1
|
Wu CY, Lee YZ, Hu IC, Chiu LY, Ding WC, Wang J, Sue SC, Tate SI, Lyu PC. Backbone resonance assignments of dopamine N-acetyltransferase in free and cofactor-bound states. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10222-9. [PMID: 39934620 DOI: 10.1007/s12104-025-10222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Dopamine N-acetyltransferase (Dat), belonging to the GCN5-related N-acetyltransferase (GNAT) superfamily, is an arylalkylamine N-acetyltransferase (AANAT) that is involved in insects neurotransmitter inactivation and the development of insect cuticle sclerotization. By using the cofactor acetyl coenzyme A (Ac-CoA) as an acetyl group donor, Dat produces acetyl-dopamine through the reaction with dopamine. Although AANATs share similar structural features with the GNAT family, they have low sequence identities among insect AANATs (~ 40%) and between insect AANATs and vertebrate AANATs (~ 12%). A common noticed feature in GNATs is the Ac-CoA-binding induced conformational change, and this is important for further selection and catalysis of its substrate. In AANATs, the conformational changes help the sequential binding mechanism. Here, we report the 1H, 13C and 15N backbone resonance assignments of the 24 kDa Dat from Drosophila melanogaster in the free and Ac-CoA-bound states, and the chemical shift differences revealed a significant conformational change in the α1 region of Dat. These assignments provide a foundation for further investigations of the catalysis and structural regulation of Dat in solution.
Collapse
Affiliation(s)
- Chu-Ya Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
- Instrumentation Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Liang-Yuan Chiu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Wei-Cheng Ding
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Jing Wang
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan.
- Department of Medical Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Rodríguez-Illamola A, Sidorov R, Čapková-Frydrychová R, Kodrík D. Role of Aralkylamine N-Acetyltransferase in the Response to Antioxidative Stress in the Fruit Fly Drosophila Melanogaster Adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70009. [PMID: 39584416 DOI: 10.1002/arch.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
In multicellular organisms, the indole melatonin synthesized by aralkylamine N-acetyltransferase (AANATI) serves as an antioxidant. To test this, sex-mixed 3-day-old mated fly adults bw1 and AANAT1 homozygous recessive loss-of-function mutant (bw AANAT1lo) of Drosophila melanogaster were fed by a standard diet or by one containing paraquat (PQ, 1,1'-dimethyl-4,4'-bipyridilium dichloride hydrate) at a final concentration of 15.5 mM. Experiment lasted 8 h and began at 11 a.m. In bw1 flies the paraquat treatment resulted in a significant (evaluated by Student's t-tests) decrease of the superoxide dismutase (SOD) activity and an increase the catalase (CAT) and glutathione S-transferase (GST) activities. Meanwhile, in these flies, total Antioxidative capacity (TAC) was significantly curbed by the paraquat presence. Importantly, these changes were not observed in the AANAT1-mutants. Thus, melatonin seems to play an important defence role against the oxidative stress elicited by paraquat.
