inflammation in vivo. Taken together, this study demonstrates that DUSP1, as a regulator of MAPKs/NF-κB signaling pathway, plays a novel role in BCG-induced macrophage apoptosis and inflammatory response.
Collapse
Affiliation(s)
- Zhanyou Liu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Jianhong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Fan Dai
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Dongtao Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China
| | - Wu Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan, 750021, Ningxia, China.
- School of Life Sciences, Ningxia University, 539 W. Helanshan Road, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
10
|
Mourenza Á, Lorente-Torres B, Durante E, Llano-Verdeja J, Aparicio JF, Fernández-López A, Gil JA, Mateos LM, Letek M. Understanding microRNAs in the Context of Infection to Find New Treatments against Human Bacterial Pathogens. Antibiotics (Basel) 2022; 11:356. [PMID: 35326819 PMCID: PMC8944844 DOI: 10.3390/antibiotics11030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The development of RNA-based anti-infectives has gained interest with the successful application of mRNA-based vaccines. Small RNAs are molecules of RNA of <200 nucleotides in length that may control the expression of specific genes. Small RNAs include small interference RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), or microRNAs (miRNAs). Notably, the role of miRNAs on the post-transcriptional regulation of gene expression has been studied in detail in the context of cancer and many other genetic diseases. However, it is also becoming apparent that some human miRNAs possess important antimicrobial roles by silencing host genes essential for the progress of bacterial or viral infections. Therefore, their potential use as novel antimicrobial therapies has gained interest during the last decade. The challenges of the transport and delivery of miRNAs to target cells are important, but recent research with exosomes is overcoming the limitations in RNA-cellular uptake, avoiding their degradation. Therefore, in this review, we have summarised the latest developments in the exosomal delivery of miRNA-based therapies, which may soon be another complementary treatment to pathogen-targeted antibiotics that could help solve the problem caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Elena Durante
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- L’Università di Urbino Carlo Bo, Via Aurelio Saffi, 2, 61029 Urbino, Italy
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Jesús F. Aparicio
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
| | - Arsenio Fernández-López
- Departamento de Biología Molecular, Área de Biología Celular, Universidad de León, 24071 León, Spain;
- Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain
- Neural Therapies SL, Campus de Vegazana s/n, 24071 León, Spain
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (B.L.-T.); (E.D.); (J.L.-V.); (J.F.A.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
11
|
Zhu Y, Wang Y, Xing S, Xiong J. Blocking SNHG14 Antagonizes Lipopolysaccharides-Induced Acute Lung Injury via SNHG14/miR-124-3p Axis. J Surg Res 2021; 263:140-150. [PMID: 33652176 DOI: 10.1016/j.jss.2020.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/15/2020] [Accepted: 10/31/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Emerging evidence show that long noncoding RNAs (lncRNAs) are crucial regulators in pathophysiology of acute lung injury (ALI). Small nucleolar RNA host gene 14 (SNHG14) is a novel oncogenic lncRNA, and has been associated with inflammation-related cell injuries. Thus, we wondered the role and mechanism of SNHG14 in lipopolysaccharides (LPS)-induced ALI cell model. METHODS Expression of SNHG14, miRNA (miR)-124-3p, and transforming growth factor β type 2 receptor (TGFBR2) was detected by RT-qPCR and western blotting. Cell apoptosis was determined by methyl thiazolyl tetrazolium assay, flow cytometry, western blotting, and lactate dehydrogenase activity kit. Inflammation was measured by enzyme-linked immunosorbent assay. The interaction among SNHG14, miR-124-3p, and TGFBR2 was validated by dual-luciferase reporter assay and RNA immunoprecipitation. RESULTS LPS administration attenuated human lung epithelial cell viability and B-cell lymphoma-2 expression, but augmented apoptosis rate, cleaved-caspase-3 expression, lactate dehydrogenase activity, and secretions of tumor necrosis factor-α, interleukin-1β, and IL-6 in A549 cells. Thus, LPS induced A549 cells apoptosis and inflammation, wherein SNHG14 was upregulated and miR-124-3p was downregulated. However, silencing SNHG14 could suppress LPS-induced apoptosis and inflammation depending on upregulating miR-124-3p via target binding. Similarly, overexpressing miR-124-3p attenuated LPS-induced A549 cells injury through inhibiting its downstream target TGFBR2. Furthermore, SNHG14 knockdown could also affect TGFBR2 expression via miR-124-3p. CONCLUSIONS SNHG14 knockdown prevents A549 cells from LPS-induced apoptosis and inflammation through regulating miR-124-3p and TGFBR2, suggesting a novel SNHG14/miR-124-3p/TGFBR2 circuit in alveolar epithelial cells on the set of ALI.
