1
|
Wang D, Pu Y, Tan S, Wang X, Zeng L, Lei J, Gao X, Li H. Identification of immune-related biomarkers for glaucoma using gene expression profiling. Front Genet 2024; 15:1366453. [PMID: 38694874 PMCID: PMC11062407 DOI: 10.3389/fgene.2024.1366453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Glaucoma, a principal cause of irreversible vision loss, is characterized by intricate optic neuropathy involving significant immune mechanisms. This study seeks to elucidate the molecular and immune complexities of glaucoma, aiming to improve our understanding of its pathogenesis. Methods: Gene expression profiles from glaucoma patients were analyzed to identify immune-related differentially expressed genes (DEGs). Techniques used were weighted gene co-expression network analysis (WGCNA) for network building, machine learning algorithms for biomarker identification, establishment of subclusters related to immune reactions, and single-sample gene set enrichment analysis (ssGSEA) to explore hub genes' relationships with immune cell infiltration and immune pathway activation. Validation was performed using an NMDA-induced excitotoxicity model and RT-qPCR for hub gene expression measurement. Results: The study identified 409 DEGs differentiating healthy individuals from glaucoma patients, highlighting the immune response's significance in disease progression. Immune cell infiltration analysis revealed elevated levels of activated dendritic cells, natural killer cells, monocytes, and immature dendritic cells in glaucoma samples. Three hub genes, CD40LG, TEK, and MDK, were validated as potential diagnostic biomarkers for high-risk glaucoma patients, showing increased expression in the NMDA-induced excitotoxicity model. Discussion: The findings propose the three identified immune-related genes (IRGs) as novel diagnostic markers for glaucoma, offering new insights into the disease's pathogenesis and potential therapeutic targets. The strong correlation between these IRGs and immune responses underscores the intricate role of immunity in glaucoma, suggesting a shift in the approach to its diagnosis and treatment.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Junqin Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
2
|
Bui TM, Yalom LK, Ning E, Urbanczyk JM, Ren X, Herrnreiter CJ, Disario JA, Wray B, Schipma MJ, Velichko YS, Sullivan DP, Abe K, Lauberth SM, Yang GY, Dulai PS, Hanauer SB, Sumagin R. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J Clin Invest 2024; 134:e174545. [PMID: 38329810 PMCID: PMC10977994 DOI: 10.1172/jci174545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lenore K. Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward Ning
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M. Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline J. Herrnreiter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jackson A. Disario
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Wray
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Schipma
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - David P. Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Parambir S. Dulai
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Strat AN, Kirschner A, Yoo H, Singh A, Bagué T, Li H, Herberg S, Ganapathy PS. Engineering a 3D hydrogel system to study optic nerve head astrocyte morphology and behavior. Exp Eye Res 2022; 220:109102. [PMID: 35525298 DOI: 10.1016/j.exer.2022.109102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Ana N Strat
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Alexander Kirschner
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Yoo
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haiyan Li
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
4
|
Wei J, Chen Z, Hu M, He Z, Jiang D, Long J, Du H. Characterizing Intercellular Communication of Pan-Cancer Reveals SPP1+ Tumor-Associated Macrophage Expanded in Hypoxia and Promoting Cancer Malignancy Through Single-Cell RNA-Seq Data. Front Cell Dev Biol 2021; 9:749210. [PMID: 34676217 PMCID: PMC8523849 DOI: 10.3389/fcell.2021.749210] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a characteristic of tumor microenvironment (TME) and is a major contributor to tumor progression. Yet, subtype identification of tumor-associated non-malignant cells at single-cell resolution and how they influence cancer progression under hypoxia TME remain largely unexplored. Here, we used RNA-seq data of 424,194 single cells from 108 patients to identify the subtypes of cancer cells, stromal cells, and immune cells; to evaluate their hypoxia score; and also to uncover potential interaction signals between these cells in vivo across six cancer types. We identified SPP1+ tumor-associated macrophage (TAM) subpopulation potentially enhanced epithelial–mesenchymal transition (EMT) by interaction with cancer cells through paracrine pattern. We prioritized SPP1 as a TAM-secreted factor to act on cancer cells and found a significant enhanced migration phenotype and invasion ability in A549 lung cancer cells induced by recombinant protein SPP1. Besides, prognostic analysis indicated that a higher expression of SPP1 was found to be related to worse clinical outcome in six cancer types. SPP1 expression was higher in hypoxia-high macrophages based on single-cell data, which was further validated by an in vitro experiment that SPP1 was upregulated in macrophages under hypoxia-cultured compared with normoxic conditions. Additionally, a differential analysis demonstrated that hypoxia potentially influences extracellular matrix remodeling, glycolysis, and interleukin-10 signal activation in various cancer types. Our work illuminates the clearer underlying mechanism in the intricate interaction between different cell subtypes within hypoxia TME and proposes the guidelines for the development of therapeutic targets specifically for patients with high proportion of SPP1+ TAMs in hypoxic lesions.