Collapse
Affiliation(s)
- Arnau Rodríguez-Illamola
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Roman Sidorov
- Biology Centre, Institute of Entomology, Czech Academy of Science, České Budějovice, Czech Republic
| | - Radmila Čapková-Frydrychová
- Biology Centre, Institute of Entomology, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Biology Centre, Institute of Entomology, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
4
|
Hasebe M, Sato M, Ushioda S, Kusuhara W, Kominato K, Shiga S. Significance of the clock gene period in photoperiodism in larval development and production of diapause eggs in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104615. [PMID: 38237657 DOI: 10.1016/j.jinsphys.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Mizuka Sato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shoichiro Ushioda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Wakana Kusuhara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuki Kominato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Liu X, Cai L, Zhu L, Tian Z, Shen Z, Cheng J, Zhang S, Li Z, Liu X. Mutation of the clock gene timeless disturbs diapause induction and adult emergence rhythm in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1876-1884. [PMID: 36654480 DOI: 10.1002/ps.7363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Circadian rhythms are physical and behavioral changes that follow the 24-h cycle of Earth's light and temperature and are regulated by clock genes. Timeless (Tim) has been identified as a canonical clock gene in some insects, however, its functions have been little studied in lepidopteran pests. RESULTS To investigate Tim (HaTim) gene function in Helicoverpa armigera, an important lepidopteran pest, we obtained the HaTim mutant using the CRISPR/Cas9 gene editing system. Our results showed that the transcript levels of HaTim rhythmically peaked at night in heads of the wild larvae and adult, and the diel expression of HaTim was sensitive to photoperiod and temperature. The expression rhythms of other clock genes, such as HaPer, HaCry1, HaCry2 and HaCwo, were disturbed in the HaTim mutant larvae, as that stage is a sensitivity period for diapause induction. Fifth-instar wild-type larvae could be induced to pupate in diapause under a short-day photoperiod and low temperature, however, fifth-instar HaTim mutant larvae could not be induced under the same conditions. In addition, the emergence of wild-type adults peaked early at night, but the rhythm was disturbed in the HaTim mutant with arrhythmic expression of some clock genes, such as HaPer, HaCry1 and HaCwo in adults. CONCLUSION Our results suggest that the clock gene Tim is involved in diapause induction and adult emergence in H. armigera, and is a potential target gene for controlling pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Zhang L, Tang Y, Merkler DJ, Han Q. Function, structure, evolution, regulation of a potent drug target, arylalkylamine N-acetyltransferase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:211-223. [PMID: 36858736 DOI: 10.1016/bs.apcsb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, P.R. China; One Health Institute, Hainan University, Haikou, Hainan, P.R. China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, P.R. China; One Health Institute, Hainan University, Haikou, Hainan, P.R. China
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan, P.R. China; One Health Institute, Hainan University, Haikou, Hainan, P.R. China.
| |
Collapse
|
8
|
Bao H, Zhu H, Yu P, Luo G, Zhang R, Yue Q, Fang J. Time-Series Transcriptomic Analysis Reveals the Molecular Profiles of Diapause Termination Induced by Long Photoperiods and High Temperature in Chilo suppressalis. Int J Mol Sci 2022; 23:ijms232012322. [PMID: 36293179 PMCID: PMC9604370 DOI: 10.3390/ijms232012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Survival and adaptation to seasonal changes are challenging for insects. Many temperate insects such as the rice stem borer (Chilo suppressalis) overcome the adverse situation by entering diapause, wherein development changes dynamically occur and metabolic activity is suppressed. The photoperiod and temperature act as major environmental stimuli of diapause. However, the physiological and molecular mechanisms that interpret the ecologically relevant environmental cues in ontogenetic development during diapause termination are poorly understood. Here, we used genome-wide high-throughput RNA-sequencing to examine the patterns of gene expression during diapause termination in C. suppressalis. Major shifts in biological processes and pathways including metabolism, environmental information transmission, and endocrine signalling were observed across diapause termination based on over-representation analysis, short time-series expression miner, and gene set enrichment analysis. Many new pathways were identified in diapause termination including circadian rhythm, MAPK signalling, Wnt signalling, and Ras signalling, together with previously reported pathways including ecdysteroid, juvenile hormone, and insulin/insulin-like signalling. Our results show that convergent biological processes and molecular pathways of diapause termination were shared across different insect species and provided a comprehensive roadmap to better understand diapause termination in C. suppressalis.
Collapse
Affiliation(s)
- Haibo Bao
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Zhu
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peihan Yu
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guanghua Luo
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ru Zhang
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qian Yue
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jichao Fang
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
9
|
Takeda M, Suzuki T. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review. Front Physiol 2022; 13:867621. [PMID: 35812309 PMCID: PMC9257128 DOI: 10.3389/fphys.2022.867621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.
