1
|
Kiarie IW, Hoffka G, Laporte M, Leyssen P, Neyts J, Tőzsér J, Mahdi M. Efficacy of Integrase Strand Transfer Inhibitors and the Capsid Inhibitor Lenacapavir against HIV-2, and Exploring the Effect of Raltegravir on the Activity of SARS-CoV-2. Viruses 2024; 16:1607. [PMID: 39459940 PMCID: PMC11512360 DOI: 10.3390/v16101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses perpetuate their survival by incorporating a copy of their genome into the host cell, a critical step catalyzed by the virally encoded integrase. The viral capsid plays an important role during the viral life cycle, including nuclear importation in the case of lentiviruses and integration targeting events; hence, targeting the integrase and the viral capsid is a favorable therapeutic strategy. While integrase strand transfer inhibitors (INSTIs) are recommended as first-line regimens given their high efficacy and tolerability, lenacapavir is the first capsid inhibitor and the newest addition to the HIV treatment arsenal. These inhibitors are however designed for treatment of HIV-1 infection, and their efficacy against HIV-2 remains widely understudied and inconclusive, supported only by a few limited phenotypic susceptibility studies. We therefore carried out inhibition profiling of a panel of second-generation INSTIs and lenacapavir against HIV-2 in cell culture, utilizing pseudovirion inhibition profiling assays. Our results show that the tested INSTIs and lenacapavir exerted excellent efficacy against ROD-based HIV-2 integrase. We further evaluated the efficacy of raltegravir and other INSTIs against different variants of SARS-CoV-2; however, contrary to previous in silico findings, the inhibitors did not demonstrate significant antiviral activity.
Collapse
Affiliation(s)
- Irene Wanjiru Kiarie
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Manon Laporte
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| |
Collapse
|
2
|
Moranguinho I, Taveira N, Bártolo I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. Int J Mol Sci 2023; 24:ijms24065905. [PMID: 36982978 PMCID: PMC10053740 DOI: 10.3390/ijms24065905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, it is estimated that 1-2 million people worldwide are infected with HIV-2, accounting for 3-5% of the global burden of HIV. The course of HIV-2 infection is longer compared to HIV-1 infection, but without effective antiretroviral therapy (ART), a substantial proportion of infected patients will progress to AIDS and die. Antiretroviral drugs in clinical use were designed for HIV-1 and, unfortunately, some do not work as well, or do not work at all, for HIV-2. This is the case for non-nucleoside reverse transcriptase inhibitors (NNRTIs), the fusion inhibitor enfuvirtide (T-20), most protease inhibitors (PIs), the attachment inhibitor fostemsavir and most broadly neutralizing antibodies. Integrase inhibitors work well against HIV-2 and are included in first-line therapeutic regimens for HIV-2-infected patients. However, rapid emergence of drug resistance and cross-resistance within each drug class dramatically reduces second-line treatment options. New drugs are needed to treat infection with drug-resistant isolates. Here, we review the therapeutic armamentarium available to treat HIV-2-infected patients, as well as promising drugs in development. We also review HIV-2 drug resistance mutations and resistance pathways that develop in HIV-2-infected patients under treatment.