Collapse
Affiliation(s)
- Yuanbin Zhu
- Department of Respiratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Yingying Wang
- Department of Respiratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Shigang Xing
- Department of Respiratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Jie Xiong
- Department of Respiratory, Linyi Central Hospital, Linyi, Shandong, China.
| |
Collapse
|
12
|
Guo S, Sun J, Zhuang Y. Quercetin alleviates lipopolysaccharide-induced inflammatory responses by up-regulation miR-124 in human renal tubular epithelial cell line HK-2. Biofactors 2020; 46:402-410. [PMID: 31804760 DOI: 10.1002/biof.1596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is a persistent kidney structural and functional disorder. Quercetin is one of active extracted flavonoids and has protective effects. Therefore, we proposed to survey the effect of Quercetin on CKD. HK-2 cells were preprocessed by Quercetin and then irritated with lipopolysaccharide (LPS). CCK-8 assay and flow cytometry were utilized to test viability and apoptosis. ELISA assay was utilized to estimate the IL-6 and TNF-α secretion. Western blot was performed to examine the expression of apoptosis and inflammation-associated mediators. After that HK-2 cells were transfected by miR-124 inhibitor. And the above-mentioned parameters were reassessed. LPS stimulated apoptosis and declined viability in HK-2 cells. Additionally, LPS stimulated inflammatory responses. Meanwhile, Quercetin attenuated LPS-stimulated apoptosis, production of IL-6, and TNF-α in experimental cells. Subsequently, MyD88 and miR-124 expression was elevated by LPS and alleviated by Quercetin. Finally, Quercetin exerted its protective function through NF-κB pathway via up-regulating miR-124. Our data demonstrated that Quercetin reduced apoptosis and inflammation stimulated by LPS in HK-2 cells. Moreover, Quercetin alleviated LPS-stimulated injury by up-regulating miR-124.
Collapse
Affiliation(s)
- Shuxia Guo
- Department of Nephrology, Linyi Central Hospital, Linyi, Shandong, China
| | - Juanjuan Sun
- Department of Nephrology, Linyi Central Hospital, Linyi, Shandong, China
| | - Yan Zhuang
- Department of Nephrology, Linyi Central Hospital, Linyi, Shandong, China
| |
Collapse
|
13
|
Hao L, Liu MW, Gu ST, Huang X, Deng H, Wang X. Sedum sarmentosum Bunge extract ameliorates lipopolysaccharide- and D-galactosamine-induced acute liver injury by attenuating the hedgehog signaling pathway via regulation of miR-124 expression. BMC Complement Med Ther 2020; 20:88. [PMID: 32178661 PMCID: PMC7076998 DOI: 10.1186/s12906-020-2873-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Sedum sarmentosum is traditionally used to treat various inflammatory diseases in China. It has protective effects against acute liver injury, but the exact mechanism of such effects remains unclear. This study investigated the protective effects of S. sarmentosum extract on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury in mice and the mechanism of such effects. Methods Mice were randomly divided into control, treatment, model, and model treatment groups. Acute liver injury was induced in model mice via intraperitoneal injection of LPS and D-GalN with doses of 10 μg/kg of LPS and 500 mg/kg, respectively. The mRNA expression levels of miR-124, Hedgehog, Patched (Ptch), Smoothened (Smo), and glioma-associated oncogene homolog (Gli) in liver tissues were determined through RT-PCR, and the protein levels of Hedgehog, Ptch, Smo, Gli, P13k, Akt, HMGB1, TLR4, IkB-α, p-IkB-α, and NF-kB65 were evaluated via Western blot analysis. The serum levels of IL-6, TNF-α, CRP, IL-12, and ICAM-1 were determined via ELISA. TLR4 and NF-κBp65 activity and the levels of DNA-bound NF-KB65 and TLR4 in LPS/D-GalN-induced liver tissues were also determined. We recorded the time of death, plotted the survival curve, and calculated the liver index. We then observed the pathological changes in liver tissue and detected the levels of liver enzymes (alanine aminotransferase [ALT] and aspartate transaminase [AST]) in the serum and myeloperoxidase (MPO) and plasma inflammatory factors in the liver homogenate. Afterward, we evaluated the protective effects of S. sarmentosum extracts on acute liver injury in mice. Results Results showed that after S. sarmentosum extract was administered, the expression level of miR-124 increased in liver tissues. However, the protein expression levels of Hedgehog, Ptch, Smo, Gli, P13k, p-Akt, HMGB1, TLR4, p-IκB-α, and NF-κB65 and the mRNA expression levels of Hedgehog, Ptch, Smo, and Gli decreased. The MPO level in the liver, the IL-6, TNF-α, CRP, IL-12, and MMP-9 levels in the plasma, and the serum ALT and AST levels also decreased, thereby reducing LPS/D-GalN-induced liver injury and improving the survival rate of liver-damaged animals within 24 h. Conclusions S. sarmentosum extract can alleviate LPS/D-GalN-induced acute liver injury in mice and improve the survival rate of mice. The mechanism may be related to the increase in miR-124 expression, decrease in Hedgehog and HMGB1 signaling pathway activities, and reduction in inflammatory responses in the liver. Hedgehog is a regulatory target for miR-124.