Collapse
Affiliation(s)
- Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Brady D, Saviane A, Cappellozza S, Sandrelli F. The Circadian Clock in Lepidoptera. Front Physiol 2021; 12:776826. [PMID: 34867483 PMCID: PMC8635995 DOI: 10.3389/fphys.2021.776826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
With approximately 160,000 identified species of butterflies and moths, Lepidoptera are among the most species-rich and diverse insect orders. Lepidopteran insects have fundamental ecosystem functions as pollinators and valuable food sources for countless animals. Furthermore, Lepidoptera have a significant impact on the economy and global food security because many species in their larval stage are harmful pests of staple food crops. Moreover, domesticated species such as the silkworm Bombyx mori produce silk and silk byproducts that are utilized by the luxury textile, biomedical, and cosmetics sectors. Several Lepidoptera have been fundamental as model organisms for basic biological research, from formal genetics to evolutionary studies. Regarding chronobiology, in the 1970s, Truman's seminal transplantation experiments on different lepidopteran species were the first to show that the circadian clock resides in the brain. With the implementation of molecular genetics, subsequent studies identified key differences in core components of the molecular circadian clock of Lepidoptera compared to the dipteran Drosophila melanogaster, the dominant insect species in chronobiological research. More recently, studies on the butterfly Danaus plexippus have been fundamental in characterizing the interplay between the circadian clock and navigation during the seasonal migration of this species. Moreover, the advent of Next Generation Omic technologies has resulted in the production of many publicly available datasets regarding circadian clocks in pest and beneficial Lepidoptera. This review presents an updated overview of the molecular and anatomical organization of the circadian clock in Lepidoptera. We report different behavioral circadian rhythms currently identified, focusing on the importance of the circadian clock in controlling developmental, mating and migration phenotypes. We then describe the ecological importance of circadian clocks detailing the complex interplay between the feeding behavior of these organisms and plants. Finally, we discuss how the characterization of these features could be useful in both pest control, and in optimizing rearing of beneficial Lepidoptera.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, Università di Padova, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | | |
Collapse
|
11
|
Kamruzzaman ASM, Hiragaki S, Watari Y, Natsukawa T, Yasuhara A, Ichihara N, Mohamed AA, Elgendy AM, Takeda M. Clock-controlled arylalkylamine N-acetyltransferase (aaNAT) regulates circadian rhythms of locomotor activity in the American cockroach, Periplaneta americana, via melatonin/MT2-like receptor. J Pineal Res 2021; 71:e12751. [PMID: 34091948 DOI: 10.1111/jpi.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.
Collapse
Affiliation(s)
- A S M Kamruzzaman
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Ashiya, Japan
| | - Takashi Natsukawa
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akie Yasuhara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza M Elgendy
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Makio Takeda
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Yoshimura H, Yamada YY, Sasaki K. Identification of biogenic amines involved in photoperiod-dependent caste-fate determination during the adult stage in a temperate paper wasp. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104223. [PMID: 33711330 DOI: 10.1016/j.jinsphys.2021.104223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In the temperate paper wasp Polistes jokahamae, caste is influenced by photoperiod during the adult stage, but the mechanisms underlying the caste-fate determination system have been unclear. We measured the brain levels of monoamines and related substances in females kept isolated for two weeks under different photoperiods. Except for in the first-emerging group, the females developed ovaries under long-day conditions, whereas they stored lipids under short-day conditions. The levels of tyramine in the brain were significantly higher under long-day than under short-day conditions and positively correlated with maximum oocyte lengths. These results suggest that tyramine was produced in response to long daylength during the adult stage and associated with ovarian development, which is the principal characteristic of reproductive workers. There was also a significant positive correlation between dopamine levels in the brain and maximum oocyte length, independent of photoperiod, suggesting that dopamine is involved in reproductive function with tyramine resulting in the induction of reproductive workers. Meanwhile, higher levels of tryptophan in the brain were found in short-day conditions and positively correlated with lipid stores. However, serotonin synthesized from tryptophan and N-acetylserotonin were not associated with lipid stores without photoperiodic responses, suggesting that tryptophan is involved in the physiological changes toward gyne under short daylength, independently of serotonin signaling. In conclusion, tyramine and tryptophan are candidates for mediating photoperiod-dependent caste-fate determination in P. jokahamae: the former is involved in generating the worker caste while the latter is involved in generating the gyne caste.