Collapse
Affiliation(s)
- Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| |
Collapse
|
3
|
Bártolo I, Moranguinho I, Gonçalves P, Diniz AR, Borrego P, Martin F, Figueiredo I, Gomes P, Gonçalves F, Alves AJS, Alves N, Caixas U, Pinto IV, Barahona I, Pinho e Melo TMVD, Taveira N. High Instantaneous Inhibitory Potential of Bictegravir and the New Spiro-β-Lactam BSS-730A for HIV-2 Isolates from RAL-Naïve and RAL-Failing Patients. Int J Mol Sci 2022; 23:ijms232214300. [PMID: 36430777 PMCID: PMC9695772 DOI: 10.3390/ijms232214300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Integrase inhibitors (INIs) are an important class of drugs for treating HIV-2 infection, given the limited number of drugs active against this virus. While the clinical efficacy of raltegravir and dolutegravir is well established, the clinical efficacy of bictegravir for treating HIV-2 infected patients has not been determined. Little information is available regarding the activity of bictegravir against HIV-2 isolates from patients failing raltegravir-based therapy. In this study, we examined the phenotypic and matched genotypic susceptibility of HIV-2 primary isolates from raltegravir-naïve and raltegravir-failing patients to raltegravir, dolutegravir, and bictegravir, and to the new spiro-β-lactam BSS-730A. The instantaneous inhibitory potential (IIP) was calculated to help predict the clinical activity of bictegravir and BSS-730A. Isolates from raltegravir-naïve patients were highly sensitive to all INIs and BSS-730A. Combined integrase mutations E92A and Q148K conferred high-level resistance to raltegravir, and E92Q and T97A conferred resistance to raltegravir and dolutegravir. The antiviral activity of bictegravir and BSS-730A was not affected by these mutations. BSS-730A displayed strong antiviral synergism with raltegravir. Mean IIP values at Cmax were similar for all INIs and were not significantly affected by resistance mutations. IIP values were significantly higher for BSS-730A than for INIs. The high IIP values of bictegravir and BSS-730A for raltegravir-naïve and raltegravir-resistant HIV-2 isolates highlight their potential value for treating HIV-2 infection. Overall, the results are consistent with the high clinical efficacy of raltegravir and dolutegravir for HIV-2 infection and suggest a promising clinical profile for bictegravir and BSS-730A.
Collapse
Affiliation(s)
- Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Paloma Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Ana Rita Diniz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Pedro Borrego
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP), Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Inês Figueiredo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Perpétua Gomes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
- Laboratório de Biologia Molecular, LMCBM, SPC, Centro Hospitalar Lisboa Ocidental–HEM, 1649-019 Lisboa, Portugal
| | - Fátima Gonçalves
- Laboratório de Biologia Molecular, LMCBM, SPC, Centro Hospitalar Lisboa Ocidental–HEM, 1649-019 Lisboa, Portugal
| | - Américo J. S. Alves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Nuno Alves
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Umbelina Caixas
- Serviço de Medicina 1.4, Hospital de S. José, CHLC, EPE, and Faculdade de Ciências Médicas, FCM-Nova, Centro de Estudos de Doenças Crónicas–CEDOC, 1649-019 Lisboa, Portugal
| | - Inês V. Pinto
- Medicina Interna, Hospital de Cascais Dr. José de Almeida, 2755-009 Alcabideche, Portugal
| | - Isabel Barahona
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Teresa M. V. D. Pinho e Melo
- Department of Chemistry, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
- Correspondence:
| |
Collapse
|
4
|
Smith RA, Wu VH, Song J, Raugi DN, Diallo Mbaye K, Seydi M, Gottlieb GS. Spectrum of Activity of Raltegravir and Dolutegravir Against Novel Treatment-Associated Mutations in HIV-2 Integrase: A Phenotypic Analysis Using an Expanded Panel of Site-Directed Mutants. J Infect Dis 2022; 226:497-509. [PMID: 35134180 PMCID: PMC9417127 DOI: 10.1093/infdis/jiac037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Integrase inhibitors (INIs) are a key component of antiretroviral therapy for human immunodeficiency virus-1 (HIV-1) and HIV-2 infection. Although INI resistance pathways are well-defined for HIV-1, mutations that emerge in HIV-2 in response to INIs are incompletely characterized. METHODS We performed systematic searches of GenBank and HIV-2 drug resistance literature to identify treatment-associated mutations for phenotypic evaluation. We then constructed a library of 95 mutants of HIV-2ROD9 that contained single or multiple amino acid changes in the integrase protein. Each variant was tested for susceptibility to raltegravir and dolutegravir using a single-cycle indicator cell assay. RESULTS We observed extensive cross-resistance between raltegravir and dolutegravir in HIV-2ROD9. HIV-2-specific integrase mutations Q91R, E92A, A153G, and H157Q/S, which have not been previously characterized, significantly increased the half maximum effective concentration (EC50) for raltegravir when introduced into 1 or more mutational backgrounds; mutations E92A/Q, T97A, and G140A/S conferred similar enhancements of dolutegravir resistance. HIV-2ROD9 variants encoding G118R alone, or insertions of residues SREGK or SREGR at position 231, were resistant to both INIs. CONCLUSIONS Our analysis demonstrates the contributions of novel INI-associated mutations to raltegravir and dolutegravir resistance in HIV-2. These findings should help to improve algorithms for genotypic drug resistance testing in HIV-2-infected individuals.