Collapse
Affiliation(s)
- Li Hao
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Ming-Wei Liu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wu Hua District, Kunming, 650032, China
| | - Song-Tao Gu
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Xue Huang
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Hong Deng
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China
| | - Xu Wang
- Department of Emergency, Yan'an Hospital of Kunming City, Panlong District, 245 Renmin East Road, Kunming, 650051, China.
| |
Collapse
|
14
|
Dinu AR, Rogobete AF, Bratu T, Popovici SE, Bedreag OH, Papurica M, Bratu LM, Sandesc D. Cannabis Sativa Revisited-Crosstalk between microRNA Expression, Inflammation, Oxidative Stress, and Endocannabinoid Response System in Critically Ill Patients with Sepsis. Cells 2020; 9:E307. [PMID: 32012914 PMCID: PMC7072707 DOI: 10.3390/cells9020307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression.
Collapse
Affiliation(s)
- Anca Raluca Dinu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Alexandru Florin Rogobete
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Tiberiu Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Sonia Elena Popovici
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Dorel Sandesc
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| |
Collapse
|
15
|
Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol 2020; 10:3081. [PMID: 32038627 PMCID: PMC6992578 DOI: 10.3389/fimmu.2019.03081] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that bind to target mRNAs, leading to the degradation or translational suppression of respective mRNAs. They have been reported as key players in physiological processes like differentiation, cellular proliferation, development, and apoptosis. They have gained importance as gene expression regulators in the immune system. They control antibody production and release various inflammatory mediators. Abnormal expression and functioning of miRNA in the immune system is linked to various diseases like inflammatory disorders, allergic diseases, cancers etc. As compared to the average human genome, miRNA targets the genes of immune system quite differently. miRNA appeared to regulate the responses related to both acquired and innate immunity of the humans. Several miRNAs importantly regulate the transcription and even, dysregulation of inflammation-related mediators. Many miRNAs are either upregulated or downregulated in various inflammatory and infectious diseases. Hence, modifying or targeting the expression of miRNAs might serve as a novel strategy for the diagnosis, prevention, and treatment of various inflammatory and infectious conditions.
Collapse
Affiliation(s)
| | | | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
16
|
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol 2018; 9:1377. [PMID: 29988529 PMCID: PMC6026627 DOI: 10.3389/fimmu.2018.01377] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a complicated biological and pathophysiological cascade of responses to infections and injuries, and inflammatory mechanisms are closely related to many diseases. The magnitude, the complicated network of pro- and anti-inflammatory factors, and the direction of the inflammatory response can impact on the development and progression of various disorders. The currently available treatment strategies often target the symptoms and not the causes of inflammatory disease and may often be ineffective. Since the onset and termination of inflammation are crucial to prevent tissue damage, a range of mechanisms has evolved in nature to regulate the process including negative and positive feedback loops. In this regard, microRNAs (miRNAs) have emerged as key gene regulators to control inflammation, and it is speculated that they are fine-tune signaling regulators to allow for proper resolution and prevent uncontrolled progress of inflammatory reactions. In this review, we discuss recent findings related to significant roles of miRNAs in immune regulation, especially the potential utility of these molecules as novel anti-inflammatory agents to treat inflammatory diseases. Furthermore, we discuss the possibilities of using miRNAs as drugs in the form of miRNA mimics or miRNA antagonists.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
18
|