Collapse
Affiliation(s)
- Hideto Yoshimura
- Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Yoshihiro Y Yamada
- Insect Ecology Laboratory, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan.
| |
Collapse
|
13
|
Spana EP, Abrams AB, Ellis KT, Klein JC, Ruderman BT, Shi AH, Zhu D, Stewart A, May S. speck, First Identified in Drosophila melanogaster in 1910, Is Encoded by the Arylalkalamine N-Acetyltransferase (AANAT1) Gene. G3 (BETHESDA, MD.) 2020; 10:3387-3398. [PMID: 32709620 PMCID: PMC7466976 DOI: 10.1534/g3.120.401470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
The pigmentation mutation speck is a commonly used recombination marker characterized by a darkly pigmented region at the wing hinge. Identified in 1910 by Thomas Hunt Morgan, speck was characterized by Sturtevant as the most "workable" mutant in the rightmost region of the second chromosome and eventually localized to 2-107.0 and 60C1-2. Though the first speck mutation was isolated over 110 years ago, speck is still not associated with any gene. Here, as part of an undergraduate-led research effort, we show that speck is encoded by the Arylalkylamine N-acetyltransferase 1 (AANAT1) gene. Both alleles from the Morgan lab contain a retrotransposon in exon 1 of the RB transcript of the AANAT1 gene. We have also identified a new insertion allele and generated multiple deletion alleles in AANAT1 that all give a strong speck phenotype. In addition, expression of AANAT1 RNAi constructs either ubiquitously or in the dorsal portion of the developing wing generates a similar speck phenotype. We find that speck alleles have additional phenotypes, including ectopic pigmentation in the posterior pupal case, leg joints, cuticular sutures and overall body color. We propose that the acetylated dopamine generated by AANAT1 decreases the dopamine pool available for melanin production. When AANAT1 function is decreased, the excess dopamine enters the melanin pathway to generate the speck phenotype.
Collapse
Affiliation(s)
- Eric P Spana
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | - Jason C Klein
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Alvin H Shi
- Department of Biology, Duke University, Durham, NC 27708
| | - Daniel Zhu
- Department of Biology, Duke University, Durham, NC 27708
| | - Andrea Stewart
- Department of Biology, Duke University, Durham, NC 27708
| | - Susan May
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
14
|
Correction: N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi. PLoS One 2020; 15:e0235916. [PMID: 32614908 PMCID: PMC7332038 DOI: 10.1371/journal.pone.0235916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci U S A 2020; 117:15293-15304. [PMID: 32541062 PMCID: PMC7334534 DOI: 10.1073/pnas.2004262117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracting information regarding calendar time from seasonal changes in photoperiod and temperature is critical for organisms to maintain annual cycles in physiology and behavior. Here we found that, in flies, EYES ABSENT (EYA) protein acts as a seasonal sensor by adjusting its abundance and phase in response to changes in photoperiod and temperature. We show that the manipulation of EYA levels is sufficient to impair the ability of female Drosophila to regulate seasonal variation in reproductive dormancy. Finally, our results suggest an important role for the circadian clock protein TIMELESS (TIM) in modulating EYA level through its ability to measure night length, linking the circadian clock to seasonal timing. Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, in Drosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation of eya expression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in female D. melanogaster. Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations that tim null mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressing tim show an increased incidence of reproductive dormancy even in long photoperiod.