Collapse
Affiliation(s)
- Robert A Smith
- Correspondence: Robert A. Smith, PhD, Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, 750 Republican Street, Building E, Box 358061, Seattle, WA 98109 ()
| | - Vincent H Wu
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, USA,Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, USA,Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Dana N Raugi
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, USA,Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Khardiata Diallo Mbaye
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National Universitaire de Fann, Dakar, Senegal
| | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National Universitaire de Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, USA,Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA,Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Requena S, Lozano AB, Caballero E, García F, Nieto MC, Téllez R, Fernández JM, Trigo M, Rodríguez-Avial I, Martín-Carbonero L, Miralles P, Soriano V, de Mendoza C. Clinical experience with integrase inhibitors in HIV-2-infected individuals in Spain. J Antimicrob Chemother 2020; 74:1357-1362. [PMID: 30753573 DOI: 10.1093/jac/dkz007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND HIV-2 is a neglected virus despite estimates of 1-2 million people being infected worldwide. The virus is naturally resistant to some antiretrovirals used to treat HIV-1 and therapeutic options are limited for patients with HIV-2. METHODS In this retrospective observational study, we analysed all HIV-2-infected individuals treated with integrase strand transfer inhibitors (INSTIs) recorded in the Spanish HIV-2 cohort. Demographics, treatment modalities, laboratory values, quantitative HIV-2 RNA and CD4 counts as well as drug resistance were analysed. RESULTS From a total of 354 HIV-2-infected patients recruited by the Spanish HIV-2 cohort as of December 2017, INSTIs had been given to 44, in 18 as first-line therapy and in 26 after failing other antiretroviral regimens. After a median follow-up of 13 months of INSTI-based therapy, undetectable viraemia for HIV-2 was achieved in 89% of treatment-naive and in 65.4% of treatment-experienced patients. In parallel, CD4 gains were 82 and 126 cells/mm3, respectively. Treatment failure occurred in 15 patients, 2 being treatment-naive and 13 treatment-experienced. INSTI resistance changes were recognized in 12 patients: N155H (5), Q148H/R (3), Y143C/G (3) and R263K (1). CONCLUSIONS Combinations based on INSTIs are effective and safe treatment options for HIV-2-infected individuals. However, resistance mutations to INSTIs are selected frequently in failing patients, reducing the already limited treatment options.
Collapse
Affiliation(s)
- S Requena
- Puerta de Hierro University Hospital and Research Institute, Madrid, Spain
| | | | | | - F García
- Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | | | - R Téllez
- Fundación Jiménez-Díaz, Madrid, Spain
| | | | - M Trigo
- Complejo Hospitalario, Pontevedra, Spain
| | | | | | - P Miralles
- Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - V Soriano
- Hospital Universitario La Paz, Madrid, Spain.,UNIR Health Sciences School, Madrid, Spain
| | - C de Mendoza
- Puerta de Hierro University Hospital and Research Institute, Madrid, Spain.,Universidad San Pablo CEU, Madrid, Spain
| | | |
Collapse
|
6
|
Smith RA, Raugi DN, Wu VH, Zavala CG, Song J, Diallo KM, Seydi M, Gottlieb GS. Comparison of the Antiviral Activity of Bictegravir against HIV-1 and HIV-2 Isolates and Integrase Inhibitor-Resistant HIV-2 Mutants. Antimicrob Agents Chemother 2019; 63:e00014-19. [PMID: 30803972 PMCID: PMC6496081 DOI: 10.1128/aac.00014-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
We compared the activity of the integrase inhibitor bictegravir against HIV-1 and HIV-2 using a culture-based, single-cycle assay. Values of 50% effective concentrations ranged from 1.2 to 2.5 nM for 9 HIV-1 isolates and 1.4 to 5.6 nM for 15 HIV-2 isolates. HIV-2 integrase mutants G140S/Q148R and G140S/Q148H were 34- and 110-fold resistant to bictegravir, respectively; other resistance-associated mutations conferred ≤5-fold changes in bictegravir susceptibility. Our findings indicate that bictegravir-based antiretroviral therapy should be evaluated in HIV-2-infected individuals.