Collapse
Affiliation(s)
- Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Meiling Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ziqing He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dawei Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jie Long
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Qian J, LeSavage BL, Hubka KM, Ma C, Natarajan S, Eggold JT, Xiao Y, Fuh KC, Krishnan V, Enejder A, Heilshorn SC, Dorigo O, Rankin EB. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest 2021; 131:e146186. [PMID: 34396988 DOI: 10.1172/jci146186] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-β signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Jin Qian
- Department of Radiation Oncology
| | | | - Kelsea M Hubka
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | | | | | | | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, Missouri, USA
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Erinn B Rankin
- Department of Radiation Oncology.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
7
|
Microstructural and functional brain abnormalities in multiple sclerosis predicted by osteopontin and neurofilament light. Mult Scler Relat Disord 2021; 51:102923. [PMID: 33813096 DOI: 10.1016/j.msard.2021.102923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Osteopontin (OPN) is a proinflammatory biomarker, and neurofilament light chain (NFL) levels reflect axonal damage. Resting-state functional MRI (rs-fMRI) defines brain networks during wakeful rest. OBJECTIVE To examine, if levels of OPN and NFL are associated on the long term with (i) lesion evolution, (ii) changes in normal-appearing white matter (NAWM) microstructure and (iii) functional connectivity in multiple sclerosis (MS). METHODS Concentration of NFL and OPN in the blood and CSF were related to MRI findings 10.3 ± 2.8 years later in 53 patients with MS. NFL was examined by Simoa method, OPN by ELISA. Lesion volume in the brain and cervical spinal cord was examined by 3D FLAIR images. Voxel-wise images of fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) were examined by tract-based spatial statistics corrected for gender, age and lesion volume. Metabolites were examined by single-voxel MR-spectroscopy in the NAWM. Fifty-five default mode network connections were examined by rs-fMRI corrected for gender, age, MS subtype and current therapy as covariates. RESULTS While NFL in paired serum and CSF positively correlated (p = 0.019), there was no correlation between serum and CSF OPN. Higher OPN levels in the CSF but not in the serum showed association with increased brain WM lesion volume (p = 0.009) in 10.3 ± 2.8 years. Higher OPN in the CSF was associated with reduced FA, increased MD, and reduced RD in different NAWM areas 10.3 ± 2.8 years later. Higher OPN in the serum and CSF were associated with increased connectivity strength between the medial prefrontal cortex (MPFC) and other regions except with inferior parietal lobule. NFL in the CSF and in the serum was associated with decreased connectivity strength except for ventral MPFC-hippocampal formation. Neither serum OPN nor NFL at the time of the MRI were associated with functional connectivity changes. CONCLUSION While serum NFL levels reflects CNS production, OPN in serum and CSF may have different cellular sources. OPN within the CSF but not in the serum may forecast development of lesions and microstructural abnormalities in 10 years, indicating the detrimental role of CNS inflammation on the long-term. Although both OPN and NFL in the CSF were associated with functional connectivity changes in 10 years, NFL was associated with decreased strength possibly indicating general axonal loss. In contrast, the positive association of OPN levels in the CSF with increased connectivity strength in 10 years may point to adaptive re-organization due to inflammatory WM lesions and microstructural changes.