Collapse
|
16
|
Barberà M, Escrivá L, Collantes-Alegre JM, Meca G, Rosato E, Martínez-Torres D. Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. INSECT SCIENCE 2020; 27:224-238. [PMID: 30422395 DOI: 10.1111/1744-7917.12652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Aphids display life cycles largely determined by the photoperiod. During the warm long-day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycle (holocycle), there are anholocyclic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis. The molecular or hormonal events that trigger the seasonal response (i.e., induction of the sexual phenotypes) are still unknown. Although circadian synthesis of melatonin is known to play a key role in vertebrate photoperiodism, the involvement of the circadian clock and/or of the hormone melatonin in insect seasonal responses is not so well established. Here we show that melatonin levels in the aphid Acyrthosiphon pisum are significantly higher in holocyclic aphids reared under short days than under long days, while no differences were found between anholocyclic aphids under the same conditions. We also found that melatonin is localized in the aphid suboesophageal ganglion (SOG) and in the thoracic ganglionic mass (TGM). In analogy to vertebrates, insect-type arylalkylamine N-acetyltransferases (i-AANATs) are thought to play a key role in melatonin synthesis. We measured the expression of four i-AANAT genes identified in A. pisum and localized two of them in situ in the insect central nervous systems (CNS). Levels of expression of these genes were compatible with the quantities of melatonin observed. Moreover, like melatonin, expression of these genes was found in the SOG and the TGM.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| |
Collapse
|
17
|
Kamruzzaman ASM, Mikani A, Mohamed AA, Elgendy AM, Takeda M. Crosstalk among Indoleamines, Neuropeptides and JH/20E in Regulation of Reproduction in the American Cockroach, Periplaneta americana. INSECTS 2020; 11:insects11030155. [PMID: 32121505 PMCID: PMC7143859 DOI: 10.3390/insects11030155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/29/2023]
Abstract
Although the regulation of vitellogenesis in insects has been mainly discussed in terms of ‘classical’ lipid hormones, juvenile hormone (JH), and 20-hydroxyecdysone (20E), recent data support the notion that this process must be adjusted in harmony with a nutritional input/reservoir and involvement of certain indoleamines and neuropeptides in regulation of such process. This study focuses on crosstalks among these axes, lipid hormones, monoamines, and neuropeptides in regulation of vitellogenesis in the American cockroach Periplaneta americana with novel aspects in the roles of arylalkylamine N-acetyltransferase (aaNAT), a key enzyme in indoleamine metabolism, and the enteroendocrine peptides; crustacean cardioactive peptide (CCAP) and short neuropeptide F (sNPF). Double-stranded RNA against aaNAT (dsRNAaaNAT) was injected into designated-aged females and the effects were monitored including the expressions of aaNAT itself, vitellogenin 1 and 2 (Vg1 and Vg2) and the vitellogenin receptor (VgR) mRNAs, oocyte maturation and changes in the hemolymph peptide concentrations. Effects of peptides application and 20E were also investigated. Injection of dsRNAaaNAT strongly suppressed oocyte maturation, transcription of Vg1, Vg2, VgR, and genes encoding JH acid- and farnesoate O-methyltransferases (JHAMT and FAMeT, respectively) acting in the JH biosynthetic pathway. However, it did not affect hemolymph concentrations of CCAP and sNPF. Injection of CCAP stimulated, while sNPF suppressed oocyte maturation and Vgs/VgR transcription, i.e., acting as allatomedins. Injection of CCAP promoted, while sNPF repressed ecdysteroid (20E) synthesis, particularly at the second step of Vg uptake. 20E also affected the JH biosynthetic pathway and Vg/VgR synthesis. The results revealed that on the course of vitellogenesis, JH- and 20E-mediated regulation occurs downstream to indoleamines- and peptides-mediated regulations. Intricate mutual interactions of these regulatory routes must orchestrate reproduction in this species at the highest potency.