Li QR, Tan SR, Yu J, Yang J. MicroRNA-124 alleviates hyperoxia-induced inflammatory response in pulmonary epithelial cell by inhibiting TLR4/NF-κB/CCL2. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:76-87. [PMID: 31938089 PMCID: PMC6957945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lung epithelial cell dysfunction induced by hyperoxia-associated oxidative stress is a prominent feature involved in the development of acute lung injury (ALI). How the underlying molecular mechanisms contributed to this process are poorly defined. In the present study, we sought to identify the role of miR-124 in hyperoxia-induced cell apoptosis and excessive inflammatory response in pulmonary epithelial cell. METHODS The miR-124 levels in pulmonary epithelial cell were assayed by qRT-PCR. MiR-124 mimics and inhibitors were transfected to gain or loss of miR-124 function. Cell proliferation was analyzed by CCK8 assay. Cell apoptosis was analyzed by flow cytometry. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. The protein levels were assayed by western blotting. RESULTS The results showed that miR-124 was significantly down-regulated in Beas2B cells and primary LECs upon hyperoxia exposure conditions. However, overexpression of miR-124 dramatically attenuated hyperoxia-provoked TLR4, NF-κB and pro-inflammatory cytokines production. In vitro, the cell viability and apoptosis was significantly reversed following transfection with miR-124 mimics in the presence of hyperoxia. Furthermore, the 3'-untranslated region (3'-UTR) of CCL2 was bound by miR-124. CONCLUSION It was concluded that miR-124 inhibited hyperoxia-induced apoptosis and excessive inflammatory response in Beas2B cells and primary LECs, at least partially, through the inhibition of TLR4/NF-κB/CCL2 signaling cascades.
Collapse
Affiliation(s)
- Qing-Rong Li
- The Second Affiliated Hospital of Kunming Medical UniversityKunming 650101, China
| | - Shi-Rui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunming 650500, China
| | - Junxu Yu
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunming 650500, China
| | - Jinghui Yang
- The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunming, China
| |
Collapse
|
19
|
Lee SY, Kim HY, Kim BJ, Kim H, Seok SH, Kim BJ, Kook YH. Effect of amikacin on cell wall glycopeptidolipid synthesis in Mycobacterium abscessus. J Microbiol 2017; 55:640-647. [PMID: 28752292 DOI: 10.1007/s12275-017-6503-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
Cultivation of the smooth colony Mycobacterium abscessus at the sub-minimum inhibitory concentration (MIC) of amikacin changed its growth pattern including its colony morphology (smooth to rough) and cell arrangement (dispersed to cord formation). In addition, reduced sliding motility and biofilm formation were observed. The amount of glycogpetidolipid (GPL) and mRNA expression of key genes involved in GPL synthesis were decreased in the amikacin-treated M. abscessus strain. An in vitro infection assay revealed that the amikacin-treated smooth M. abscessus strain induced more pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) than that of the smooth strain in murine macrophage cells. These results suggest that long-term exposure to a low concentration of amikacin causes a physical change in the cell wall which may increase its virulence.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee-Youn Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hong Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, and Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
20
|
Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol Neurobiol 2017; 55:3196-3210. [PMID: 28478506 DOI: 10.1007/s12035-017-0584-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Cocaine is known to activate microglia both in vitro and in vivo. High expression of microglial Toll-like receptors (TLRs) and their downstream signal transducers play critical roles in determining microglial activation status. Emerging reports have also demonstrated that cocaine can enhance the strength of TLR signaling. Detailed molecular mechanisms underlying this phenomenon, however, remain elusive. In this study, we investigated the role(s) of miR-124 in regulating microglial TLR4 signaling in the context of cocaine. Herein, we found a dose- and time-dependent upregulation of KLF4 in cocaine-exposed BV-2 cells and rat primary microglial cells (rPMs). KLF4 also identified as a novel 3'-UTR target directly regulated by miR-124. In parallel, miR-124 regulated multiple TLR4 signaling molecules including TLR4, MyD88, TRAF6, and IRAK1. Repeated doses of cocaine (20 mg/kg; i.p.) administration in mice for 7 days further validated the in vitro key findings. Also, miR-124 overexpression significantly blocked the cocaine-mediated upregulation of pro-inflammatory cytokines. In contrast, miR-124 overexpression notably increased the expression of anti-inflammatory mediators in cocaine-exposed microglial cells. Intriguingly, stereotactic administration of lentivirus-miR-124 in the striatum significantly inhibited cocaine-mediated microglial activation and locomotor hyperactivity in vivo. In summary, these findings implicate the role of miR-124 in regulating TLR4 signaling, thereby indicating a new pathway responsible for cocaine-mediated microglial activation.