Collapse
|
8
|
Senbanjo LT, AlJohani H, AlQranei M, Majumdar S, Ma T, Chellaiah MA. Identification of sequence-specific interactions of the CD44-intracellular domain with RUNX2 in the transcription of matrix metalloprotease-9 in human prostate cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:586-602. [PMID: 33062960 PMCID: PMC7556329 DOI: 10.20517/cdr.2020.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim The Cluster of differentiation 44 (CD44) transmembrane protein is cleaved by γ-secretase, the inhibition of which blocks CD44 cleavage. This study aimed to determine the biological consequence of CD44 cleavage and its potential interaction with Runt-related transcription factor (RUNX2) in a sequence-specific manner in PC3 prostate cancer cells. Methods Using full-length and C-terminal deletion constructs of CD44-ICD (D1-D5) expressed as stable green fluorescent protein-fusion proteins in PC3 cells, we located possible RUNX2-binding sequences. Results Chromatin immunoprecipitation assays demonstrated that the C-terminal amino acid residues between amino acids 671 and 706 in D1 to D3 constructs were indispensable for sequence-specific binding of RUNX2. This binding was minimal for sequences in the D4 and D5 constructs. Correspondingly, an increase in matrix metalloprotease-9 (MMP-9) expression was observed at the mRNA and protein levels in PC3 cells stably expressing D1-D3 constructs. Conclusion These results provide biochemical evidence for the possible sequence-specific CD44-ICD/RUNX2 interaction and its functional relationship to MMP-9 transcription in the promoter region.
Collapse
Affiliation(s)
- Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hanan AlJohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mohammed AlQranei
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Daruich A, Picard E, Boatright JH, Behar-Cohen F. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis 2019; 25:610-624. [PMID: 31700226 PMCID: PMC6817734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 10/28/2022] Open
Abstract
Bile acids are produced in the liver and excreted into the intestine, where their main function is to participate in lipid digestion. Ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) have shown antiapoptotic, anti-inflammatory, and antioxidant effects in various models of neurodegenerative diseases. However, little is known about signaling pathways and molecular mechanisms through which these bile acids act as neuroprotectors, delaying translation to the clinical setting. We review evidence supporting a potentially therapeutic role for bile acids in retinal disorders, and the mechanisms and pathways involved in the cytoprotective effects of bile acids from the liver and the enterohepatic circulation to the central nervous system and the retina. As secondary bile acids are generated by the microbiota metabolism, bile acids might be a link between neurodegenerative retinal diseases and microbiota.
Collapse
Affiliation(s)
- Alejandra Daruich
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France,Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Emilie Picard
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA,Center of Excellence, Atlanta Veterans Administration Medical Center, Decatur, GA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France,Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
10
|
Senbanjo LT, AlJohani H, Majumdar S, Chellaiah MA. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal 2019; 17:80. [PMID: 31331331 PMCID: PMC6647163 DOI: 10.1186/s12964-019-0395-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expression of CD44 receptor is associated with the onset of several tumors. The intracellular domain of CD44 (CD44-ICD) has been implicated as a co-transcription factor for RUNX2 in the regulation of expression of MMP-9 in breast carcinoma cells. Previous studies from our laboratory demonstrated the role of CD44 in migration and invasion of PC3 prostate cells through activation of MMP-9. CD44 signaling regulates the phosphorylation and hence the localization of RUNX2 in the nucleus. The role of CD44-ICD has not been studied in prostate cancer cells. This study aimed to explore the role of CD44-ICD and RUNX2 in the regulation of expression of metastasis-related genes. METHODS PC3 and PC3 cells overexpressing RUNX2 protein were analyzed for RUNX2/CD44-ICD interaction by immunoprecipitation, immunoblotting, and Immunofluorescence analyses. Wound healing and tumorsphere formation analyses were also done in these cells. The real-time PCR analysis was used to detect the expression levels of different genes. RESULTS Expression of CD44 and RUNX2 was observed only in PC3 cells (androgen receptor positive) and not in LNCaP or PCa2b cells (androgen receptor negative). Therefore, CD44-ICD fragment (~ 15-16 kDa) was observed in PC3 cells. Moreover, localization of CD44-ICD was more in the nucleus than in the cytoplasm of PC3 cells. Inhibition of cleavage of CD44 with a γ-secretase inhibitor, DAPT reduced the formation of CD44-ICD; however, accumulation of CD44-external truncation fragments (~ 20 and ~ 25 kDa) was detected. RUNX2 and CD44-ICD interact in the nucleus of PC3 cells, and this interaction was more in PC3 cells transfected with RUNX2 cDNA. Overexpression of RUNX2 augments the expression of metastasis-related genes (e.g., MMP-9 and osteopontin) which resulted in increased migration and tumorsphere formation. CONCLUSIONS We have shown here a strong functional relationship between CD44-ICD and RUNX2 in PC3 cells. RUNX2 forms a complex with CD44-ICD as a co-transcriptional factor, and this complex formation not only activates the expression of metastasis-related genes but also contributes to migration and tumorsphere formation. Therefore, RUNX2 and CD44-ICD are potential targets for anti-cancer therapy, and attenuation of their interaction may validate the regulatory effects of these proteins on cancer migration and progression.