Collapse
Affiliation(s)
- Robert A Smith
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Dana N Raugi
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Vincent H Wu
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Christopher G Zavala
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | | | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, CHNU de Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
90-90-90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV 2019; 5:e390-e399. [PMID: 30052509 DOI: 10.1016/s2352-3018(18)30094-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Distinct from HIV-1 and often neglected in the global campaign to end the AIDS epidemic, HIV-2 presents unique and underappreciated challenges in diagnosis, clinical care, antiretroviral therapy (ART), and HIV programmatic management. Here, we review the epidemiology and natural history of HIV-2, diagnostics and algorithms for accurately diagnosing and differentiating HIV-2 from HIV-1, the unique features of HIV-2 ART and drug resistance, and the clinical care and management of patients infected with HIV-2 in both developed and resource-limited settings. Ultimately, further research is needed to address the gaps in our knowledge of HIV-2 infection, increased resources are needed to specifically target HIV-2 as part of the UNAIDS/WHO 90-90-90 campaign to end AIDS, and increased determination is needed to better advocate for inclusion of people living with HIV-2 in global HIV/AIDS initiatives.
Collapse
|
8
|
In Vitro Antiviral Activity of Cabotegravir against HIV-2. Antimicrob Agents Chemother 2018; 62:AAC.01299-18. [PMID: 30012774 DOI: 10.1128/aac.01299-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 02/08/2023] Open
Abstract
We examined the antiviral activity of the integrase inhibitor (INI) cabotegravir against HIV-2 isolates from INI-naive individuals. HIV-2 was sensitive to cabotegravir in single-cycle and spreading-infection assays, with 50% effective concentrations (EC50s) in the low to subnanomolar range; comparable results were obtained for HIV-1 in both assay formats. Our findings suggest that cabotegravir should be evaluated in clinical trials as a potential option for antiretroviral therapy and preexposure prophylaxis in HIV-2-prevalent settings.
Collapse
|
9
|
Requena S, Treviño A, Cabezas T, Garcia-Delgado R, Amengual MJ, Lozano AB, Peñaranda M, Fernández JM, Soriano V, de Mendoza C. Drug resistance mutations in HIV-2 patients failing raltegravir and influence on dolutegravir response. J Antimicrob Chemother 2018; 72:2083-2088. [PMID: 28369593 DOI: 10.1093/jac/dkx090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background A broader extent of amino acid substitutions in the integrase of HIV-2 compared with HIV-1 might enable greater cross-resistance between raltegravir and dolutegravir in HIV-2 infection. Few studies have examined the virological response to dolutegravir in HIV-2 patients that failed raltegravir. Methods All patients recorded in the HIV-2 Spanish cohort were examined. The integrase coding region was sequenced in viraemic patients. Changes associated with resistance to raltegravir and dolutegravir in HIV-1 were recorded. Results From 319 HIV-2-infected patients recorded in the HIV-2 Spanish cohort, 53 integrase sequences from 30 individuals were obtained (20 raltegravir naive and 10 raltegravir experienced). Only one secondary mutation (E138A) was found in one of the 20 raltegravir-naive HIV-2 patients. For raltegravir-experienced individuals, the resistance mutation profile in 9 of 10 viraemic patients was as follows: N155H + A153G/S (four); Y143G + A153S (two); Q148R + G140A/S (two); and Y143C + Q91R (one). Of note, all patients with Y143G and N155H developed a rare non-polymorphic mutation at codon 153. Rescue therapy with dolutegravir was given to 5 of these 10 patients. After >6 months on dolutegravir therapy, three patients with baseline N155H experienced viral rebound. In two of them N155H was replaced by Q148K/R and in another by G118R. Conclusions A wide repertoire of resistance mutations in the integrase gene occur in HIV-2-infected patients failing on raltegravir. Although dolutegravir may allow successful rescue in most HIV-2 raltegravir failures, we report and characterize three cases of dolutegravir resistance in HIV-2 patients, emerging variants Q148K and Q148R and a novel change G118R.