Collapse
Affiliation(s)
- A. S. M. Kamruzzaman
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran;
| | - Amr A. Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| | - Azza M. Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
- Correspondence: (A.A.M.); (M.T.); Tel.: +2-0106-943-1998 (A.A.M.); +81-78-982-2531/070-4425-68319 (M.T.)
| |
Collapse
|
18
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Curr Biol 2019; 29:3501-3509.e5. [DOI: 10.1016/j.cub.2019.08.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
|
19
|
Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103185. [PMID: 31291597 DOI: 10.1016/j.ibmb.2019.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - Rubén Cañas-Cañas
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain.
| |
Collapse
|
20
|
O'Flynn BG, Suarez G, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acyltransferases: Mechanism and Role in Fatty Acid Amide Biosynthesis. Front Mol Biosci 2018; 5:66. [PMID: 30094237 PMCID: PMC6070697 DOI: 10.3389/fmolb.2018.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.
Collapse
Affiliation(s)
| | | | | | - David J. Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
21
|
Non-Pleiotropic Coupling of Daily and Seasonal Temporal Isolation in the European Corn Borer. Genes (Basel) 2018; 9:genes9040180. [PMID: 29587435 PMCID: PMC5924522 DOI: 10.3390/genes9040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Speciation often involves the coupling of multiple isolating barriers to produce reproductive isolation, but how coupling is generated among different premating barriers is unknown. We measure the degree of coupling between the daily mating time and seasonal mating time between strains of European corn borer (Ostrinia nubilalis) and evaluate the hypothesis that the coupling of different forms of allochrony is due to a shared genetic architecture, involving genes with pleiotropic effects on both timing phenotypes. We measure differences in gene expression at peak mating times and compare these genes to previously identified candidates that are associated with changes in seasonal mating time between the corn borer strains. We find that the E strain, which mates earlier in the season, also mates 2.7 h earlier in the night than the Z strain. Earlier daily mating is correlated with the differences in expression of the circadian clock genes cycle, slimb, and vrille. However, different circadian clock genes associate with daily and seasonal timing, suggesting that the coupling of timing traits is maintained by natural selection rather than pleiotropy. Juvenile hormone gene expression was associated with both types of timing, suggesting that circadian genes activate common downstream modules that may impose constraint on future evolution of these traits.
Collapse
|
22
|
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:48-59. [PMID: 29203177 DOI: 10.1016/j.jinsphys.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, being part of the machinery in charge of providing information about the luminous state of the surroundings. Aphids (Hemiptera: Aphididae) are paradigmatic photoperiodic insects, exhibiting a strong induction to diapause when the light regime mimics autumn conditions. The availability of the pea aphid (Acyrthosiphon pisum) genome has facilitated molecular approaches to understand the effect of light stimulus in the photoperiodic induction process. We have identified, experimentally validated and characterized the expression of the full opsin gene repertoire in the pea aphid. Among identified opsin genes in A. pisum, arthropsin is absent in most insects sequenced to date (except for dragonflies and two other hemipterans) but also present in a crustacean, an onychophoran and chelicerates. We have quantified the expression of these genes in aphids exposed to different photoperiodic conditions and at different times of the day and localized their transcripts in the aphid brain. Clear differences in expression patterns were found, thus relating opsin expression with the photoperiodic response.
Collapse
Affiliation(s)
- Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Florian Mattenberger
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain; Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
23
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
24
|
Barberà M, Martínez-Torres D. Identification of the prothoracicotropic hormone (Ptth) coding gene and localization of its site of expression in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2017; 26:654-664. [PMID: 28677913 DOI: 10.1111/imb.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain.