Collapse
Affiliation(s)
- Linda T Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St., 7th floor (south), Rm7207, Baltimore, MD, 21201, USA
| | - Hanan AlJohani
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St., 7th floor (south), Rm7207, Baltimore, MD, 21201, USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St., 7th floor (south), Rm7207, Baltimore, MD, 21201, USA
| | - Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 W Baltimore St., 7th floor (south), Rm7207, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 2019; 16:99. [PMID: 31088570 PMCID: PMC6518780 DOI: 10.1186/s12974-019-1489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteopontin (OPN, SPP1) is upregulated in response to acute brain injury, and based on its immunoreactivity, two distinct forms have been identified: intracellular OPN within brain macrophages and small granular OPN, identified as OPN-coated degenerated neurites. This study investigates the spatiotemporal relationship between punctate OPN deposition and astroglial and microglial reactions elicited by 3-nitropropionic acid (3-NP). Methods Male Sprague-Dawley rats were intraperitoneally injected with mitochondrial toxin 3-NP and euthanized at 3, 7, 14, and 28 days. Quantitative and qualitative light and electron microscopic techniques were used to assess the relationship between OPN and glial cells. Statistical significance was determined by Student’s t test or a one-way analysis of variance followed by Tukey’s multiple comparisons test. Results Punctate OPN-immunoreactive profiles were synthesized and secreted by amoeboid-like brain macrophages in the lesion core, but not by reactive astrocytes and activated microglia with a stellate shape in the peri-lesional area. Punctate OPN accumulation was detected only in the lesion core away from reactive astrocytes in the peri-lesional area at day 3, but had direct contact with, and even overlapped with astroglial processes at day 7. The distance between the OPN-positive area and the astrocytic scar significantly decreased from days 3 to 7. By days 14 and 28 post-lesion, when the glial scar was fully formed, punctate OPN distribution mostly overlapped with the astrocytic scar. Three-dimensional reconstructions and quantitative image analysis revealed numerous granular OPN puncta inside the cytoplasm of reactive astrocytes and brain macrophages. Reactive astrocytes showed prominent expression of the lysosomal marker lysosomal-associated membrane protein 1, and ultrastructural analysis confirmed OPN-coated degenerating neurites inside astrocytes, suggesting the phagocytosis of OPN puncta by reactive astrocytes after injury. Conclusions Punctate OPN-immunoreactive profiles corresponded to OPN-coated degenerated neurites, which were closely associated with, or completely engulfed by, the reactive astrocytes forming the astroglial scar in 3-NP lesioned striatum, suggesting that OPN may cause astrocytes to migrate towards these degenerated neurites in the lesion core to establish physical contact with, and possibly, to phagocytose them. Our results provide novel insights essential to understanding the recovery and repair of the central nervous system tissue. Electronic supplementary material The online version of this article (10.1186/s12974-019-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
12
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
13
|
Nikhalashree S, George R, Shantha B, Lingam V, Vidya W, Panday M, Sulochana KN, Coral K. Detection of Proteins Associated with Extracellular Matrix Regulation in the Aqueous Humour of Patients with Primary Glaucoma. Curr Eye Res 2019; 44:1018-1025. [DOI: 10.1080/02713683.2019.1608261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sampath Nikhalashree
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | - Ronnie George
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Balekudaru Shantha
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vijaya Lingam
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Wadke Vidya
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Manish Panday
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karunakaran Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