Collapse
Affiliation(s)
- Silvia Requena
- Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Ana Treviño
- Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | - Vicente Soriano
- La Paz University Hospital & Autonomous University, Madrid, Spain
| | | | | |
Collapse
|
10
|
Mendoza CD, Requena S, Caballero E, Cabezas T, Peñaranda M, Amengual MJ, Sáez A, Lozano AB, Ramos JM, Soriano V. Antiretroviral treatment of HIV-2 infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-2 is a neglected virus despite estimates of 1–2 million people being infected worldwide. AIDS develops more slowly in HIV-2 than HIV-1. Outside endemic regions, HIV-2 is mostly found in immigrants from west Africa or their sex partners. There are four major caveats when treating HIV-2. First, some antiretrovirals are not or only partially active against HIV-2. Second, CD4 declines in HIV-2 occur slowly, but CD4 recovery is smaller with antiretroviral treatment. Third, both virological failure and rapid emergence of drug resistance occur more frequently in HIV-2 than HIV-1. Finally, misdiagnosis of HIV-2 in patients wrongly considered as infected with HIV-1 or in those dually infected may result in treatment failures with undetectable HIV-1 RNA. Integrase inhibitors, and especially dolutegravir, should be part of any preferred HIV-2 antiretroviral combination nowadays.
Collapse
Affiliation(s)
- Carmen de Mendoza
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | - Silvia Requena
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | | | | | - María Peñaranda
- Microbiology Unit, Son Espases Hospital, Palma de Mallorca, Spain
| | | | - Ana Sáez
- Microbiology Unit, Hospital Marqués de Valdecilla, Santander, Spain
| | | | - José M Ramos
- Infectious Diseases Unit, General Hospital, Alicante, Spain
| | - Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital & Autonomous University, Madrid, Spain
| |
Collapse
|
11
|
de Mendoza C, Cabezas T, Caballero E, Requena S, Amengual MJ, Peñaranda M, Sáez A, Tellez R, Lozano AB, Treviño A, Ramos JM, Pérez JL, Barreiro P, Soriano V. HIV type 2 epidemic in Spain: challenges and missing opportunities. AIDS 2017; 31:1353-1364. [PMID: 28358736 DOI: 10.1097/qad.0000000000001485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: HIV type 2 (HIV-2) is a neglected virus despite estimates of 1-2 million people infected worldwide. HIV-2 is less efficiently transmitted than HIV-1 by sex and from mother to child. Although AIDS may develop in HIV-2 carriers, it takes longer than in HIV-1-infected patients. In contrast with HIV-1 infection, there is no global pandemic caused by HIV-2, as the virus is largely confined to West Africa. In a less extent and due to socioeconomic ties and wars, HIV-2 is prevalent in Portugal and its former colonies in Brazil, India, Mozambique and Angola. Globally, HIV-2 infections are steadily declining over time. A total of 338 cases of HIV-2 infection had been reported at the Spanish HIV-2 registry until December 2016, of whom 63% were men. Overall 72% were sub-Saharan Africans, whereas 16% were native Spaniards. Dual HIV-1 and HIV-2 coinfection was found in 9% of patients. Heterosexual contact was the most likely route of HIV-2 acquisition in more than 90% of cases. Roughly one-third presented with CD4 cell counts less than 200 cells/μl and/or AIDS clinical events. Plasma HIV-2 RNA was undetectable at baseline in 40% of patients. To date, one-third of HIV-2 carriers have received antiretroviral therapy, using integrase inhibitors 32 individuals. New diagnoses of HIV-2 in Spain have remained stable since 2010 with an average of 15 cases yearly. Illegal immigration from Northwestern African borders accounts for over 75% of new HIV-2 diagnoses. Given the relatively large community of West Africans already living in Spain and the continuous flux of immigration from endemic regions, HIV-2 infection either alone or as coinfection with HIV-1 should be excluded once in all HIV-seroreactive persons, especially when showing atypical HIV serological profiles, immunovirological disconnect (CD4 cell count loss despite undetectable HIV-1 viremia) and/or high epidemiological risks (birth in or sex partners from endemic regions).