Collapse
Affiliation(s)
- M Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, Paterna, València, Spain
| | - D Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, Paterna, València, Spain
| |
Collapse
|
25
|
Subala SPRR, Shivakumar MS. Changes in light and dark periods affect the arylalkylamine N-acetyl transferase, melatonin activities and redox status in the head and hemolymph of nocturnal insectSpodoptera litura. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1325564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:54-67. [PMID: 28235563 DOI: 10.1016/j.ibmb.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
27
|
Goto SG. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects. J Comp Physiol B 2016; 186:969-984. [PMID: 27424162 DOI: 10.1007/s00360-016-1018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Photoperiodism is an adaptive, seasonal timing system that enables organisms to coordinate their development and physiology to annual changes in the environment using day length (photoperiod) as a cue. This review summarizes our knowledge of the physiological mechanisms underlying photoperiodism in spider mites. In particular, the two-spotted spider mite Tetranychus urticae is focussed, which has long been used as a model species for studying photoperiodism. Photoperiodism is established by several physiological modules, such as the photoreceptor, photoperiodic time measurement system, counter system, and endocrine effector. It is now clear that retinal photoreception through the ocelli is indispensable for the function of photoperiodism, at least in T. urticae. Visual pigment, which comprised opsin protein and a vitamin A-based pigment, is involved in photoreception. The physiological basis of the photoperiodic time measurement system is still under debate, and we have controversial evidence for the hourglass-based time measurement and the oscillator-based time measurement. Less attention has been centred on the counter system in insects and mites. Mite reproduction is possibly regulated by the ecdysteroid, ponasterone A. Prior physiological knowledge has laid the foundation for the next steps essential for the elucidation of the molecular mechanisms driving photoperiodism.
Collapse
Affiliation(s)
- Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
28
|
Escrivá L, Manyes L, Barberà M, Martínez-Torres D, Meca G. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:48-53. [PMID: 26778054 DOI: 10.1016/j.jinsphys.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Melatonin is a hormone mainly involved in the regulation of circadian and seasonal rhythms in both invertebrates and vertebrates. Despite the identification of melatonin in many insects, its involvement in the insect seasonal response remains unclear. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for melatonin analysis in aphids (Acyrthosiphon pisum) for the first time. After comparing two different procedures and five extraction solvents, a sample preparation procedure with a mixture of methanol/water (50:50) was selected for melatonin extraction. The method was validated by analyzing melatonin recovery at three spiked concentrations (5, 50 and 100 pg/mg) and showed satisfactory recoveries (75-110%), and good repeatability, expressed as relative standard deviation (<10%). Limits of detection (LOD) and quantitation (LOQ) were 1 pg/mg and 5 pg/mg, respectively. Eight concentration levels were used for constructing the calibration curves which showed good linearity between LOQ and 200 times LOQ. The validated method was successfully applied to 26 aphid samples demonstrating its usefulness for melatonin determination in insects. This is -to our knowledge- the first identification of melatonin in aphids by LC-MS/MS.
Collapse
Affiliation(s)
- Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Miquel Barberà
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - David Martínez-Torres
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Guiseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
29
|
Yaguchi H, Inoue T, Sasaki K, Maekawa K. Dopamine regulates termite soldier differentiation through trophallactic behaviours. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150574. [PMID: 26998327 PMCID: PMC4785978 DOI: 10.1098/rsos.150574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/14/2016] [Indexed: 05/20/2023]
Abstract
Caste polyphenism in social insects is regulated by social interactions among colony members. Trophallaxis is one of the most frequently observed interactions, but no studies have been conducted identifying the intrinsic factors involved in this behaviour and caste differentiation. Dopamine (DA) has multiple roles in the modulation of behaviours and physiology, and it produces species-specific behaviours in animals. Here, to verify the role of DA in termite soldier differentiation, we focused on the first soldier in an incipient colony of Zootermopsis nevadensis, which always differentiates from the oldest 3rd instar (No. 1 larva) via a presoldier. First, brain DA levels of the No. 1 larva at day 3 after its appearance were significantly higher than day 0. Second, DA synthesis gene expression levels were extraordinarily high in the No. 1 larva at day 0-1 after appearance. Finally, injection of a DA receptor antagonist into the No. 1 larva resulted in the inhibition of presoldier differentiation. Behavioural observations of the antagonist or control-injected larvae suggested that brain DA and signalling activity regulate the frequencies of trophallaxis from reproductives and presoldier differentiation. Because trophallaxis is a social behaviour frequently observed in natural conditions, the role of DA should be investigated in other social insects with frequent trophallactic and allogrooming behaviour.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Takaya Inoue