Collapse
|
21
|
MyD88 in Mycobacterium tuberculosis infection. Med Microbiol Immunol 2017; 206:187-193. [PMID: 28220253 DOI: 10.1007/s00430-017-0495-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/27/2017] [Indexed: 01/15/2023]
Abstract
MyD88 adaptor protein mediates numerous biologically important signal transduction pathways in innate immunity. MyD88 signaling fosters bacterial containment and is necessary to raise an adequate innate and acquired immune response to Mycobacterium tuberculosis (Mtb). The phagosome is a crucial cellular location not only for Mtb replication, but it is also where components of the Myddosome and inflammasome are recruited. Besides its function as a TLR-adaptor protein, MyD88 may help stabilizing cytosolic receptors that are recruited to the phagosome. MyD88 plays a critical role not only in the generation of an inflammatory response, but also in inducing regulatory signals to prevent excessive inflammation and cellular damage in the lung.
Collapse
|
22
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|
23
|
Duan X, Zhang T, Ding S, Wei J, Su C, Liu H, Xu G. microRNA-17-5p Modulates Bacille Calmette-Guerin Growth in RAW264.7 Cells by Targeting ULK1. PLoS One 2015; 10:e0138011. [PMID: 26384021 PMCID: PMC4575043 DOI: 10.1371/journal.pone.0138011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
To explore the potential roles of miRNAs in controlling the survival of mycobacteria in macrophages, miR-17-5p in the regulation of Bacillus Calmette-Guérin(BCG)growth in the macrophage RAW264.7 cells was interrogated. Our results reveal that an infection of BCG shows a time-dependent up-regulation of miR-17-5p in RAW264.7 cells in early phase; importantly, excessive expression of miR-17-5p in these cells exhibits an increased propagation of intracellular BCG. Mechanistically, the Unc-51 like autophagy activating kinase 1 (ULK1), an initial molecular of autophagy are identified as novel target of miR-17-5p, the miR-17-5p is capable of targeting down-regulating the expression of ULK1 protein. In addition, an overexpression of miR-17-5p in RAW264.7 cells is correlated with repression of ULK1 and the autophagosome related proteins LC3I/II. These results imply that miR-17-5p may be able to arrest the maturation of mycobacterial phagosomes in part by targeting ULK1, subsequently reduces the ability of host cells to kill intracellular BCG.
Collapse
Affiliation(s)
- Xiangguo Duan
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Tao Zhang
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
- Taian City Central Hospital,Taian City, Shandong Province, 271000, China
| | - Shuqin Ding
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Jun Wei
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Chunxia Su
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Hongpeng Liu
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Guangxian Xu
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
- * E-mail:
| |
Collapse
|
24
|
Ma C, Li Y, Li M, Deng G, Wu X, Zeng J, Hao X, Wang X, Liu J, Cho WCS, Liu X, Wang Y. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol 2014; 62:150-158. [PMID: 24995397 DOI: 10.1016/j.molimm.2014.06.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/01/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years; and the alveolar macrophages (AMs) are the main targets of mycobacterial infection, which play a pivotal role in the pathogenesis of Mycobacterium tuberculosis infection. However, the immunoregulatory role of miRNAs in AMs has not been fully demonstrated. In this study, we find that miR-124 is up-regulated in the peripheral leukocytes of patients with pulmonary tuberculosis; furthermore, the expression miR-124 can be induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in both RAW264.7 AM cells in vitro and murine AMs in vivo. Mechanistically, miR-124 is able to modulate toll-like receptor (TLR) signaling activity in RAW264.7 cells in response to BCG infection. In this regard, multiple components of TLR signaling cascade, including the TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α are directly targeted by miR-124. In addition, both overexpression of TLR signaling adaptor MyD88 and BCG infection are able to augment miR-124 transcription, while MyD88 expression silenced by small interfering RNA dramatically suppresses miR-124 expression in AMs in vitro. Moreover, the abundance of miR-124 transcript in murine AMs of MyD88 deficient mice is significantly less than that of their wild-type or heterozygous littermates; and the BCG infection fails to induce miR-124 expression in the lung of MyD88 deficient mouse. These results indicate a negative regulatory role of miR-124 in fine-tuning inflammatory response in AMs upon mycobacterial infection, in part through a mechanism by directly targeting TLR signaling.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiujing Hao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaoping Wang
- Tuberculosis Hospital of Ningxia, Yinchuan 750021, Ningxia, China
| | - Jing Liu
- Tuberculosis Hospital of Ningxia, Yinchuan 750021, Ningxia, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| |
Collapse
|
25
|
Abstract
Abstract
Collapse
|