Collapse
|
12
|
Assessment of the Cavidi ExaVir Load Assay for Monitoring Plasma Viral Load in HIV-2-Infected Patients. J Clin Microbiol 2017; 55:2367-2379. [PMID: 28515216 DOI: 10.1128/jcm.00235-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022] Open
Abstract
HIV plasma viral load is an established marker of disease progression and of response to antiretroviral therapy, but currently there is no commercial assay validated for the quantification of viral load in HIV-2-infected individuals. We sought to make the first clinical evaluation of Cavidi ExaVir Load (version 3) in HIV-2-infected patients. Samples were collected from a total of 102 individuals living in Cape Verde, and the HIV-2 viral load was quantified by both ExaVir Load and a reference in-house real-time quantitative PCR (qPCR) used in Portugal in 91 samples. The associations between viral load and clinical prognostic variables (CD4+ T cell counts and antiretroviral therapy status) were similar for measurements obtained using ExaVir Load and qPCR. There was no difference between the two methods in the capacity to discriminate between nonquantifiable and quantifiable HIV-2 in the plasma. In samples with an HIV-2 viral load quantifiable by both methods (n = 27), the measurements were highly correlated (Pearson r = 0.908), but the ExaVir Load values were systematically higher relative to those determined by qPCR (median difference, 0.942 log10 copies/ml). A regression model was derived that enables the conversion of ExaVir Load results to those that would have been obtained by the reference qPCR. In conclusion, ExaVir Load version 3 is a reliable commercial assay to measure viral load in HIV-2-infected patients and therefore a valuable alternative to the in-house assays in current use.
Collapse
|
13
|
Hu S, Neff CP, Kumar DM, Habu Y, Akkina SR, Seki T, Akkina R. A humanized mouse model for HIV-2 infection and efficacy testing of a single-pill triple-drug combination anti-retroviral therapy. Virology 2016; 501:115-118. [PMID: 27912079 DOI: 10.1016/j.virol.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
While HIV-2 is a causative agent for AIDS in addition to the better studied HIV-1, there is currently no suitable animal model for experimental studies for HIV-2 infection and evaluating promising drugs in vivo. Here we evaluated humanized mice for their susceptibility to HIV-2 infection and tested a single-pill three drug formulation of anti-retrovirals (NRTIs abacavir and lamivudine, integrase inhibitor dolutegravir) (trade name, TriumeqR). Our results showed that hu-mice are susceptible to HIV-2 infection showing persistent viremia and CD4 T cell loss, key hallmarks of AIDS pathogenesis. Oral drug treatment led to full viral suppression and protection from CD4 T cell depletion. Cessation of therapy resulted in viral rebound and CD4 T cell loss. These proof-of-concept studies establish the utility of hu-mice for evaluating HIV-2 pathogenesis in more detail in the future, testing novel therapies and providing pre-clinical efficacy data of a three drug combination to treat HIV-2 infections.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Preston Neff
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dipu Mohan Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Yuichiro Habu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sarah R Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Takahiro Seki
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
14
|
Abstract
BACKGROUND HIV-1 group O (HIV-O) is a rare variant that is characterized by a high number of natural polymorphisms in the integrase coding region that may impact on susceptibility to integrase strand transfer inhibitors (INSTIs) and on the emergence of resistance substitutions. We previously reported that HIV-O is more susceptible to RAL than HIV-1 group M (HIV-M). METHODS The aim of this study was to assess pathways of resistance to INSTIs in group 0 variants. Accordingly, we selected for resistance to each of raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) in cord blood mononuclear cells using HIV group O subtypes A and B, an HIV-O divergent isolate, and HIV-1 group M (subtype B, which served as a reference). Site-directed mutagenesis was performed on the pCOM2.5 HIV group 0 infectious clone to ascertain the impact of INSTI resistance substitutions at positions Q148R, N155H, and R263K within integrase on susceptibility to INSTIs and infectiousness. RESULTS Cell culture selections of group O variants yielded similar patterns of resistance to RAL, EVG, and DTG as observed for subtype B. In the DTG selections, subtype B yielded S153Y, whereas a natural S153A polymorphism sometimes led to A153V in group O. The pCMO2.5/Q148R and pCMO2.5/N155H variants displayed far higher levels of resistance to DTG (>1000 FC) than was seen for group M viruses. CONCLUSIONS HIV-O harboring Q148R and N155H shows higher resistance to DTG compared with HIV-M subtype B.