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Tokyo, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Author for correspondence: Kiyoto Maekawa e-mail:
| |
Collapse
|
30
|
De Loof A, Vandersmissen T, Marchal E, Schoofs L. Initiation of metamorphosis and control of ecdysteroid biosynthesis in insects: The interplay of absence of Juvenile hormone, PTTH, and Ca(2+)-homeostasis. Peptides 2015; 68:120-9. [PMID: 25102449 DOI: 10.1016/j.peptides.2014.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
The paradigm saying that release of the brain neuropeptide big prothoracicotropic hormone (PTTH) initiates metamorphosis by activating the Torso-receptor/ERK pathway in larval prothoracic glands (PGs) is widely accepted nowadays. Upon ligand-receptor interaction Ca(2+) enters the PG cells and acts as a secondary messenger. Ecdysteroidogenesis results, later followed by apoptosis. Yet, some data do not fit in this model. In some species decapitated animals can still molt, even repeatedly, and metamorphose. PTTH does not universally occur in all insect species. PGs may also have other functions; PGs as counterpart of the vertebrate thymus? There are also small PTTHs. Finally, PTTH remains abundantly present in adults and plays a role in control of ecdysteroidogenesis (=sex steroid production) in gonads. This is currently documented only in males. This urges a rethinking of the PTTH-PG paradigm. The key question is: Why does PTTH-induced Ca(2+) entry only result in ecdysteroidogenesis and apoptosis in specific cells/tissues, namely the PGs and gonads? Indeed, numerous other neuropeptides also use Ca(2+) as secondary messenger. The recent rediscovery that in both invertebrates and vertebrates at least some isoforms of Ca(2+)-ATPase need the presence of an endogenous farnesol/juvenile hormone(JH)-like sesquiterpenoid for keeping cytosolic [Ca(2+)]i below the limit of apoptosis-induction, triggered the idea that it is not primarily PTTH, but rather the drop to zero of the JH titer that acts as the primordial initiator of metamorphosis by increasing [Ca(2+)]i. PTTH likely potentiates this effect but only in cells expressing Torso. PTTH: an evolutionarily ancient gonadotropin?
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Tim Vandersmissen
- Department of Teacher Education, Leuven University College, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| |
Collapse
|
31
|
Hiragaki S, Suzuki T, Mohamed AAM, Takeda M. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol 2015; 6:113. [PMID: 25918505 PMCID: PMC4394704 DOI: 10.3389/fphys.2015.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/25/2015] [Indexed: 11/26/2022] Open
Abstract
The evolution of N-acetyltransfeases (NATs) seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT) has been extensively studied since it leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT), and also xenobiotic reactions (arylamine NAT or simply NAT). NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT) form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO) activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the circadian system. Therefore, the enzyme plays both unique and universal roles in insects. The unique role of iaaNATs in physiological regulation urges the targeting of this system for integrated pest management (IPM). We indeed showed a successful example of chemical compound screening with reconstituted enzyme and further attempts seem promising.
Collapse
Affiliation(s)
- Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| | - Takeshi Suzuki
- Department of Biology, The University of Western OntarioLondon, ON, Canada
| | | | - Makio Takeda
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| |
Collapse
|
32
|
Dolezel D. Photoperiodic time measurement in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 7:98-103. [PMID: 32846694 DOI: 10.1016/j.cois.2014.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 06/11/2023]
Abstract
The ratio of day-to-night length, known as the photoperiod, is used by many organisms to predict the oncoming of adverse seasons through the use of a photoperiodic clock system. The molecular and neural architecture of these time-measuring devices is unclear, although some evidence suggests involvement of circadian factors, that is, proteins responsible for daily oscillations. This review summarizes specific difficulties in the research of photoperiodic clocks, highlights recent successful studies, and suggests possible future directions available with emerging technologies.
Collapse
Affiliation(s)
- David Dolezel
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|