14
|
Zhang C, Wu M, Zhang L, Shang LR, Fang JH, Zhuang SM. Fibrotic microenvironment promotes the metastatic seeding of tumor cells via activating the fibronectin 1/secreted phosphoprotein 1-integrin signaling. Oncotarget 2018; 7:45702-45714. [PMID: 27329720 PMCID: PMC5216754 DOI: 10.18632/oncotarget.10157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The seeding of tumor cells is a critical step in the process of metastasis, but whether and how the microenvironment of target organs affects metastatic seeding remain largely unknown. Based on cell and mouse models, we found that the metastatic seeding and outgrowth of tumor cells were significantly enhanced in fibrotic lungs. The conditioned medium from both fibrotic lungs and the fibrotic lung-derived fibroblasts (CM-FLF) had a strong activity to chemoattract tumor cells and to inhibit the apoptosis of tumor cells. Subsequent investigations revealed that the levels of fibronectin 1 (FN1) and secreted phosphoprotein 1 (SPP1) were significantly increased in fibrotic lungs. Silencing of FN1 in the fibrotic lung-derived fibroblasts dramatically decreased the chemoattracting activity of CM-FLF, while silencing of FN1 or SPP1 in fibroblasts attenuated the anti-apoptosis activity of CM-FLF. Moreover, the CM-FLF-induced apoptosis resistance or chemotaxis of tumor cells was attenuated when ITGAV, the common receptor of FN1 and SPP1, was silenced by RNA interference or blocked by GRGDS treatment in tumor cells. Consistently, ITGAV silencing or GRGDS treatment significantly inhibited the seeding and outgrowth of tumor cells in fibrotic lungs in vivo. Collectively, we suggest that fibrotic microenvironment may enhance the metastatic seeding of tumor cells in the lung by chemoattracting tumor cells and inhibiting their apoptosis via activating the FN1/SPP1-ITGAV signaling. These findings give a novel insight into the regulatory mechanisms of cancer metastasis and provide a potential target for anti-metastasis therapy.
Collapse
Affiliation(s)
- Chong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Mengzhi Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Lizhen Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Li-Ru Shang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jian-Hong Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cell Signaling Network, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
15
|
Application of multiplex immunoassay technology to investigations of ocular disease. Expert Rev Mol Med 2016; 18:e15. [PMID: 27577534 DOI: 10.1017/erm.2016.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eye-derived fluids, including tears, aqueous humour and vitreous humour often contain molecular signatures of ocular disease states. These signatures can be composed of cytokines, chemokines, growth factors, proteases and soluble receptors. However, the small quantities (<10 µl) of these fluids severely limit the detection of these proteins by traditional enzyme-linked immunosorbent assay or Western blot. To maximise the amount of information generated from the analysis of these specimens, many researchers have employed multiplex immunoassay technologies for profiling the expression or modification of multiple proteins from minute sample volumes.
Collapse
|
16
|
The role of integrins in glaucoma. Exp Eye Res 2016; 158:124-136. [PMID: 27185161 DOI: 10.1016/j.exer.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). In addition to their role as adhesion receptors, integrins can act as ''bidirectional signal transducers'' that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. This bidirectional signaling helps maintain tissue homeostasis. Dysregulated bidirectional signaling, however, could trigger the propagation of feedback loops that can lead to the establishment of a disease state such as glaucoma. Here we discuss the role of integrins and bidirectional signaling as they relate to the glaucomatous phenotype with special emphasis on the αvβ3 integrin. We present evidence that this particular integrin may have a significant impact on the pathogenesis of glaucoma.
Collapse
|