Collapse
|
15
|
Llácer Delicado T, Torrecilla E, Holguín Á. Deep analysis of HIV-1 natural variability across HIV-1 variants at residues associated with integrase inhibitor (INI) resistance in INI-naive individuals. J Antimicrob Chemother 2015; 71:362-6. [PMID: 26546669 DOI: 10.1093/jac/dkv333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/15/2015] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES We evaluated variant-associated variability at positions related to resistance to the integrase (IN) inhibitors (INIs) raltegravir, elvitegravir and dolutegravir using HIV-1 IN sequences from naive individuals retrieved from GenBank. METHODS We evaluated the frequency of major, secondary and rare amino acid changes associated with INI resistance (INI-R) in 6706 sequences from 3791 INI-naive individuals carrying a large panel of different HIV-1 variants retrieved from GenBank, including four groups: M (6663), O (24), N (15) and P (4). HIV-1 group M sequences included 4599 sequences from the nine group M subtypes and 2064 recombinants ascribed to 54 circulating recombinant forms (CRFs). RESULTS Primary INI-R mutations were rare in INI-naive participants and only present at a low rate in subtypes B, C and D and recombinants CRF01_AE and CRF14_BG, ranging from one to five per variant. Three secondary INI-R changes appeared with variable frequency in INI-naive individuals carrying specific HIV-1 variants: L74M in CRF43_02G (33.3%); T97A in group P (50%), J (33.3%), CRF18_cpx (20%) and F2 (11.5%); and G163RK in CRF44_BF (100%), CRF46_BF (66.7%), CRF17_BF (28.6%), F1 (21.7%), CRF12_BF (16.7%) and CRF29_BF (12.5%). Rare mutations were absent. CONCLUSIONS Natural variability in INI-R positions across HIV-1 variants should be studied as they may facilitate or delay the emergence of INI-R viruses.
Collapse
Affiliation(s)
- Teresa Llácer Delicado
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, SpainInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainCIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Esther Torrecilla
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, SpainInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainCIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology and Parasitology Department, Hospital Universitario Ramón y Cajal, Madrid, SpainInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, SpainCIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
Charpentier C, Camacho R, Ruelle J, Eberle J, Gürtler L, Pironti A, Stürmer M, Brun-Vézinet F, Kaiser R, Descamps D, Obermeier M. HIV-2EU-Supporting Standardized HIV-2 Drug-Resistance Interpretation in Europe: An Update. Clin Infect Dis 2015; 61:1346-7. [PMID: 26187019 DOI: 10.1093/cid/civ572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Charlotte Charpentier
- Infection, Antimicrobials, Modelling, Evolution (IAME), Unite Mixte de Recherche (UMR) 1137, Univ Paris Diderot, Sorbonne Paris Cité IAME, UMR 1137, Institut National de la Santé et de la Recherche Médicale AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Ricardo Camacho
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven
| | - Jean Ruelle
- Université catholique de Louvain, AIDS Reference Laboratory, Brussels, Belgium
| | - Josef Eberle
- Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich
| | - Lutz Gürtler
- Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich
| | | | - Martin Stürmer
- Johann Wolfgang Goethe-University Hospital, Institute for Medical Virology, German National Reference Centre for Retroviruses, Frankfurt
| | | | - Rolf Kaiser
- Institute of Virology, University of Cologne
| | - Diane Descamps
- Infection, Antimicrobials, Modelling, Evolution (IAME), Unite Mixte de Recherche (UMR) 1137, Univ Paris Diderot, Sorbonne Paris Cité IAME, UMR 1137, Institut National de la Santé et de la Recherche Médicale AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | | |
Collapse
|
17
|
The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1. Antimicrob Agents Chemother 2015; 59:7437-46. [PMID: 26392486 DOI: 10.1128/aac.01326-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023] Open
Abstract
Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture.
Collapse
|
18
|
Smith RA, Raugi DN, Pan C, Sow PS, Seydi M, Mullins JI, Gottlieb GS. In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2. Retrovirology 2015; 12:10. [PMID: 25808007 PMCID: PMC4328052 DOI: 10.1186/s12977-015-0146-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Dolutegravir recently became the third integrase strand transfer inhibitor (INSTI) approved for use in HIV-1–infected individuals. In contrast to the extensive dataset for HIV-1, in vitro studies and clinical reports of dolutegravir for HIV-2 are limited. To evaluate the potential role of dolutegravir in HIV-2 treatment, we compared the susceptibilities of wild-type and INSTI-resistant HIV-1 and HIV-2 strains to the drug using single-cycle assays, spreading infections of immortalized T cells, and site-directed mutagenesis. Findings HIV-2 group A, HIV-2 group B, and HIV-1 isolates from INSTI-naïve individuals were comparably sensitive to dolutegravir in the single-cycle assay (mean EC50 values = 1.9, 2.6, and 1.3 nM, respectively). Integrase substitutions E92Q, Y143C, E92Q + Y143C, and Q148R conferred relatively low levels of resistance to dolutegravir in HIV-2ROD9 (2- to 6-fold), but Q148K, E92Q + N155H, T97A + N155H and G140S + Q148R resulted in moderate resistance (10- to 46-fold), and the combination of T97A + Y143C in HIV-2ROD9 conferred high-level resistance (>5000-fold). In contrast, HIV-1NL4-3 mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C showed 2-fold, 4-fold, and no increase in EC50, respectively, relative to the parental strain. The resistance phenotypes for E92Q + N155H, and G140S + Q148R HIV-2ROD9 were also confirmed in spreading infections of CEM-ss cells. Conclusions Our data support the use of dolutegravir in INSTI-naïve HIV-2 patients but suggest that, relative to HIV-1, a broader array of replacements in HIV-2 integrase may enable cross-resistance between dolutegravir and other INSTI. Clinical studies are needed to evaluate the efficacy of dolutegravir in HIV-2–infected individuals, including patients previously treated with raltegravir or elvitegravir.
Collapse
|
19
|
Treviño A, Cabezas T, Lozano AB, García-Delgado R, Force L, Fernández-Montero JM, Mendoza CD, Caballero E, Soriano V. Dolutegravir for the treatment of HIV-2 infection. J Clin Virol 2015; 64:12-5. [PMID: 25728072 DOI: 10.1016/j.jcv.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Therapeutic options are limited for HIV-2 infected persons, largely in part due to the lack of susceptibility to HIV-1 non-nucleoside reverse transcriptase inhibitors and poor susceptibility to some HIV-1 protease inhibitors. This is particularly worrisome for HIV-2 patients with prior antiretroviral failure. OBJECTIVES Report the virological response to dolutegravir in HIV-2-infected individuals. STUDY DESIGN Retrospective observational assessment of all HIV-2 individuals treated with dolutegravir in Spain. RESULTS From 297 HIV-2-infected individuals recorded at the Spanish national registry, 26% received antiretroviral therapy. Six out of 8 failing on raltegravir selected for integrase resistance mutations N155H (4), Y143G (1) and Q148R (1). Two patients bearing N155H subsequently received dolutegravir. Both experienced initially more than 1.5 log drop in plasma HIV-2 RNA and significant CD4 gains. Whereas one kept on undetectable viremia 6 months later, the other experienced viral rebound. CONCLUSION Dolutegravir may be a good therapeutic option for patients with HIV-2 infection, including those that previously failed other integrase inhibitors.
Collapse
Affiliation(s)
- Ana Treviño
- Laboratory of Virology, Puerta de Hierro Research Institute and University Hospital, Majadahonda, Madrid, Spain
| | | | | | | | | | | | - Carmen de Mendoza
- Laboratory of Virology, Puerta de Hierro Research Institute and University Hospital, Majadahonda, Madrid, Spain.
| | | | - Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital & IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain.
| |
Collapse
|